10-PZ126PA080MR-M909F28Y datasheet 1200 V / 80 mΩ flow 3xPHASE-SiC Features flow 0 12mm housing ● SiC-Power MOSFET´s and Schottky Diodes ● 3 phase inverter topology with split output ● Improved switching behavior (reduced turn on energy and X-conduction) ● Ultra Low Inductance with integrated DC-capacitors ● Switching frequency >100kHz ● Temperature sensor Target Applications Schematic ● Solar Inverter ● Charger ● Power Supply Types ● 10-PZ126PA080MR-M909F28Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 19 A 80 A 50 W T1, T2, T3, T4, T5, T6 Drain-source voltage Drain current Peak drain current VDS ID IDpulse Tj=Tjmax Th=80°C tp limited by Tjmax Ptot Gate-source voltage VGS -6/+22 V Tjmax 150 °C Peak Repetitive Reverse Voltage VRRM 1200 V Continuous (direct) forward current IFAV Tj=Tjmax Th=80°C 10 A Surge (non-repetitive) forward current IFSM tp=8,3ms Tj=25°C 23 A Repetitive peak forward current IFRM tp limited by Tjmax 25 A Total power dissipation Ptot Tj=Tjmax 31 W 175 °C Maximum Junction Temperature Tj=Tjmax Th=80°C Total power dissipation D1, D2, D3, D4, D5, D6 Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1000 V C1, C2, C3 Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation Junction Temperature Top -40…+(Tjmax - 25) °C 4000 V min 12,7 mm min 9,9 mm Isolation Properties Isolation Voltage t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Min Typ Unit Max T1, T2, T3, T4, T5, T6 Drain-source on-state resistance Gate-source threshold voltage RDS(on) 20 V(GS)th 20 VDS = VGS 0,0044 Gate to Source Leakage Current Igss -6/22 Zero Gate Voltage Drain Current Idss 0 Internal gate resistance RG Gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd 1200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 70,00 115,00 1,6 mΩ 4 100 10 f=1MHz; open Drain V nA µA Ω 9 106 18 400 10 nC 27 31 Tj=25°C Short-circuit input capacitance Ciss Short-circuit output capacitance Coss Reverse transfer capacitance Crss Thermal resistance junction to sink RthJH 2080 f=1MHz 0 800 pF 77 16 Phase-Change Material 1,41 K/W D1, D2, D3, D4, D5, D6 Forward voltage Reverse leakage current Thermal resistance junction to sink VF 5 Irm 1200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Phase-Change Material RthJH 0,8 1,40 1,73 1,7 100 3,07 V µA K/W Single ended configuration T1, T2, T3, T4, T5, T6 Turn-on delay time Rise Time Turn-off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy (per pulse) Eon Turn-off energy (per pulse) Eoff Rgoff=1 Ω Rgon=1 Ω 16 700 16 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 14 13 7 7 96 106 5 5 0,333 0,244 0,190 0,178 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 9 10 10 10 0,080 0,110 0,025 0,042 1960 2220 ns mWs D1, D2, D3, D4, D5, D6 Peak reverse recovery current IRRM Reverse recovery time trr Recovered charge Qrr Reverse recovered energy Peak rate of fall of recovery current copyright Vincotech Rgon=1 Ω 16 700 Erec di(rec)max /dt 3 16 A ns µC mWs A/µs 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Min Typ Unit Max Half bridge configuration D1, D2, D3, D4, D5, D6 Peak reverse recovery current IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Rgon=1 Ω -6/16 700 16 di(rec)max /dt Erec Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 13 16 18 17 0,220 0,300 3080 3572 0,067 0,119 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 17 16 6 5 75 79 30 74 0,330 0,280 0,080 0,080 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 16 16 6 6 71 75 12 10 0,310 0,220 0,110 0,090 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 10 12 47 47 0,2 0,2 1373 1302 0,05 0,06 A ns µC A/µs mWs T1, T2, T3, T4, T5, T6 Turn-on delay time Rise Time Turn-off delay time Fall time td(ON) tr td(OFF) Rgoff=1 Ω Rgon=1 Ω tf Turn-on energy (per pulse) Eon Turn-off energy (per pulse) Eoff -6/16 700 16 ns mWs Splitted output configuration