10-FY07BIA041MF-M528E68

10-FY07BIA041MF-M528E68
preliminary datasheet
flowSOL 1 BI
650V / 41mOhm
Features
flow1 12mm housing
● Low inductive 12mm flow1 package
● Booster:
○ Dual boost topology
○ MOSFET 650V/37mOhm + ultrafast FWD
○ Bypass rectifier
● Inverter:
○ Pseudo H-bridge topology
○ MOSFET 650V/41mOhm CFD + ultrafast FWD
● Integrated DC-capacitors
● Temperature sensor
Target Applications
Schematic
● Solar Inverter:
High efficient transformer-less solar inverter with
bipolar modulation
Types
10-FY07BIA041MF-M528E68
Bypass Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
I2t-value
Power dissipation per Diode
Maximum Junction Temperature
1600
V
41
55
A
370
A
370
A2s
50
76
W
Tjmax
150
°C
VDS
650
V
35
42
A
297
A
105
159
W
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
2
It
Ptot
Th=80°C
Tc=80°C
Tj=Tjmax
Input Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
Th=80°C
Tc=80°C
Power dissipation
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
Maximum Junction Temperature
Tj=Tjmax
1
Copyright by Vincotech
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Input Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
VRRM
Tj=25°C
IF
Tj=Tjmax
650
V
27
35
A
180
A
49
74
W
Tjmax
175
°C
VDS
650
V
IFRM
Ptot
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Pseudo H-Bridge MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
35
42
A
tp limited by Tjmax
Tc=25°C
255
A
Tj=Tjmax
Th=80°C
Tc=80°C
111
168
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
650
V
27
36
A
180
A
49
74
W
175
°C
630
V
Maximum Junction Temperature
Pseudo H-Bridge Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
Tj=25°C
IF
Tj=Tjmax
IFRM
Ptot
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tjmax
DC link Capacitor
Max.DC voltage
Tc=25°C
VMAX
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Vis
t=2s
DC voltage
2
Copyright by Vincotech
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1.18
1.17
0.91
0.80
0.008
0.010
1.21
Bypass Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
35
1600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
Ω
0.05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1.40
mA
K/W
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
33
10
V(GS)th
0.0033
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
650
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Rgoff=2 Ω
Rgon=2 Ω
Thermal resistance chip to heatsink per chip
30
Tj=25°C
Rgon=2 Ω
10
480
49.6
38
78
3
mΩ
3.5
100
2000
30
29
6
7
173
182
5
6
0.19
0.29
0.06
0.09
V
nA
nA
ns
mWs
330
Tj=25°C
40
Tj=25°C
170
0
nC
Tj=25°C
100
Coss
RthJH
2.5
7240
f=1MHz
Output capacitance
400
10
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
pF
380
Thermal grease
thickness≤50um
λ = 1 W/mK
0.67
K/W
Input Boost Diode
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
30
10
Rgon=2 Ω
400
10
400
di(rec)max
/dt
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
30
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2.45
2.03
10
60
70
15
41
0.71
1.35
0.18
0.38
13199
9226
1.94
3
2.6
V
μA
A
ns
μC
mWs
A/μs
K/W
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
3.5
45
84
4
4.5
Pseudo H-Bridge MOSFET
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
33
10
VDS=VGS
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
650
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0.0033
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Rgoff=2 Ω
Rgon=2 Ω
400
10
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
mΩ
100
3500
37
35
6.6
7.8
145
153
3.6
3.2
0.19
0.31
0.05
0.05
V
nA
nA
ns
mWs
300
480
10
49.6
Tj=25°C
54
Gate to drain charge
Qgd
165
Input capacitance
Ciss
8400
Output capacitance
Coss
Thermal resistance chip to heatsink per chip
RthJH
f=1MHz
100
0
nC
Tj=25°C
pF
400
Thermal grease
thickness≤50um
λ = 1 W/mK
0.63
K/W
Pseudo H-Bridge Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
