10-PZ123BA080ME-M909L18Y Maximum Ratings

10-PZ123BA080ME-M909L18Y
flow 3xBOOST0-SiC
1200V/80mΩ
Features
flow 0 12mm housing
● SiC-Power MOSFET´s and Schottky Diodes
● 3 channel boost topology
● Ultra Low Inductance with integrated DC-capacitors
● Switching frequency >100kHz
●Temperature sensor
Target Applications
Schematic
● solar inverter
● Power Supply
Types
● 10-PZ123BA080ME-M909L18Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
17
21
A
60
A
41
62
W
T1, T2, T3, T4, T5, T6
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Ptot
Gate-source peak voltage
VGS
-10/25
V
Tjmax
150
°C
VRRM
1200
V
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation
D1, D2, D3, D4, D5, D6
Peak Repetitive Reverse Voltage
Forward average current
IFAV
Tj=Tjmax
Th=80°C
Tc=80°C
17
21
A
Non-Repetitive Peak Forward Surge Current
IFSM
tp=10ms
Tj=25°C
92
A
Repetitive Peak Forward Surge Current
IFRM
tp limited by Tjmax
52
A
Power dissipation per Diode
Ptot
Tj=Tjmax
50
76
W
175
°C
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Revision: 2
10-PZ123BA080ME-M909L18Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1000
V
C1, C2, C3
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 9,9
mm
Insulation Properties
Insulation voltage
copyright Vincotech
t=2s
DC voltage
2
Revision: 2
10-PZ123BA080ME-M909L18Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
1,7
0,08
0,14
2,2
Unit
Max
T1, T2, T3, T4, T5, T6
Static drain to source ON resistance
RDS(on)
Gate threshold voltage
V(GS)th
20
20
VDS = VGS
10
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
1200
Internal Gate Resistance
RG
f=1MHz; VAC=25mV
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0,001
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=4 Ω
Rgon=4 Ω
Ω
V
250
100
16
700
16
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
nA
µA
Ω
4,6
td(ON)
td(OFF)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
12
10
5
5
36
39
16
18
0,126
0,108
0,051
0,050
ns
mWs
49,2
0/20
800
10,8
20
nC
18
Tj=25°C
950
f=1MHz
0
1000
pF
80
6,5
Phase-Change
Material
K/W
1,72
D1, D2, D3, D4, D5, D6
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
10
1200
Rgon=4 Ω
16
700
di(rec)max
/dt
RthJH
16
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,46
1,80
1,8
300
17
18
10
11
0,102
0,103
0,028
0,031
3666
3626
Phase-Change
Material
V
µA
A
ns
µC
mWs
A/µs
1,88
K/W
47
nF
22000
Ω
C1, C2, C3
C value
C
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=25°C
Power dissipation constant
-5
5
T=25°C
200
mW
T=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
T=25°C
3950
B-value
B(25/100)
Tol. ±3%
T=25°C
3996
K
B
Vincotech NTC Reference
copyright Vincotech
%
3
Revision: 2
10-PZ123BA080ME-M909L18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
70
IC(A)
IC (A)
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGS from
2
4
6
8
10
V CE (V)
12
0
At
tp =
Tj =
VGS from
µs
250
25
°C
0 V to 20 V in steps of 2 V
T1, T2, T3, T4, T5, T6 MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGS)
2
4
6
10
V CE (V)
12
250
µs
126
°C
0 V to 20 V in steps of 2 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D1, D2, D3, D4, D5, D6 FWD
40
IF (A)
ID (A)
20
8
16
30
12
20
8
Tj = Tjmax-25°C
10
4
Tj = 25°C
Tj = 25°C
0
Tj = Tjmax-25°C
0
0
At
tp =
VDS =
2
250
10
copyright Vincotech
4
6
8
10
V GS (V)
12
0
At
tp =
µs
V
4
1
250
2
3
4
V F (V)
5
µs
Revision: 2
10-PZ123BA080ME-M909L18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,5
Eon Low T
E (mWs)
E (mWs)
0,25
Eon Low T
0,20
Eon High T
0,4
Eon High T
0,15
0,3
Eoff High T
Eoff Low T
Eoff High T
0,10
0,2
Eoff Low T
0,05
0,1
0,00
0
0
5
10
15
20
25
I C (A)
30
0
10
20
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
16
V