T1, T2, T3, T4, T5, T6 Turn-on delay time Rise time Turn-off delay time Fall time td(on) tr td(off) tf Turn-on energy (per pulse) Eon Turn-off energy (per pulse) Eoff Rgoff=1 Ω Rgon=1 Ω -6/16 700 16 ns mWs D1, D2, D3, D4, D5, D6 Peak reverse recovery current IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovery energy Rgon=1 Ω -6/16 di(rec)max /dt Erec 700 16 A ns µC A/µs mWs C1, C2, C3 C value C 47 nF 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -12,37 13,84 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K Vincotech NTC Reference copyright Vincotech B 4 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Half Bridge Configuration Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Typical switching energy losses as a function of drain current E = f(I D) Figure 2 T1, T2, T3, T4, T5, T6 MOSFET Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) E (mWs) 1,5 Eon Low T 1,2 1,2 0,9 0,9 Eon High T Eon Low T Eon High T 0,6 0,6 0,3 0,3 Eoff Low T Eoff Low T Eoff High T Eoff High T 0 0 0 5 10 15 20 25 I D (A) 30 0 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = -6/16 V Rgon = 1 Ω Rgoff = 1 Ω With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = -6/16 V ID = 16 A Figure 3 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery energy loss as a function of drain current Erec = f(I D) Figure 4 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,20 E (mWs) E (mWs) 0,20 0,16 0,16 0,12 0,12 Erec High T Erec High T 0,08 0,08 Erec Low T Erec Low T 0,04 0,04 0,00 0,00 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = -6/16 V Rgon = 1 Ω copyright Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = -6/16 V ID = 16 A 5 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Half Bridge Configuration Figure 5 Typical switching times as a function of drain current t = f(I D) T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 T1, T2, T3, T4, T5, T6 MOSFET tdoff 0,10 0,10 tdoff tf tf tdon 0,01 tdon 0,01 tr tr 0,00 0,00 0 5 10 15 20 25 I D (A) 30 0 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C VDS = 700 V VGS = -6/16 V Rgon = 1 Ω Rgoff = 1 Ω With an inductive load at Tj = 125 °C VDS = 700 V VGS = -6/16 V ID = 16 A Figure 7 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery time as a function of drain current trr = f(I D) Figure 8 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,03 t rr(ms) t rr(ms) 0,15 trr Low T 0,025 0,12 trr High T trr High T 0,02 0,09 trr Low T 0,015 0,06 0,01 0,03 0,005 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 6 4 25/125 700 16 -6/16 8 12 16 R gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Half Bridge Configuration Figure 9 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery charge as a function of drain current Qrr = f(I D) Figure 10 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,5 Qrr (µC) 0,5 Qrr (µC) Qrr High T 0,4 0,4 0,3 0,3 Qrr High T Qrr Low T Qrr Low T 0,2 0,2 0,1 0,1 0,0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Figure 11 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery current as a function of drain current IRRM = f(I D) 4 25/125 700 16 -6/16 8 12 16 R gon ( Ω) 20 °C V A V Figure 12 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) IrrM (A) 20 IrrM (A) 20 IRRM High T 16 16 IRRM Low T 12 12 8 8 IRRM High T IRRM Low T 4 4 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 copyright Vincotech 10 15 20 25 I D (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω 7 4 25/125 700 16 -6/16 8 12 16 R gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Half Bridge Configuration 4500 Figure 14 D1, D2, D3, D4, D5, D6 FWD Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) direc / dt (A/ms) Figure 13 D1, D2, D3, D4, D5, D6 FWD Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(I D) dIrec/dt T di0/dtT 4000 3500 5000 dIrec/dt T dI0/dt T 4000 3000 