30
IRRM
trr
Qrr
Rgon=2 Ω
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2.46
2.02
56
61
15
43
0.62
1.29
10369
10454
0.15
0.35
Thermal grease
thickness≤50um
λ = 1 W/mK
2.6
V
A
ns
μC
A/μs
mWs
1.94
K/W
47
nF
22000
Ω
DC link Capacitor
C value
C
Thermistor
Rated resistance
R
Deviation of R25
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
200
mW
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
Copyright by Vincotech
Tj=25°C
4
%
Tj=25°C
Tc=100°C
Power dissipation constant
+5
-5
K
B
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Pseudo H-Bridge
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
0 V to 20 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
μs
125
°C
0 V to 20 V in steps of 2 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
40
5
IF (A)
IC (A)
300
250
30
200
20
150
100
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
50
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
V GE (V)
8
0
At
tp =
μs
V
Copyright by Vincotech
5
2
250
4
6
8
V F (V)
10
μs
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Pseudo H-Bridge
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1.0
Eon High T
E (mWs)
E (mWs)
0.6
Eon High T
0.5
0.8
Eon Low T
0.4
0.6
Eon Low T
Eoff High T
Eoff Low T
0.3
0.4
0.2
Eoff High T
Eoff Low T
0.1
0.2
0.0
0.0
0
10
20
30
40
50
60
0
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
10
15
R G (Ω)
20
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
30
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0.4
0.6
E (mWs)
E (mWs)
5
Erec High T
0.5
0.3
0.4
Erec High T
0.3
0.2
Erec Low T
0.2
0.1
Erec Low T
0.1
0.0
0.0
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
Rgon =
2
Ω
Copyright by Vincotech
5
10
15
R G (Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
IC =
30
A
6
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Pseudo H-Bridge
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1.00
tdoff
t (ms)
t (ms)
1.00
tdoff
0.10
0.10
tdon
tdon
tr
tf
tr
0.01
0.01
tf
0.00
0.00
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
5
10
15
R G (Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
30
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.08
0.15
t rr(ms)
t rr(ms)
trr High T
trr High T
0.12
0.06
0.09
0.04
trr Low T
0.06
0.02
0.03
trr Low T
0.00
0.00
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
5
25/125
400
30
10
10
15
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Pseudo H-Bridge
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
2.0
1.5
Qrr (mC)
Qrr High T
Qrr (mC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1.2
1.5
Qrr High T
0.9
Qrr Low T
1.0
0.6
Qrr Low T
0.5
0.3
0.0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
5
25/125
400
30
10
10
15
R gon (Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
80
20
IrrM (A)
IrrM (A)
80
60
60
IRRM High T
40
40
IRRM Low T
20
20
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
5
25/125
400
30
10
10
15
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Pseudo H-Bridge
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
20000
12000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
dIrec/dt T
di0/dt T
10000
dIrec/dt T
dI0/dt T
16000
8000
12000
6000
8000
4000
4000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
400
30
10
8
12
16
R gon (Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
20
0
0
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
-5
10
10
At
D=
RthJH =
-4
-3
10
10
-2
-1
10
10
0
t p (s)
1
10 10
tp / T
0.63
K/W
10-5
10-4
At
D=
RthJH =
tp / T
1.94
10-3
FWD thermal model values
R (C/W)
0.04
0.08
0.30
0.14
0.03
0.02
R (C/W)
0.05
0.14
0.72
0.42
0.33
0.19
Copyright by Vincotech
9
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
Tau (s)
5.1E+00
1.0E+00
2.1E-01
8.6E-02
1.3E-02
1.4E-03
10-2
Tau (s)
6.0E+00
8.1E-01
1.4E-01
4.5E-02
1.0E-02
1.8E-03