Rgon =
4
Ω
Rgoff =
4
Ω
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
ID =
A
16
D1, D2, D3, D4, D5, D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
30
RG (Ω )
40
D1, D2, D3, D4, D5, D6 FWD
0,05
E (mWs)
E (mWs)
0,05
Erec High T
Erec Low T
0,04
0,04
Erec High T
Erec Low T
0,03
0,03
0,02
0,02
0,01
0,01
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
16
V
Rgon =
4
Ω
Rgoff =
4
Ω
copyright Vincotech
10
20
30
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
ID =
16
A
5
Revision: 2
10-PZ123BA080ME-M909L18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( ms)
t ( ms)
1
tf
0,1
0,1
tdoff
tdoff
tf
tdon
0,01
0,01
tdon
tr
tr
0,001
0,001
0
5
10
15
20
25
I D (A)
0
30
5
10
15
20
25
30
35
R G ( Ω)
With an inductive load at
Tj =
°C
125
VDS =
700
V
VGS =
16
V
Rgon =
4
Ω
Rgoff =
4
Ω
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
16
V
IC =
A
16
D1, D2, D3, D4, D5, D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( ms)
0,08
t rr( ms)
0,015
D1, D2, D3, D4, D5, D6 FWD
trr High T
trr Low T
0,012
0,06
trr Low T
0,009
trr High T
0,04
0,006
0,02
0,003
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
700
16
4
copyright Vincotech
10
15
20
25
I C (A)
0
30
5
10
15
20
25
30
35
R Gon ( Ω)
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
6
25/125
700
16
16
°C
V
A
V
Revision: 2
10-PZ123BA080ME-M909L18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1, D2, D3, D4, D5, D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr ( µC)
0,12
Qrr ( µC)
0,15
D1, D2, D3, D4, D5, D6 FWD
Qrr High T
Qrr Low T
0,10
Qrr High T
0,12
Qrr Low T
0,08
0,09
0,06
0,06
0,04
0,03
0,02
0,00
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
700
16
4
10
15
20
25
I C (A)
0
30
10
15
20
25
30
35
R Gon ( Ω)
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
5
D1, D2, D3, D4, D5, D6 FWD
25/125
700
16
16
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
25
IrrM (A)
25
D1, D2, D3, D4, D5, D6 FWD
IRRM High T
20
20
IRRM Low T
15
15
10
10
5
5
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
700
16
4
copyright Vincotech
10
15
20
25
I C (A)
0
30
5
10
15
20
25
30
35
R Gon ( Ω)
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
7
25/125
700
16
16
°C
V
A
V
Revision: 2
10-PZ123BA080ME-M909L18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
D1, D2, D3, D4, D5, D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
6000
direc / dt (A/ µs)
direc / dt (A/ µs)
6000
dI0/dt
dIrec/dt
5000
dI0/dt
dIrec/dt
5000
4000
4000
3000
3000
2000
2000
1000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
700
16
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
T1, T2, T3, T4, T5, T6 MOSFET
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
5
25/125
700
16
16
10
15
20
25
30
R Gon ( Ω)
35
°C
V
A
V
D1, D2, D3, D4, D5, D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
D1, D2, D3, D4, D5, D6 FWD
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10
101
10
2
At
D=
RthJH =
K/W
IGBT thermal model values
R (C/W)
1,42E-01
7,14E-01
5,71E-01
1,68E-01
1,23E-01
copyright Vincotech
-2
10-5
tp / T
1,72
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10-5
0
10-4
10-3
10-2
10-1
100
t p (s)
2
101
10
tp / T
1,88
K/W
FWD thermal model values
Tau (s)
1,02E+00
1,29E-01
5,47E-02
3,53E-03
5,32E-04
R (C/W)
5,58E-02
1,47E-01
8,94E-01
4,33E-01
2,94E-01
5,99E-02
8
Tau (s)
6,96E+00
5,43E-01
7,92E-02
1,33E-02
3,03E-03
6,32E-04
Revision: 2
10-PZ123BA080ME-M909L18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
30
Ptot (W)
IC (A)
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
150
D1, D2, D3, D4, D5, D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
20
100
150
Th ( o C)
200
ºC
V