3000 2500 2000 2000 1500 1000 1000 500 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 copyright Vincotech 10 15 20 25 I D (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω 8 4 25/125 700 16 -6/16 8 12 16 R gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet T1, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Typical output characteristics ID = f(VDS) Figure 2 T1, T2, T3, T4, T5, T6 MOSFET Typical output characteristics ID = f(VDS) 80 ID (A) ID (A) 100 80 60 60 40 40 20 20 0 0 -20 -20 -40 -40 -60 -60 -80 -80 -10 At tp = Tj = VGS from -8 -6 -4 -2 0 2 4 6 8 10 -10 12 14 V DS (V) -8 -6 -4 -2 0 2 4 6 8 10 12 14 V DS (V) At tp = Tj = VGS from 250 µs 25 °C -6 V to 20 V in steps of 2 V Dashed line is 0V 250 µs 125 °C -6 V to 20 V in steps of 2 V Dashed line is 0V Figure 3 T1, T2, T3, T4, T5, T6 MOSFET Typical transfer characteristics ID = f(VGS) Figure 4 D1, D2, D3, D4, D5, D6 FWD Typical diode forward current as a function of forward voltage IF = f(VF) 20 IC (A) IF (A) 15 16 Tj = 25°C 12 Tj = Tjmax-25°C 12 9 Tj = Tjmax-25°C 8 6 Tj = 25°C 4 3 0 0 0 2 At tp = VDS = 250 10 copyright Vincotech 4 6 8 10 V GS (V) 12 0 At tp = µs V 9 1 250 2 3 4 V F (V) 5 µs 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Splitted Configuration Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Typical switching energy losses as a function of drain current E = f(I D) Figure 6 T1, T2, T3, T4, T5, T6 MOSFET Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) E (mWs) 1,5 Eon Low T 1,2 1,2 0,9 Eon Low T 0,9 0,6 Eon High T 0,6 Eon High T 0,3 0,3 Eoff Low T Eoff Low T Eoff High T Eoff High T 0 0 0 5 10 15 20 25 I D (A) 0 30 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = -6/16 V Rgon = 1 Ω Rgoff = 1 Ω With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = -6/16 V ID = 16 A Figure 7 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery energy loss as a function of drain current Erec = f(I D) Figure 8 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 0,1 Erec High T 0,1 0,08 0,08 0,06 0,06 Erec High T Erec Low T Erec Low T 0,04 0,04 0,02 0,02 0 0 0 5 10 15 20 25 I D (A) 0 30 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = -6/16 V Rgon = 1 Ω copyright Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = -6/16 V ID = 16 A 10 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Splitted Configuration Figure 9 Typical switching times as a function of drain current t = f(I D) T1, T2, T3, T4, T5, T6 MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) T1, T2, T3, T4, T5, T6 MOSFET 1 t ( µs) t ( µs) 1 tdoff tdoff 0,1 0,1 tf tdon tr tdon tf 0,01 0,01 tr 0,001 0,001 0 5 10 15 20 25 I D (A) 30 0 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VDS = 700 V VGS = -6/16 V Rgon = 1 Ω Rgoff = 1 Ω With an inductive load at Tj = 125 °C VDS = 700 V VGS = -6/16 V ID = 16 A Figure 11 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery time as a function of drain current trr = f(I D) Figure 12 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,1 t rr(ms) t rr(ms) 0,1 trr Low T trr High T 0,08 0,08 0,06 0,06 trr High T 0,04 0,04 trr Low T 0,02 0,02 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 11 4 25/125 700 16 -6/16 8 12 16 R gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Splitted Configuration Figure 13 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery charge as a function of drain current Qrr = f(I D) Figure 14 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,4 Qrr (µC) Qrr (µC) 0,4 Qrr High T 0,3 0,3 Qrr High T 0,2 0,2 0,1 Qrr Low T 0,1 Qrr Low T 0,0 0 0 At At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Figure 15 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery current as a function of drain current IRRM = f(I D) 4 25/125 700 16 -6/16 8 12 16 R gon ( Ω) 20 °C V A V Figure 16 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 