10-FY07BIA041MF-M528E68 preliminary datasheet flowSOL 1 BI 650V / 41mOhm Features flow1 12mm housing ● Low inductive 12mm flow1 package ● Booster: ○ Dual boost topology ○ MOSFET 650V/37mOhm + ultrafast FWD ○ Bypass rectifier ● Inverter: ○ Pseudo H-bridge topology ○ MOSFET 650V/41mOhm CFD + ultrafast FWD ● Integrated DC-capacitors ● Temperature sensor Target Applications Schematic ● Solar Inverter: High efficient transformer-less solar inverter with bipolar modulation Types 10-FY07BIA041MF-M528E68 Bypass Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM I2t-value Power dissipation per Diode Maximum Junction Temperature 1600 V 41 55 A 370 A 370 A2s 50 76 W Tjmax 150 °C VDS 650 V 35 42 A 297 A 105 159 W DC current Th=80°C Tc=80°C tp=10ms Tj=25°C 2 It Ptot Th=80°C Tc=80°C Tj=Tjmax Input Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax Th=80°C Tc=80°C Power dissipation Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C Maximum Junction Temperature Tj=Tjmax 1 Copyright by Vincotech Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Input Boost Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature VRRM Tj=25°C IF Tj=Tjmax 650 V 27 35 A 180 A 49 74 W Tjmax 175 °C VDS 650 V IFRM Ptot Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax Pseudo H-Bridge MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 35 42 A tp limited by Tjmax Tc=25°C 255 A Tj=Tjmax Th=80°C Tc=80°C 111 168 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C 650 V 27 36 A 180 A 49 74 W 175 °C 630 V Maximum Junction Temperature Pseudo H-Bridge Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM Tj=25°C IF Tj=Tjmax IFRM Ptot Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax Tjmax DC link Capacitor Max.DC voltage Tc=25°C VMAX Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Vis t=2s DC voltage 2 Copyright by Vincotech Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1.18 1.17 0.91 0.80 0.008 0.010 1.21 Bypass Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 35 1600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V Ω 0.05 Thermal grease thickness≤50um λ = 1 W/mK V 1.40 mA K/W Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage RDS(on) 33 10 V(GS)th 0.0033 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 650 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Rgoff=2 Ω Rgon=2 Ω Thermal resistance chip to heatsink per chip 30 Tj=25°C Rgon=2 Ω 10 480 49.6 38 78 3 mΩ 3.5 100 2000 30 29 6 7 173 182 5 6 0.19 0.29 0.06 0.09 V nA nA ns mWs 330 Tj=25°C 40 Tj=25°C 170 0 nC Tj=25°C 100 Coss RthJH 2.5 7240 f=1MHz Output capacitance 400 10 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C pF 380 Thermal grease thickness≤50um λ = 1 W/mK 0.67 K/W Input Boost Diode Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip Copyright by Vincotech 30 10 Rgon=2 Ω 400 10 400 di(rec)max /dt RthJH Thermal grease thickness≤50um λ = 1 W/mK 30 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2.45 2.03 10 60 70 15 41 0.71 1.35 0.18 0.38 13199 9226 1.94 3 2.6 V μA A ns μC mWs A/μs K/W Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 3.5 45 84 4 4.5 Pseudo H-Bridge MOSFET Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th 33 10 VDS=VGS Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 650 Turn On Delay Time Rise Time Turn off delay time Fall time 0.0033 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Rgoff=2 Ω Rgon=2 Ω 400 10 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C mΩ 100 3500 37 35 6.6 7.8 145 153 3.6 3.2 0.19 0.31 0.05 0.05 V nA nA ns mWs 300 480 10 49.6 Tj=25°C 54 Gate to drain charge Qgd 165 Input capacitance Ciss 8400 Output capacitance Coss Thermal resistance chip to heatsink per chip RthJH f=1MHz 100 0 nC Tj=25°C pF 400 Thermal grease thickness≤50um λ = 1 W/mK 0.63 K/W Pseudo H-Bridge Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 30 IRRM trr Qrr Rgon=2 Ω