10-FZ06NRA099FS-P963F68 Maximum Ratings

10-FZ06NRA099FS-P963F68
preliminary datasheet
flowNPC 0
600V/18A
Features
flow0 12mm housing
● neutral point clamped inverter
● reactive power capability
● C6 CoolMOS™ and SiC buck diode
● clip-in pcb mounting
● low inductance layout
● LVRT capability
Schematic
Target Applications
● solar inverter
● UPS
Types
● 10-FZ06NRA099FS-P963F68
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Buck FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
15
19
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
82
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
32
49
W
Tjmax
175
°C
VDS
600
V
Maximum Junction Temperature
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
15
19
A
tp limited by Tjmax
Tc=25°C
112
A
Tj=Tjmax
Th=80°C
Tc=80°C
62
93
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
Maximum Junction Temperature
Copyright by Vincotech
1
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
49
56
A
150
A
83
126
W
±20
V
Tj≤150°C
6
μs
VGE=15V
360
V
175
°C
1200
V
16
22
A
36
A
31
47
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
1
1,57
1,87
21
18
9,5
10,4
0,08
0,08
5560
4224
0,004
0,005
1,8
Buck FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
12
IRRM
trr
Qrr
Rgon=2 Ω
±15
350
18
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
Rds(on)
VGS=VDS
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
A
ns
μC
A/μs
mWs
2,18
K/W
Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Gate to Source Leakage Current
Zero Gate Voltage Drain Current
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
18
10
VDS=VGS
V(GS)th
Igss
0
20
Idss
0,0012
600
0
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Rgon=2 Ω
Rgoff=2 Ω
350
±15
18
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
90
2,4
3
200
5000
20
20
4
4
89
93
3
3
0,05
0,06
0,01
0,02
Qgs
Gate to drain charge
Qgd
61
Input capacitance
Ciss
2660
Output capacitance
Coss
Reverse transfer capacitance
Crss
Copyright by Vincotech
RthJH
V
nA
nA
ns
mWs
119
Gate to source charge
Thermal resistance chip to heatsink per chip
mΩ
3,6
480
10/0
f=1MHz
0
100
18
Tj=25°C
Tj=25°C
14
154
nC
pF
tbd.
Thermal grease
thickness≤50um
λ = 1 W/mK
1,14
3
K/W
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,46
1,61
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0008
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,0026
600
Rgon=8 Ω
Rgoff=8 Ω
V
V
mA
nA
Ω
none
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
95
96
11
11
225
267
64
100
0,56
0,71
0,65
0,89
ns
mWs
3140
f=1MHz
0
25
±15
480
Tj=25°C
200
pF
Tj=25°C
310
nC
1,15
K/W
93
50
Thermal grease
thickness≤50um
λ = 1 W/mK
Boost FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
18
Rgon=8 Ω
350
±15
di(rec)max
/dt
Erec
RthJH
18
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,37
2,04
3,3
1000
69
76
43
56
1,71
4,09
11874
9394
0,25
0,98
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
A/μs
mWs
2,25
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
%
mW
Tj=25°C
3,5
mW/K
4000
K
B-value
B(25/50)
Tol. ±3%
Tc=25°C
B(25/100)
Tol. ±3%
Tj=25°C
Copyright by Vincotech
+5
210
B-value
Vincotech NTC Reference
-5
Tj=25°C
K
A
4
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Buck
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0
2
At
tp =
Tj =
VGE from
4
6
8
V CE (V)
0
10
At
tp =
Tj =
VGE from
250
μs
25
°C
3 V to 13 V in steps of 1 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
4
6
8
V CE (V)
10
250
μs
125
°C
3 V to 13 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
40
IC (A)
IF (A)
20
16
30
12
20
8
Tj = 25°C
10
4
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
0
0
0
At
tp =
VCE =
1
250
10
2
3
4
5
V GE (V)
6
0
At
tp =
μs
V
Copyright by Vincotech
5
0,8
250
1,6
2,4
3,2
V F (V)
4
μs
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,12
E (mWs)
E (mWs)
0,12
Eon High T
Eon High T
0,09
0,09
Eon Low T
Eon Low T
0,06
0,06
Eoff High T
Eoff Low T
Eoff High T
0,03
0,03
Eoff Low T
0,00
0,00
0
8
16
24
32
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
R G (W)
10
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
18
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,012
E (mWs)
E (mWs)
0,010
Erec High T
0,008
0,009
Erec Low T
Erec High T
0,006
Erec Low T
0,006
0,004
0,003
0,002
0,000
0,000
0
8
16
24
32
I C (A)
0
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Copyright by Vincotech
2
4
6
8
R G (W)
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
18
A
6
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Buck
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
0,10
0,10
tdoff
tdon
tdon
0,01
0,01
tr
tr
0,00
0,00
0
8
16
24
32
I C (A)
0
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
R G (W)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
18
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,020
t rr(ms)
t rr(ms)
0,015
trr High T
0,016
0,012
trr Low T
trr High T
trr Low T
0,009
0,012
0,006
0,008
0,003
0,004
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
350
±15
2
16
24
32
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
2
25/125
350
18
±15
4
6
8
R gon (W)
10
°C
V
A
V
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,12
Qrr (mC)
Qrr (mC)
0,12
Qrr Low T
0,09
Qrr High T
0,09
Qrr High T
Qrr Low T
0,06
0,06
0,03
0,03
0,00
0,00
At
At
Tj =
VCE =
VGE =
Rgon =
0
8
25/125
350
±15
2
16
24
32
40
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