15 IrrM (A) IrrM (A) 15 IRRM High T 12 12 IRRM Low T 9 9 6 6 IRRM High T IRRM Low T 3 3 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 12 4 25/125 700 16 -6/16 8 12 16 R gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Splitted Configuration Figure 17 D1, D2, D3, D4, D5, D6 FWD Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(I D) Figure 18 D1, D2, D3, D4, D5, D6 FWD Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 5000 dIo/dt T direc / dt (A/ms) direc / dt (A/ms) 5000 dIrec/dt T 4000 dI0/dt T dIrec/dt T 4000 3000 3000 2000 2000 1000 1000 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -6/16 1 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 13 5 25/125 700 16 -6/16 10 15 R gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet T1, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 Figure 19 T1, T2, T3, T4, T5, T6 MOSFET MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 1 10 1 ZthJH (K/W) 10 ZthJH (K/W) 10 Figure 20 D1, D2, D3, D4, D5, D6 FWD FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 tp / T 1,41 10-3 10-2 10-1 100 t p (s) 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 2 10101 10-5 At D= RthJH = K/W 10-4 tp / T 3,07 10-3 FWD thermal model values R (K/W) 0,12 0,39 0,68 0,12 0,10 R (K/W) 0,06 0,14 1,00 0,83 0,64 0,40 copyright Vincotech 14 10-1 100 t p (s) 2 10101 K/W MOSFET thermal model values Tau (s) 1,0E+00 1,7E-01 6,1E-02 5,5E-03 8,0E-04 10-2 Tau (s) 3,5E+00 5,2E-01 7,8E-02 2,6E-02 5,8E-03 1,3E-03 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet T1, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 Figure 21 T1, T2, T3, T4, T5, T6 MOSFET Power dissipation as a function of heatsink temperature Ptot = f(Th) Figure 22 T1, T2, T3, T4, T5, T6 MOSFET Drain current as a function of heatsink temperature ID = f(Th) 30 ID (A) Ptot (W) 125 25 100 20 75 15 50 10 25 5 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = VGS = ºC Figure 23 D1, D2, D3, D4, D5, D6 FWD Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) 200 ºC V Figure 24 D1, D2, D3, D4, D5, D6 FWD Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 15 50 12 40 9 30 6 20 3 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 15 50 175 100 150 Th ( o C) 200 ºC 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet T1, T2, T3, T4, T5, T6 Figure 25 T1, T2, T3, T4, T5, T6 MOSFET Safe operating area as a function of drain-source voltage ID = f(VDS) 100uS T1, T2, T3, T4, T5, T6 MOSFET VGS = f(Qg) 10uS UGS (V) 2 ID (A) 10 Figure 26 Gate voltage vs Gate charge 1mS 20 18 10mS 100mS 16 DC 4 14 101 12 10 8 100 6 4 2 0 10-1 100 At D= Th = VGS = Tj = 101 10 2 10 3 0 V DS (V) At IDS = VDS= IGS= Tj = single pulse 80 ºC V 0 Tjmax ºC copyright Vincotech 16 10 20 20 800 10 A V mA 25 ºC 30 40 Qg (nC) 50 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Booster Configuration Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Typical switching energy losses as a function of drain current E = f(I D) Figure 2 T1, T2, T3, T4, T5, T6 MOSFET Typical switching energy losses as a function of gate resistor E = f(RG) 2 E (mWs) E (mWs) 2 1,6 1,6 Eon Low T Eon Low T 1,2 1,2 Eon High T 0,8 0,8 Eon High T Eoff High T 0,4 Eoff High T Eoff Low T 0,4 Eoff Low T 0 0 0 5 10 15 20 25 I D (A) 30 0 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V Rgon = 1 Ω Rgoff = 1 Ω With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V ID = 16 A Figure 3 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery energy loss as a function of drain current Erec = f(I D) Figure 4 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 0,05 Erec High T 0,04 0,05 0,04 Erec Low T 0,03 0,03 Erec High T 0,02 0,02 0,01 0,01 0 Erec Low T 0 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V Rgon = 1 Ω Rgoff = 1 Ω copyright Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V ID = 16 