10-PZ123BA080ME-M909L18Y flow 3xBOOST0-SiC 1200V/80mΩ Features flow 0 12mm housing ● SiC-Power MOSFET´s and Schottky Diodes ● 3 channel boost topology ● Ultra Low Inductance with integrated DC-capacitors ● Switching frequency >100kHz ●Temperature sensor Target Applications Schematic ● solar inverter ● Power Supply Types ● 10-PZ123BA080ME-M909L18Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 17 21 A 60 A 41 62 W T1, T2, T3, T4, T5, T6 Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Ptot Gate-source peak voltage VGS -10/25 V Tjmax 150 °C VRRM 1200 V Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C Power dissipation D1, D2, D3, D4, D5, D6 Peak Repetitive Reverse Voltage Forward average current IFAV Tj=Tjmax Th=80°C Tc=80°C 17 21 A Non-Repetitive Peak Forward Surge Current IFSM tp=10ms Tj=25°C 92 A Repetitive Peak Forward Surge Current IFRM tp limited by Tjmax 52 A Power dissipation per Diode Ptot Tj=Tjmax 50 76 W 175 °C Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Revision: 2 10-PZ123BA080ME-M909L18Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1000 V C1, C2, C3 Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 9,9 mm Insulation Properties Insulation voltage copyright Vincotech t=2s DC voltage 2 Revision: 2 10-PZ123BA080ME-M909L18Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ 1,7 0,08 0,14 2,2 Unit Max T1, T2, T3, T4, T5, T6 Static drain to source ON resistance RDS(on) Gate threshold voltage V(GS)th 20 20 VDS = VGS 10 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 1200 Internal Gate Resistance RG f=1MHz; VAC=25mV Turn On Delay Time Rise Time Turn off delay time Fall time 0,001 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgoff=4 Ω Rgon=4 Ω Ω V 250 100 16 700 16 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C nA µA Ω 4,6 td(ON) td(OFF) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 12 10 5 5 36 39 16 18 0,126 0,108 0,051 0,050 ns mWs 49,2 0/20 800 10,8 20 nC 18 Tj=25°C 950 f=1MHz 0 1000 pF 80 6,5 Phase-Change Material K/W 1,72 D1, D2, D3, D4, D5, D6 Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 10 1200 Rgon=4 Ω 16 700 di(rec)max /dt RthJH 16 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,46 1,80 1,8 300 17 18 10 11 0,102 0,103 0,028 0,031 3666 3626 Phase-Change Material V µA A ns µC mWs A/µs 1,88 K/W 47 nF 22000 Ω C1, C2, C3 C value C Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=25°C Power dissipation constant -5 5 T=25°C 200 mW T=25°C 2 mW/K K B-value B(25/50) Tol. ±3% T=25°C 3950 B-value B(25/100) Tol. ±3% T=25°C 3996 K B Vincotech NTC Reference copyright Vincotech % 3 Revision: 2 10-PZ123BA080ME-M909L18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 1 Typical output characteristics ID = f(VDS) T1, T2, T3, T4, T5, T6 MOSFET Figure 2 Typical output characteristics ID = f(VDS) 70 IC(A) IC (A) 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGS from 2 4 6 8 10 V CE (V) 12 0 At tp = Tj = VGS from µs 250 25 °C 0 V to 20 V in steps of 2 V T1, T2, T3, T4, T5, T6 MOSFET Figure 3 Typical transfer characteristics ID = f(VGS) 2 4 6 10 V CE (V) 12 250 µs 126 °C 0 V to 20 V in steps of 2 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) D1, D2, D3, D4, D5, D6 FWD 40 IF (A) ID (A) 20 8 16 30 12 20 8 Tj = Tjmax-25°C 10 4 Tj = 25°C Tj = 25°C 0 Tj = Tjmax-25°C 0 0 At tp = VDS = 2 250 10 copyright Vincotech 4 6 8 10 V GS (V) 12 0 At tp = µs V 4 1 250 2 3 4 V F (V) 5 µs Revision: 2 10-PZ123BA080ME-M909L18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,5 Eon Low T E (mWs) E (mWs) 0,25 Eon Low T 0,20 Eon High T 0,4 Eon High T 0,15 0,3 Eoff High T Eoff Low T Eoff High T 0,10 0,2 Eoff Low T 0,05 0,1 0,00 0 0 5 10 15 20 25 I C (A) 30 0 10 20 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 16 V Rgon = 4 Ω Rgoff = 4 Ω