di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2.46 2.02 56 61 15 43 0.62 1.29 10369 10454 0.15 0.35 Thermal grease thickness≤50um λ = 1 W/mK 2.6 V A ns μC A/μs mWs 1.94 K/W 47 nF 22000 Ω DC link Capacitor C value C Thermistor Rated resistance R Deviation of R25 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C 200 mW 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference Copyright by Vincotech Tj=25°C 4 % Tj=25°C Tc=100°C Power dissipation constant +5 -5 K B Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Pseudo H-Bridge MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 100 IC (A) IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 0 V to 20 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 μs 125 °C 0 V to 20 V in steps of 2 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 40 5 IF (A) IC (A) 300 250 30 200 20 150 100 10 Tj = Tjmax-25°C Tj = Tjmax-25°C 50 Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 V GE (V) 8 0 At tp = μs V Copyright by Vincotech 5 2 250 4 6 8 V F (V) 10 μs Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Pseudo H-Bridge MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1.0 Eon High T E (mWs) E (mWs) 0.6 Eon High T 0.5 0.8 Eon Low T 0.4 0.6 Eon Low T Eoff High T Eoff Low T 0.3 0.4 0.2 Eoff High T Eoff Low T 0.1 0.2 0.0 0.0 0 10 20 30 40 50 60 0 I C (A) With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 2 Ω Rgoff = 2 Ω 10 15 R G (Ω) 20 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = 30 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0.4 0.6 E (mWs) E (mWs) 5 Erec High T 0.5 0.3 0.4 Erec High T 0.3 0.2 Erec Low T 0.2 0.1 Erec Low T 0.1 0.0 0.0 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V Rgon = 2 Ω Copyright by Vincotech 5 10 15 R G (Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V IC = 30 A 6 Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Pseudo H-Bridge MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1.00 tdoff t (ms) t (ms) 1.00 tdoff 0.10 0.10 tdon tdon tr tf tr 0.01 0.01 tf 0.00 0.00 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V Rgon = 2 Ω Rgoff = 2 Ω 5 10 15 R G (Ω) 20 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = 30 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.08 0.15 t rr(ms) t rr(ms) trr High T trr High T 0.12 0.06 0.09 0.04 trr Low T 0.06 0.02 0.03 trr Low T 0.00 0.00 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 5 25/125 400 30 10 10 15 R gon (Ω) 20 °C V A V Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Pseudo H-Bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 2.0 1.5 Qrr (mC) Qrr High T Qrr (mC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1.2 1.5 Qrr High T 0.9 Qrr Low T 1.0 0.6 Qrr Low T 0.5 0.3 0.0 0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 5 25/125 400 30 10 10 15 R gon (Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 80 20 IrrM (A) IrrM (A) 80 60 60 IRRM High T 40 40 IRRM Low T 20 20 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 5 25/125 400 30 10 10 15 R gon (Ω) 20 °C V A V Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Pseudo H-Bridge FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 20000 12000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) dIrec/dt T di0/dt T 10000 dIrec/dt T dI0/dt T 16000 8000 12000 6000 8000 4000 4000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 400 30 10 8 12 16 R gon (Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 20 0 0 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 -5 10 10 At D= RthJH = -4 -3 10 10 -2 -1 10 10 0 t p (s) 1 10 10 tp / T 0.63 K/W 10-5 10-4 At D= RthJH = tp / T 1.94 10-3 FWD thermal model values R (C/W) 0.04 0.08 0.30 0.14 0.03 0.02 R (C/W) 0.05 0.14 0.72 0.42 0.33 0.19 Copyright by Vincotech 9 10-1 100 t p (s) 10110 K/W IGBT thermal model values Tau (s) 5.1E+00 1.0E+00 2.1E-01 8.6E-02 1.3E-02 1.4E-03 10-2 Tau (s) 6.0E+00 