A 17 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Booster Configuration Figure 5 Typical switching times as a function of drain current t = f(I D) T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Typical switching times as a function of gate resistor t = f(RG) T1, T2, T3, T4, T5, T6 MOSFET 1 t ( ms) t ( ms) 1 tdoff tdoff 0,1 0,1 tr tdon tdon 0,01 0,01 tr tf tf 0,001 0,001 0 5 10 15 20 25 I D (A) 30 0 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C VDS = 700 V VGS = 16 V Rgon = 1 Ω Rgoff = 1 Ω With an inductive load at Tj = 125 °C VDS = 700 V VGS = 16 V ID = 16 A Figure 7 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery time as a function of drain current trr = f(I D) Figure 8 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,015 t rr( ms) t rr( ms) 0,015 0,012 0,012 trr Low T trr High T trr High T 0,009 0,009 trr Low T 0,006 0,006 0,003 0,003 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 16 1 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 18 4 25/125 700 16 16 8 12 16 R Gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Booster Configuration Figure 9 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery charge as a function of drain current Qrr = f(I D) Figure 10 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,15 Qrr ( µC) Qrr ( µC) 0,15 0,12 0,12 Qrr High T Qrr High T 0,09 0,09 Qrr Low T Qrr Low T 0,06 0,06 0,03 0,03 0 0 0 At At Tj = VDS = VGS = Rgon = 5 25/125 700 16 1 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Figure 11 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery current as a function of drain current IRRM = f(I D) 4 25/125 700 16 16 8 12 16 R Gon ( Ω) 20 °C V A V Figure 12 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 12 IrrM (A) IrrM (A) 12 IRRM High T 10 10 IRRM Low T 8 8 6 6 4 4 IRRM High T 2 IRRM Low T 2 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 16 1 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 19 4 25/125 700 16 16 8 12 16 R Gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Booster Configuration Figure 14 D1, D2, D3, D4, D5, D6 FWD Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 4000 direc / dt (A/ µs) direc / dt (A/ µs) Figure 13 D1, D2, D3, D4, D5, D6 FWD Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(I D) dI0/dt dIrec/dt 3200 4000 dI0/dt dIrec/dt 3200 2400 2400 1600 1600 800 800 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 16 1 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 20 4 25/125 700 16 16 8 12 16 R Gon ( Ω) 20 °C V A V 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 21 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Half Bridge Configuration General Tj R gon R goff conditions = 125 °C = 1Ω = 1Ω Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 125 tdoff % ID % VDS 100 VDS 90% VGS 90% 150 ID 75 VDS 100 50 tEoff tdon 25 ID 1% VGS 50 0 VGS 10% VGS -25 VDS 3% ID 10% 0 tEon -50 -0,08 -0,05 -0,02 0,01 0,04 0,07 time (us) -50 2,95 0,1 2,99 3,03 V GS (0%) = V GS (100%) = 0 16 V V V GS (0%) = V GS (100%) = 0 16 V V VD (100%) = I D (100%) = t doff = t E off = 700 16 0,079 0,107 V A µs µs VD (100%) = I D (100%) = t don = t E on = 700 16 0,016 0,057 V A µs µs Figure 3 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t f 3,07 time(us) 3,11 Figure 4 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of tr 125 200 fitted % VDS ID ID % 100 ID 90% 150 75 ID 60% VDS 100 50 ID 90% ID 40% tr 25 50 ID10% 0 ID 10% tf 0 -25 -50 -0,06 -0,03 VD (100%) = I D (100%) = tf = copyright Vincotech 0 700 16 0,074 0,03 0,06 0,09 -50 2,99 0,12 0,15 time (us) V A µs VD (100%) = I D (100%) = tr = 22 3 3,01 3,02 700 16 0,005 V A µs 3,03 3,04 3,05 time(us) 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Half Bridge Configuration Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t Eoff Figure 6 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of