With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V ID = A 16 D1, D2, D3, D4, D5, D6 FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 30 RG (Ω ) 40 D1, D2, D3, D4, D5, D6 FWD 0,05 E (mWs) E (mWs) 0,05 Erec High T Erec Low T 0,04 0,04 Erec High T Erec Low T 0,03 0,03 0,02 0,02 0,01 0,01 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 16 V Rgon = 4 Ω Rgoff = 4 Ω copyright Vincotech 10 20 30 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V ID = 16 A 5 Revision: 2 10-PZ123BA080ME-M909L18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) T1, T2, T3, T4, T5, T6 MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( ms) t ( ms) 1 tf 0,1 0,1 tdoff tdoff tf tdon 0,01 0,01 tdon tr tr 0,001 0,001 0 5 10 15 20 25 I D (A) 0 30 5 10 15 20 25 30 35 R G ( Ω) With an inductive load at Tj = °C 125 VDS = 700 V VGS = 16 V Rgon = 4 Ω Rgoff = 4 Ω With an inductive load at Tj = 125 °C VDS = 700 V VGS = 16 V IC = A 16 D1, D2, D3, D4, D5, D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( ms) 0,08 t rr( ms) 0,015 D1, D2, D3, D4, D5, D6 FWD trr High T trr Low T 0,012 0,06 trr Low T 0,009 trr High T 0,04 0,006 0,02 0,003 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 700 16 4 copyright Vincotech 10 15 20 25 I C (A) 0 30 5 10 15 20 25 30 35 R Gon ( Ω) At Tj = VR = IF = VGS = °C V V Ω 6 25/125 700 16 16 °C V A V Revision: 2 10-PZ123BA080ME-M909L18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1, D2, D3, D4, D5, D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr ( µC) 0,12 Qrr ( µC) 0,15 D1, D2, D3, D4, D5, D6 FWD Qrr High T Qrr Low T 0,10 Qrr High T 0,12 Qrr Low T 0,08 0,09 0,06 0,06 0,04 0,03 0,02 0,00 0 0 At At Tj = VCE = VGE = Rgon = 5 25/125 700 16 4 10 15 20 25 I C (A) 0 30 10 15 20 25 30 35 R Gon ( Ω) At Tj = VR = IF = VGS = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 5 D1, D2, D3, D4, D5, D6 FWD 25/125 700 16 16 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 25 IrrM (A) 25 D1, D2, D3, D4, D5, D6 FWD IRRM High T 20 20 IRRM Low T 15 15 10 10 5 5 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 700 16 4 copyright Vincotech 10 15 20 25 I C (A) 0 30 5 10 15 20 25 30 35 R Gon ( Ω) At Tj = VR = IF = VGS = °C V V Ω 7 25/125 700 16 16 °C V A V Revision: 2 10-PZ123BA080ME-M909L18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 D1, D2, D3, D4, D5, D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 6000 direc / dt (A/ µs) direc / dt (A/ µs) 6000 dI0/dt dIrec/dt 5000 dI0/dt dIrec/dt 5000 4000 4000 3000 3000 2000 2000 1000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 700 16 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω T1, T2, T3, T4, T5, T6 MOSFET Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 5 25/125 700 16 16 10 15 20 25 30 R Gon ( Ω) 35 °C V A V D1, D2, D3, D4, D5, D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 D1, D2, D3, D4, D5, D6 FWD At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10 101 10 2 At D= RthJH = K/W IGBT thermal model values R (C/W) 1,42E-01 7,14E-01 5,71E-01 1,68E-01 1,23E-01 copyright Vincotech -2 10-5 tp / T 1,72 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10-5 0 10-4 10-3 10-2 10-1 100 t p (s) 2 101 10 tp / T 1,88 K/W FWD thermal model values Tau (s) 1,02E+00 1,29E-01 5,47E-02 3,53E-03 5,32E-04 R (C/W) 5,58E-02 1,47E-01 8,94E-01 4,33E-01 2,94E-01 5,99E-02 8 Tau (s) 6,96E+00 5,43E-01 7,92E-02 1,33E-02 3,03E-03 6,32E-04 Revision: 2 10-PZ123BA080ME-M909L18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1, T2, T3, T4, T5, T6 MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 30 Ptot (W) IC (A) 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = VGS = ºC 150 D1, D2, D3, D4, D5, D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 20 100 150 Th ( o C) 200 ºC V D1, D2, D3, D4, D5, D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 