8.1E-01 1.4E-01 4.5E-02 1.0E-02 1.8E-03 Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Pseudo H-Bridge MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 250 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Pseudo H-Bridge MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 VGE (V) IC (A) 10 10uS 100uS 102 120V 8 480V 100mS 1mS 10mS 1 10 6 DC 4 100 2 10-1 0 100 At D= Th = VGE = Tj = 1 10 2 10 V CE (V) 0 103 At IC = single pulse 80 ºC 15 V Tjmax ºC Copyright by Vincotech 11 50 50 100 150 200 250 Q g (nC) 300 A Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST MOSFET Figure 2 Typical output characteristics ID = f(VDS) 120 IC(A) IC (A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGS from 250 μs 25 °C 3 V to 13 V in steps of 1 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 V CE (V) 5 250 μs 125 °C 3 V to 13 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 300 ID (A) IF (A) 40 250 30 200 150 20 100 Tj = Tjmax-25°C 10 Tj = Tjmax-25°C 50 Tj = 25°C Tj = 25°C 0 0 0 1 At tp = VDS = 250 10 2 3 4 5 V GS (V) 0 6 At tp = μs V Copyright by Vincotech 12 2 250 4 6 8 V F (V) 10 μs Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) 0.5 1 E (mWs) Eon High T E (mWs) BOOST MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0.4 Eon High T 0.8 Eoff High T Eon Low T 0.3 Eoff Low T 0.6 Eon Low T Eoff High T 0.2 0.4 Eoff Low T 0.1 0.2 0 0 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω 4 8 12 16 R G ( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 30 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0.8 E (mWs) E (mWs) 0.5 Erec High T 0.4 0.6 0.3 Erec High T 0.4 Erec Low T 0.2 0.2 Erec Low T 0.1 0 0 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω Copyright by Vincotech 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 30 A 13 Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( μs) t ( μs) 1 tdoff 0.1 0.1 tdon tf tdon tr 0.01 0.01 tr tf 0.001 0.001 0 10 20 30 40 50 I D (A) 60 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = 30 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.12 t rr( μs) t rr( μs) 0.08 trr High T 0.1 trr High T 0.06 0.08 0.06 0.04 trr Low T 0.04 trr Low T 0.02 0.02 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 14 5 25/125 400 30 10 10 15 R Gon ( Ω ) 20 °C V A V Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1.5 Qrr ( μC) Qrr ( μC) 2.5 Qrr High T 2 1.2 Qrr High T 1.5 0.9 Qrr Low T 1 0.6 Qrr Low T 0.5 0.3 0 0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 60 0 4 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 400 30 10 12 16 20 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 R Gon ( Ω) IrrM (A) IrrM (A) 100 IRRM High T 80 80 IRRM Low T 60 60 40 40 20 20 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 15 5 25/125 400 30 10 10 15 R Gon ( Ω ) 20 °C V A V Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet INPUT BOOST BOOST FWD BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 15000 20000 dIrec/dt T direc / dt (A/ μs) direc / dt (A/ μs) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) di0/dt T 12000 dIrec/dt T dI0/dt T 15000 9000 10000 6000 5000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω BOOST MOSFET Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 400 30 10 8 12 R Gon ( Ω) 16 20 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 4 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 -2 -2 10 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10110 10-5 At D= RthJH = tp / T 0.67 K/W 10-4 10-3 R (C/W) 3.56E-02 8.98E-02 3.76E-01 1.04E-01 3.74E-02 2.56E-02 R (C/W) 4.65E-02 1.38E-01 7.19E-01 4.17E-01 3.26E-01 1.85E-01 16 100 t p (s) 10110 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 1.94 IGBT thermal model values Tau (s) 5.26E+00 9.94E-01 1.88E-01 6.08E-02 1.20E-02 9.33E-04 10-2 Tau (s) 5.96E+00 8.06E-01 1.42E-01 4.54E-02 1.02E-02 1.84E-03 Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 60 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 At Tj = VGS = ºC BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 Th ( o C) Ptot (W) IF (A) 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 17 50 175 100 150 T h ( o C) 200 ºC Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) BOOST MOSFET Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 10 ID (A) UGS (V) 103 8 10uS 2 10 120V 480V 6 100uS 100mS 1 10mS 1mS 10 4 10 DC 0 2 0 100 At D= Th = VGS = Tj = 101 102 103 0 V DS (V) 100 150 200 250 300 350 Qg (nC) At ID = single pulse 80 ºC V 10 Tjmax ºC Copyright by Vincotech 50 18 50 A Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 60 IF (A) 10 ZthJC (K/W) 1 70 50 100 40 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 10 Tj = Tjmax-25°C Tj = 25°C 0 -2 0 0.3 At tp = 0.6 0.9 1.2 V F (V) 10 1.5 10-5 At D= RthJH = μs 250 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 100 10110 tp / T 1.397 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 120 t p (s) IF (A) Ptot (W) 70 60 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 19 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 20 Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Switching Definitions H-Bridge MOSFET General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω H-Bridge MOSFET Figure 1 H-Bridge MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 150 % IC % 250 tdoff 100 IC VGE 90% 200 VCE 90% 150 VGE 50 IC 1% tEoff VCE 100 tdon VCE 0 VGE 10% IC 10% 0 -50 -0.1 VGE 50 VCE 3% tEon -50 -0.05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 0.05 0 10 400 30 0.15 0.18 0.1 0.15 0.2 time (us) 4.3 4.38 4.54 4.62 4.7 4.78 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs H-Bridge MOSFET Figure 3 4.46 0 10 400 30 0.04 0.07 V V V A μs μs H-Bridge MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 300 150 % 100 % fitted IC 200 IC 90% IC 60% 50 IC 40% VCE 100 VCE tf 0 IC 90% IC10% tr IC IC 10% 0 -50 -100 0.08 -100 0.09 0.1 0.11 0.12 0.13 0.14 4.5 time (us) VC (100%) = IC (100%) = tf = 400 30 0.00 Copyright by Vincotech VC (100%) = IC (100%) = tr = V A μs 21 4.51 4.52 400 30 0.01 4.53 4.54 4.55 time(us) 4.56 V A μs Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Switching Definitions H-Bridge MOSFET H-Bridge MOSFET Figure 5 H-Bridge MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 200 150 % Eoff % Pon IC 1% 150 100 Eon 100 50 50 VGE 90% Poff 0 VGE 10% tEoff -50 -0.1 0 Poff (100%) = Eoff (100%) = tEoff = 0.1 12.15 0.05 0.18 VCE 3% 0 time (us) tEon -50 4.45 0.2 4.49 Pon (100%) = Eon (100%) = tEon = kW mJ μs H-Bridge MOSFET Figure 7 Gate voltage vs Gate charge (measured) 4.53 12.15 0.31 0.07 4.57 time(us) 4.61 kW mJ μs H-Bridge FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 15 VGE (V) % Id 100 10 trr 50 Vd 0 5 fitted IRRM 10% -50 0 -100 -150 -5 IRRM 90% -200 IRRM 100% -250 -10 -50 0 50 100 150 4.5 200 4.52 4.54 4.56 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 10 400 30 186.04 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 22 400 30 -61 0.04 4.58 time(us) 4.6 V A A μs Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Switching Definitions H-Bridge MOSFET H-Bridge FWD Figure 9 H-Bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 100 150 Prec Qrr % % tQrr 50 Erec 100 Id 0 tErec 50 -50 -100 0 -150 -50 -200 4.5 Id (100%) = Qrr (100%) = tQrr = 4.53 4.56 30 1.29 0.09 Copyright by Vincotech 4.59 4.62 time(us) 4.5 4.65 4.53 4.56 4.59 4.62 4.65 time(us) Prec (100%) = Erec (100%) = tErec = A μC μs 23 12.15 0.35 0.09 kW mJ μs Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FY07BIA041MF-M528E68 in DataMatrix as M528E68 in packaging barcode as M528E68 Outline Pinout Pins 3,4,9,12 are not connected. Copyright by Vincotech 24 Revision: 1 10-FY07BIA041MF-M528E68 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 25 Revision: 1