t Eon 125 150 Eoff % Pon % 100 125 75 100 Eon 50 75 Poff 25 50 VGS 90% ID 1% 0 25 tEoff VGS 10% -25 -50 -0,06 VDS 3% 0 -0,04 -0,02 P off (100%) = E off (100%) = t E off = 0 0,02 11,16 0,08 0,107 kW mJ µs 0,04 0,06 tEon -25 2,97 0,08 0,1 time (us) 2,99 P on (100%) = E on (100%) = t E on = 3,01 3,03 11,16 0,28 0,057 kW mJ µs 3,05 3,07 3,09 time(us) Figure 7 D1, D2, D3, D4, D5, D6 FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd 0 IRRM 10% fitted -50 IRRM 90% IRRM 100% -100 -150 3 3,012 V d (100%) = I d (100%) = IRRM (100%) = trr = copyright Vincotech 23 3,024 700 16 -16 0,017 3,036 3,048 3,06 time(us) V A A µs 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Half Bridge Configuration Figure 8 D1, D2, D3, D4, D5, D6 FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) 150 % Figure 9 D1, D2, D3, D4, D5, D6 FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 % Qrr Id 125 100 Erec 100 tQrr 50 tErec 75 0 50 25 -50 0 Prec -100 -25 -150 -50 3 3,01 I d (100%) = Qrr (100%) = t Q rr = 3,02 3,03 16 0,30 0,033 A µC µs 3,04 3,05 3,06 time(us) 3 3,01 P rec (100%) = E rec (100%) = t E rec = 3,02 3,03 3,04 11,16 0,12 0,033 kW mJ µs 3,05 3,06 time(us) Measurement circuit Figure 10 Half Bridge Configuration switching measurement circuit Vcc V L -8V VDC D1 705uH T2 700 Vce V Vge V T1 D2 Ic A 0.00001 0.000003 Q Q Q Q Q +16V 4Ohm 4Ohm -5V Q copyright Vincotech 24 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Splitted Configuration General Tj R gon R goff conditions = 124 °C = 1Ω = 1Ω Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 200 tdoff % % VDS ID 100 VGS 90% 150 VDS 90% 75 VGS VDS ID 100 50 tEoff VGS tdon ID 1% 25 50 0 VGS 10% VDS 3% ID 10% 0 -25 tEon -50 -0,07 -0,04 0,05 0,08 time (us) -50 2,95 -0,01 0,02 0,11 V GS (0%) = V GS (100%) = 0 -6/16 V V V GS (0%) = V GS (100%) = 0 -6/16 V V VD (100%) = I D (100%) = t doff = t E off = 700 16 0,075 0,113 V A µs µs VD (100%) = I D (100%) = t don = t E on = 700 16 0,016 0,064 V A µs µs Figure 3 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t f fitted 3,025 3,05 175 % VDS ID 3 3,075 3,1 time(us) Figure 4 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of tr 125 % 2,975 ID 150 100 ID 90% 125 75 VDS ID 60% 100 ID 90% 50 ID 40% 75 tr 25 50 ID10% 0 25 ID 10% tf -25 -50 0,02 0 0,03 0,04 0,05 0,06 -25 2,99 0,07 3 3,01 3,02 time (us) VD (100%) = I D (100%) = tf = copyright Vincotech 700 16 0,010 V A µs VD (100%) = I D (100%) = tr = 25 700 16 0,006 3,03 3,04 time(us) V A µs 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Splitted Configuration Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t Eoff Figure 6 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of t Eon 125 125 % % Pon Eon Eoff 100 100 75 75 50 Poff 50 25 VGS 90% ID 1% 0 25 tEoff VGS 10% -25 -50 -0,06 VDS 3% 0 tEon -0,04 -0,02 P off (100%) = E off (100%) = t E off = 0 11,23 0,095 0,113 0,02 0,04 0,06 -25 2,97 0,08 0,1 time (us) kW mJ µs 2,99 P on (100%) = E on (100%) = t E on = 3,01 3,03 11,23 0,223 0,064 kW mJ µs 3,05 3,07 time(us) 3,09 Figure 7 D1, D2, D3, D4, D5, D6 FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd 0 IRRM 10% fitted -50 IRRM 90% IRRM 100% -100 -150 3 3,02 V d (100%) = I d (100%) = IRRM (100%) = trr = copyright Vincotech 26 3,04 700 16 -12 0,047 3,06 3,08 time(us) 3,1 V A A µs 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Splitted Configuration Figure 8 D1, D2, D3, D4, D5, D6 FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 D1, D2, D3, D4, D5, D6 FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Id Qrr Erec 100 100 tErec 75 tQrr 50 50 Prec 0 25 -50 0 -100 2,95 3 I d (100%) = Qrr (100%) = t Q rr = 3,05 16 0,27 0,100 3,1 3,15 time(us) -25 2,95 3,2 A µC µs 3 3,05 P rec (100%) = E rec (100%) = t E rec = 11,23 0,05 0,100 3,1 3,15 time(us) 3,2 kW mJ µs Measurement circuit Figure 10 