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Pseudo H-Bridge
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
250
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
50
175
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Pseudo H-Bridge
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
VGE (V)
IC (A)
10
10uS
100uS
102
120V
8
480V
100mS
1mS
10mS
1
10
6
DC
4
100
2
10-1
0
100
At
D=
Th =
VGE =
Tj =
1
10
2
10
V CE (V)
0
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Copyright by Vincotech
11
50
50
100
150
200
250
Q g (nC)
300
A
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
120
IC(A)
IC (A)
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGS from
250
μs
25
°C
3 V to 13 V in steps of 1 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
V CE (V)
5
250
μs
125
°C
3 V to 13 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
300
ID (A)
IF (A)
40
250
30
200
150
20
100
Tj = Tjmax-25°C
10
Tj = Tjmax-25°C
50
Tj = 25°C
Tj = 25°C
0
0
0
1
At
tp =
VDS =
250
10
2
3
4
5
V GS (V)
0
6
At
tp =
μs
V
Copyright by Vincotech
12
2
250
4
6
8
V F (V)
10
μs
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
0.5
1
E (mWs)
Eon High T
E (mWs)
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0.4
Eon High T
0.8
Eoff High T
Eon Low T
0.3
Eoff Low T
0.6
Eon Low T
Eoff High T
0.2
0.4
Eoff Low T
0.1
0.2
0
0
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
4
8
12
16
R G ( Ω ) 20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
30
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0.8
E (mWs)
E (mWs)
0.5
Erec High T
0.4
0.6
0.3
Erec High T
0.4
Erec Low T
0.2
0.2
Erec Low T
0.1
0
0
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
Copyright by Vincotech
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
30
A
13
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( μs)
t ( μs)
1
tdoff
0.1
0.1
tdon
tf
tdon
tr
0.01
0.01
tr
tf
0.001
0.001
0
10
20
30
40
50
I D (A)
60
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
30
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.12
t rr( μs)
t rr( μs)
0.08
trr High T
0.1
trr High T
0.06
0.08
0.06
0.04
trr Low T
0.04
trr Low T
0.02
0.02
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
14
5
25/125
400
30
10
10
15
R Gon ( Ω )
20
°C
V
A
V
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1.5
Qrr ( μC)
Qrr ( μC)
2.5
Qrr High T
2
1.2
Qrr High T
1.5
0.9
Qrr Low T
1
0.6
Qrr Low T
0.5
0.3
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
60
0
4
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
400
30
10
12
16
20
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
R Gon ( Ω)
IrrM (A)
IrrM (A)
100
IRRM High T
80
80
IRRM Low T
60
60
40
40
20
20
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
15
5
25/125
400
30
10
10
15
R Gon ( Ω )
20
°C
V
A
V
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
INPUT BOOST
BOOST FWD
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
15000
20000
dIrec/dt T
direc / dt (A/ μs)
direc / dt (A/ μs)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
di0/dt T
12000
dIrec/dt T
dI0/dt T
15000
9000
10000
6000
5000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST MOSFET
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
400
30
10
8
12
R Gon ( Ω)
16
20
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
4
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
-2
-2
10
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10110
10-5
At
D=
RthJH =
tp / T
0.67
K/W
10-4
10-3
R (C/W)
3.56E-02
8.98E-02
3.76E-01
1.04E-01
3.74E-02
2.56E-02
R (C/W)
4.65E-02
1.38E-01
7.19E-01
4.17E-01
3.26E-01
1.85E-01
16
100
t p (s)
10110
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
1.94
IGBT thermal model values
Tau (s)
5.26E+00
9.94E-01
1.88E-01
6.08E-02
1.20E-02
9.33E-04
10-2
Tau (s)
5.96E+00
8.06E-01
1.42E-01
4.54E-02
1.02E-02
1.84E-03
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