D1, D2, D3, D4, D5, D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
100
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
9
50
175
100
150
T h ( o C)
200
ºC
Revision: 2
10-PZ123BA080ME-M909L18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
20
UGS (V)
3
ID (A)
10
T1, T2, T3, T4, T5, T6 MOSFET
Figure 26
Gate voltage vs Gate charge
18
16
10
2
4
14
10uS
10
12
1mS
100mS
100uS
1
10
8
DC
6
100
4
10mS
2
0
10
0
At
D=
Th =
VGS =
Tj =
101
102
103
0
V DS (V)
single pulse
80
ºC
V
16
Tjmax
ºC
copyright Vincotech
10
10
20
At
IDS =
VDS=
IGS=
20
800
10
A
V
mA
Tj =
25
ºC
30
40
Qg (nC)
50
Revision: 2
10-PZ123BA080ME-M909L18Y
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
11
Revision: 2
10-PZ123BA080ME-M909L18Y
Switching Definitions BOOST
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
%
250
%
IC
125
200
tdoff
VGE
100
VGE 90%
VCE 90%
IC
75
150
VGE
VCE
100
50
tEoff
tdon
25
50
IC 1%
VCE
0
VGE 10%
tEon
-25
-50
-0,04
-0,02
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
time (us)
-50
2,99
0,02
T1, T2, T3, T4, T5, T6 MOSFET
Figure 3
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
16
700
16
0,04
0,04
3,01
0
16
700
16
0,01
0,03
3,02
3,03
time(us)
3,04
V
V
V
A
µs
µs
T1, T2, T3, T4, T5, T6 MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
VCE 3%
IC 10%
0
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
%
VCE
IC
100
IC
200
IC 90%
75
150
IC 60%
VCE
50
100
IC 90%
IC 40%
tr
25
50
IC10%
0
-25
-0,02
-0,01
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0
700
16
0,02
IC 10%
0
tf
0,01
0,02
time (us)
-50
3,005
0,03
VC (100%) =
IC (100%) =
tr =
V
A
µs
12
3,01
3,015
700
16
0,01
3,02
3,025
time(us)
3,03
V
A
µs
Revision: 2
10-PZ123BA080ME-M909L18Y
Switching Definitions BOOST
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
150
Pon
%
%
Eoff
100
125
IC 1%
Eon
100
80
75
60
Poff
50
40
25
20
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-20
-0,05
-25
-0,035
Poff (100%) =
Eoff (100%) =
tEoff =
-0,02
11,12
0,05
0,04
-0,005
0,01
time (us)
3
0,025
3,01
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3,02
11,12
0,11
0,03
3,03
time(us)
3,04
kW
mJ
µs
D1, D2, D3, D4, D5, D6 FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
100
Id
trr
50
0
Vd
fitted
IRRM 10%
-50
-100
-150
3,01
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
13
IRRM 90%
IRRM 100%
3,015
3,02
700
16
-18
0,01
3,025
3,03
time(us)
3,035
V
A
A
µs
Revision: 2
10-PZ123BA080ME-M909L18Y
Switching Definitions BOOST
D1, D2, D3, D4, D5, D6 FWD
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Qrr
Erec
100
100
tQrr
tErec
75
50
50
Prec
0
25
-50
0
-100
-25
-150
-50
3
Id (100%) =
Qrr (100%) =
tQrr =
3,02
3,04
16
0,10
0,05
3,06
time(us)
3,08
3
3,02
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,04
11,12
0,03
0,05
3,06
time(us)
3,08
kW
mJ
µs
Measurement circuit
Figure 11
BOOST stage switching measurement circuit
Vcc V
L
705uH
VDC
D1b
D1a
700
Vce V
Vge V
T1
Ic
A
0.00001
0.000003
Q
Q
Q
Q
+16V
4Ohm
4Ohm
0V
Q
Q
copyright Vincotech
14
Revision: 2
10-PZ123BA080ME-M909L18Y
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
w/o thermal paste 12mm housing Press-fit pin
Ordering Code
10-PZ123BA080ME-M909L18Y
in DataMatrix as
M909L18Y
in packaging barcode as
M909L18Y
Outline
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Pin table
X
33,4
25,4
25,05
25,05
22,25
22,25
22,25
14,25
8
0
0
0
0
7,15
7,75
7,75
8,35
11,15
13,75
13,75
13,15
19,65
25,65
33,4
31,55
31,55
Y
0
0
2,8
5,6
5,6
2,8
0
0
0
0
2,8
5,6
22,2
22,2
19,2
16,4
10,2
11,5
16,4
19,2
22,2
22,2
22,2
22,2
19,2
16,4
Pinout
Pin 15, 16, 19, 20, 25, 26 not connented
copyright Vincotech
15
Revision: 2
10-PZ123BA080ME-M909L18Y
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
16
Revision: 2