Splitted Configuration switching measurement circuit Vd Vcc V Vd used for T2 dody diode Erec calculation -8V D1 VDC V L T2 700 705uH 1uH Vce V Vge V T1 D2 Ic A 0.00001 0.000003 Q Q Q Q Q +16V 4Ohm 4Ohm -8V Q copyright Vincotech 27 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Booster Configuration General Tj R gon R goff conditions = 124 °C = 1Ω = 1Ω Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 125 % tdoff % ID 100 VGS 90% VDS 90% VGS ID 150 75 VDS 100 50 tdon tEoff VGS 50 25 ID 1% VGS 10% VDS VDS 3% ID 10% 0 0 tEon -25 -0,07 -0,04 -0,01 0,02 0,05 0,08 -50 2,95 0,11 0,14 time (us) 2,98 3,01 3,04 V GS (0%) = V GS (100%) = 0 16 V V V GS (0%) = V GS (100%) = 0 16 V V VD (100%) = I D (100%) = t doff = t E off = 700 16 0,106 0,136 V A µs µs VD (100%) = I D (100%) = t don = t E on = 700 16 0,012 0,067 V A µs µs Figure 3 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t f 175 % fitted ID time(us) 3,1 Figure 4 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of tr 125 % 3,07 VDS ID 150 100 ID 90% 125 VDS 75 100 ID 90% ID 60% 75 50 tr ID 40% 50 25 25 ID 10% ID 10% 0 0 tf -25 0,06 0,07 0,08 0,09 0,1 -25 2,99 0,11 3 3,01 3,02 700 16 0,007 V A µs time (us) VD (100%) = I D (100%) = tf = copyright Vincotech 700 16 0,005 V A µs VD (100%) = I D (100%) = tr = 28 3,03 3,04 3,05 time(us) 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Booster Configuration Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Turn-off Switching Waveforms & definition of t Eoff Figure 6 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of t Eon 150 125 % % Eoff Pon 125 100 Eon 100 Poff 75 75 50 50 25 25 VGS 90% VGS 10% ID 1% 0 -25 -0,07 -0,04 P off (100%) = E off (100%) = t E off = -0,01 11,23 0,18 0,136 VDS 3% 0 tEoff 0,02 0,05 0,08 tEon -25 2,98 0,11 0,14 time (us) kW mJ µs 3 P on (100%) = E on (100%) = t E on = 3,02 3,04 11,23 0,24 0,067 kW mJ µs 3,06 3,08 3,1 time(us) Figure 7 D1, D2, D3, D4, D5, D6 FWD Turn-off Switching Waveforms & definition of t rr 125 Id % 100 75 trr 50 25 Vd 0 IRRM 10% -25 fitted -50 -75 3,01 IRRM 90% IRRM 100% 3,018 3,026 3,034 3,042 3,05 time(us) V d (100%) = I d (100%) = IRRM (100%) = trr = copyright Vincotech 29 700 16 -10 0,010 V A A µs 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Switching Definitions Booster Configuration Figure 8 D1, D2, D3, D4, D5, D6 FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 D1, D2, D3, D4, D5, D6 FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 200 % 600 % Erec 500 150 Qrr Id 400 100 300 tQrr 50 200 0 tErec 100 -50 0 -100 Prec -100 3 3,01 3,02 3,03 3,04 3,05 3,06 3 3,01 3,02 3,03 time(us) I d (100%) = Qrr (100%) = t Q rr = 16 0,11 0,019 3,04 3,05 time(us) A µC µs P rec (100%) = E rec (100%) = t E rec = 11,23 0,04 0,019 kW mJ µs Measurement circuit Figure 10 Booster Configuration switching measurement circuit Vcc V VDC D1 L -8V 705uH T2 700 Vce V Vge V T1 D2 Ic A 0.00001 0.000003 Q Q Q Q Q +16V 4Ohm 4Ohm 0V Q copyright Vincotech 30 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version w/o thermal paste 12mm housing Press-fit pin Ordering Code 10-PZ126PA080MR-M909F28Y in DataMatrix as M909F28Y in packaging barcode as M909F28Y Outline Pin table X Y Pin 1 33,4 2 25,4 0 0 3 25,05 2,8 4 5 25,05 22,25 5,6 5,6 6 22,25 2,8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 22,25 14,25 8 0 0 0 0 7,15 7,75 7,75 8,35 11,15 13,75 13,75 13,15 19,65 25,65 33,4 31,55 31,55 0 0 0 0 2,8 5,6 22,2 22,2 19,2 16,4 10,2 11,5 16,4 19,2 22,2 22,2 22,2 22,2 19,2 16,4 Pinout Identification ID T1-T6 D1-D6 C1-C3 NTC Component IGBT FWD Capacitor NTC copyright Vincotech Voltage 1200V 1200V 1000V Current 35A 5A Function Half-Bridge Switch Half-Bridge Diode DC Capacitor Thermistor 31 Comment 13 Mar. 2015 / Revision 3 10-PZ126PA080MR-M909F28Y datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 32 13 Mar. 2015 / Revision 3