250
IC (A)
Ptot (W)
60
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
0
200
At
Tj =
VGS =
ºC
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
Th ( o C)
Ptot (W)
IF (A)
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
17
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
BOOST MOSFET
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
10
ID (A)
UGS (V)
103
8
10uS
2
10
120V
480V
6
100uS
100mS
1
10mS
1mS
10
4
10
DC
0
2
0
100
At
D=
Th =
VGS =
Tj =
101
102
103
0
V DS (V)
100
150
200
250
300
350
Qg (nC)
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
Copyright by Vincotech
50
18
50
A
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
60
IF (A)
10
ZthJC (K/W)
1
70
50
100
40
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
10
Tj = Tjmax-25°C
Tj = 25°C
0
-2
0
0.3
At
tp =
0.6
0.9
1.2
V F (V)
10
1.5
10-5
At
D=
RthJH =
μs
250
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
100
10110
tp / T
1.397
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
120
t p (s)
IF (A)
Ptot (W)
70
60
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
19
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
20
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Switching Definitions H-Bridge MOSFET
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
H-Bridge MOSFET
Figure 1
H-Bridge MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
150
%
IC
%
250
tdoff
100
IC
VGE 90%
200
VCE 90%
150
VGE
50
IC 1%
tEoff
VCE
100
tdon
VCE
0
VGE 10%
IC 10%
0
-50
-0.1
VGE
50
VCE 3%
tEon
-50
-0.05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
0.05
0
10
400
30
0.15
0.18
0.1
0.15
0.2
time (us)
4.3
4.38
4.54
4.62
4.7
4.78
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
H-Bridge MOSFET
Figure 3
4.46
0
10
400
30
0.04
0.07
V
V
V
A
μs
μs
H-Bridge MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
300
150
%
100
%
fitted
IC
200
IC 90%
IC 60%
50
IC 40%
VCE
100
VCE
tf
0
IC 90%
IC10%
tr
IC
IC 10%
0
-50
-100
0.08
-100
0.09
0.1
0.11
0.12
0.13
0.14
4.5
time (us)
VC (100%) =
IC (100%) =
tf =
400
30
0.00
Copyright by Vincotech
VC (100%) =
IC (100%) =
tr =
V
A
μs
21
4.51
4.52
400
30
0.01
4.53
4.54
4.55
time(us)
4.56
V
A
μs
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Switching Definitions H-Bridge MOSFET
H-Bridge MOSFET
Figure 5
H-Bridge MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
200
150
%
Eoff
%
Pon
IC 1%
150
100
Eon
100
50
50
VGE 90%
Poff
0
VGE 10%
tEoff
-50
-0.1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0.1
12.15
0.05
0.18
VCE 3%
0
time (us)
tEon
-50
4.45
0.2
4.49
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
H-Bridge MOSFET
Figure 7
Gate voltage vs Gate charge (measured)
4.53
12.15
0.31
0.07
4.57
time(us)
4.61
kW
mJ
μs
H-Bridge FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
15
VGE (V)
%
Id
100
10
trr
50
Vd
0
5
fitted
IRRM 10%
-50
0
-100
-150
-5
IRRM 90%
-200
IRRM 100%
-250
-10
-50
0
50
100
150
4.5
200
4.52
4.54
4.56
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
10
400
30
186.04
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
22
400
30
-61
0.04
4.58
time(us)
4.6
V
A
A
μs
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Switching Definitions H-Bridge MOSFET
H-Bridge FWD
Figure 9
H-Bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
100
150
Prec
Qrr
%
%
tQrr
50
Erec
100
Id
0
tErec
50
-50
-100
0
-150
-50
-200
4.5
Id (100%) =
Qrr (100%) =
tQrr =
4.53
4.56
30
1.29
0.09
Copyright by Vincotech
4.59
4.62
time(us)
4.5
4.65
4.53
4.56
4.59
4.62
4.65
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
23
12.15
0.35
0.09
kW
mJ
μs
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FY07BIA041MF-M528E68
in DataMatrix as
M528E68
in packaging barcode as
M528E68
Outline
Pinout
Pins 3,4,9,12 are not connected.
Copyright by Vincotech
24
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
25
Revision: 1