100 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 9 50 175 100 150 T h ( o C) 200 ºC Revision: 2 10-PZ123BA080ME-M909L18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) VGS = f(Qg) 20 UGS (V) 3 ID (A) 10 T1, T2, T3, T4, T5, T6 MOSFET Figure 26 Gate voltage vs Gate charge 18 16 10 2 4 14 10uS 10 12 1mS 100mS 100uS 1 10 8 DC 6 100 4 10mS 2 0 10 0 At D= Th = VGS = Tj = 101 102 103 0 V DS (V) single pulse 80 ºC V 16 Tjmax ºC copyright Vincotech 10 10 20 At IDS = VDS= IGS= 20 800 10 A V mA Tj = 25 ºC 30 40 Qg (nC) 50 Revision: 2 10-PZ123BA080ME-M909L18Y Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 11 Revision: 2 10-PZ123BA080ME-M909L18Y Switching Definitions BOOST General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω T1, T2, T3, T4, T5, T6 MOSFET Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 % 250 % IC 125 200 tdoff VGE 100 VGE 90% VCE 90% IC 75 150 VGE VCE 100 50 tEoff tdon 25 50 IC 1% VCE 0 VGE 10% tEon -25 -50 -0,04 -0,02 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 time (us) -50 2,99 0,02 T1, T2, T3, T4, T5, T6 MOSFET Figure 3 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs 0 16 700 16 0,04 0,04 3,01 0 16 700 16 0,01 0,03 3,02 3,03 time(us) 3,04 V V V A µs µs T1, T2, T3, T4, T5, T6 MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf VCE 3% IC 10% 0 Turn-on Switching Waveforms & definition of tr 125 250 fitted % % VCE IC 100 IC 200 IC 90% 75 150 IC 60% VCE 50 100 IC 90% IC 40% tr 25 50 IC10% 0 -25 -0,02 -0,01 VC (100%) = IC (100%) = tf = copyright Vincotech 0 700 16 0,02 IC 10% 0 tf 0,01 0,02 time (us) -50 3,005 0,03 VC (100%) = IC (100%) = tr = V A µs 12 3,01 3,015 700 16 0,01 3,02 3,025 time(us) 3,03 V A µs Revision: 2 10-PZ123BA080ME-M909L18Y Switching Definitions BOOST T1, T2, T3, T4, T5, T6 MOSFET Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 Pon % % Eoff 100 125 IC 1% Eon 100 80 75 60 Poff 50 40 25 20 VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -20 -0,05 -25 -0,035 Poff (100%) = Eoff (100%) = tEoff = -0,02 11,12 0,05 0,04 -0,005 0,01 time (us) 3 0,025 3,01 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3,02 11,12 0,11 0,03 3,03 time(us) 3,04 kW mJ µs D1, D2, D3, D4, D5, D6 FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % 100 Id trr 50 0 Vd fitted IRRM 10% -50 -100 -150 3,01 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 13 IRRM 90% IRRM 100% 3,015 3,02 700 16 -18 0,01 3,025 3,03 time(us) 3,035 V A A µs Revision: 2 10-PZ123BA080ME-M909L18Y Switching Definitions BOOST D1, D2, D3, D4, D5, D6 FWD Figure 8 D1, D2, D3, D4, D5, D6 FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Qrr Erec 100 100 tQrr tErec 75 50 50 Prec 0 25 -50 0 -100 -25 -150 -50 3 Id (100%) = Qrr (100%) = tQrr = 3,02 3,04 16 0,10 0,05 3,06 time(us) 3,08 3 3,02 Prec (100%) = Erec (100%) = tErec = A µC µs 3,04 11,12 0,03 0,05 3,06 time(us) 3,08 kW mJ µs Measurement circuit Figure 11 BOOST stage switching measurement circuit Vcc V L 705uH VDC D1b D1a 700 Vce V Vge V T1 Ic A 0.00001 0.000003 Q Q Q Q +16V 4Ohm 4Ohm 0V Q Q copyright Vincotech 14 Revision: 2 10-PZ123BA080ME-M909L18Y Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version w/o thermal paste 12mm housing Press-fit pin Ordering Code 10-PZ123BA080ME-M909L18Y in DataMatrix as M909L18Y in packaging barcode as M909L18Y Outline Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Pin table X 33,4 25,4 25,05 25,05 22,25 22,25 22,25 14,25 8 0 0 0 0 7,15 7,75 7,75 8,35 11,15 13,75 13,75 13,15 19,65 25,65 33,4 31,55 31,55 Y 0 0 2,8 5,6 5,6 2,8 0 0 0 0 2,8 5,6 22,2 22,2 19,2 16,4 10,2 11,5 16,4 19,2 22,2 22,2 22,2 22,2 19,2 16,4 Pinout Pin 15, 16, 19, 20, 25, 26 not connented copyright Vincotech 15 Revision: 2 10-PZ123BA080ME-M909L18Y DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 16 Revision: 2