350
18
±15
4
6
R g on ( Ω)
8
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
30
IrrM (A)
IrrM (A)
25
IRRM Low T
25
20
IRRM High T
20
15
15
IRRM Low T
IRRM High T
10
10
5
5
0
0
0
8
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
2
16
24
32
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
2
25/125
350
18
±15
4
6
8
R gon (W)
10
°C
V
A
V
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Buck
FWD
8000
8000
dI0/dt
dIrec/dt
7000
dI0/dt
dIrec/dt
7000
6000
6000
5000
5000
4000
4000
3000
3000
2000
2000
1000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
350
±15
2
16
24
32
I C (A)
40
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/125
350
18
±15
4
6
8
R gon (W)
10
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
10
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
1,14
K/W
10-4
10-3
2,18
R (C/W)
0,07
0,22
0,32
0,32
0,14
0,07
R (C/W)
0,09
0,36
0,91
0,43
0,32
0,06
9
100
t p (s)
1011
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
7,2E+00
1,3E+00
2,3E-01
6,3E-02
1,3E-02
1,4E-03
10-2
Tau (s)
3,6E+00
3,7E-01
7,3E-02
1,2E-02
2,5E-03
5,8E-04
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Buck
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
25
IC (A)
Ptot (W)
150
125
20
100
15
75
10
50
5
25
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
20
IF (A)
Ptot (W)
100
200
80
16
60
12
40
8
20
4
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Buck
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
3
IC (A)
VGE (V)
10
10
2
10
9
120V
8
480V
7
100uS
100mS
10mS
1mS
6
1
10
5
DC
4
100
3
2
10-1
1
0
0
10
At
D=
Th =
VGE =
Tj =
1
10
10
2
V CE (V)
0
103
40
60
80
100
120
Q g (nC)
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Copyright by Vincotech
20
11
18
A
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
160
IC (A)
IC (A)
160
140
140
120
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
μs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
5
IF (A)
IC (A)
60
50
40
40
30
30
20
20
Tj = Tjmax-25°C
10
Tj = Tjmax-25°C
10
Tj = 25°C
0
Tj = 25°C
0
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
12
1
250
2
3
V F (V)
4
μs
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
E (mWs)
1,5
Eoff High T
Eon High T
1,2
1,2
Eon High T
Eon Low T
Eoff Low T
0,9
0,9
Eoff High T
Eon Low T
Eoff Low T
0,6
0,6
0,3
0,3
0
0
0
8
16
24
32
I C (A)
0
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
18
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,5
E (mWs)
E (mWs)
1,5
Erec High T
1,2
1,2
0,9
0,9
0,6
0,6
Erec High T
Erec Low T
0,3
0,3
0
0
Erec Low T
0
8
16
24
32
I C (A)
0
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
18
A
13
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( μs)
t ( μs)
1
tdoff
tdon
tdoff
tf
tdon
0,1
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
8
16
24
32
I C (A)
40
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
18
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,10
0,12
t rr(ms)
t rr(ms)
trr High T
0,08
0,09
trr High T
0,06
0,06
trr Low T
trr Low T
0,04
0,03
0,02
0,00
0,00
0
8
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
16
24
32
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
14
8
25/125
350
18
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Boost
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
6
Qrr (mC)
5
Qrr (mC)
Qrr High T
5
4
Qrr High T
4
3
3
2
Qrr Low T
2
Qrr Low T
1
1
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
350
±15
8
16
24
32
I C (A)
0
40
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
350
18
±15
24
32
40
R g on ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
120
IrrM (A)
IrrM (A)
120
100
100
IRRM High T
80
80
IRRM Low T
60
60
40
40
IRRM High T
IRRM Low T
20
20
0
0
0
8
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
16
24
32
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
15
8
25/125
350
18
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Boost
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
20000
14000
dI0/dt
direc / dt (A/ms)
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
12000
dI0/dt
dIrec/dt
16000
10000
12000
8000
6000
8000
4000
4000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
350
±15
8
16
24
32
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
350
18
±15
16
24
32
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
40
R gon (W)
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,15
10-3
10-2
10-1
100
t p (s)
101 1
K/W
10-5
10-4
10-3
At
D=
RthJH =
tp / T
2,25
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,17
0,32
0,42
0,15
0,05
0,04
R (C/W)
0,07
0,19
1,10
0,39
0,26
0,18
Tau (s)
2,0E+00
2,5E-01
6,8E-02
1,2E-02
1,7E-03
2,5E-04
Copyright by Vincotech
16
10-2
10-1
100
t p (s)
101 1
Tau (s)
4,4E+00
5,6E-01
1,1E-01
4,1E-02
7,7E-03
1,6E-03
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
160
140
50
120
40
100
30
80
60
20
40
10
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
70
200
IF (A)
Ptot (W)
30
60
25
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
17
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Thermistor
Thermistor
R/Ω
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
18
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
Output inverter MOSFET
Figure 1
Output inverter MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
IC
%
%
tdoff
100
150
VGE 90%
50
IC
tEoff
100
VCE 90%
VCE
IC 1%
0
tdon
VCE
50
VGE
IC 10%
VCE 3%
VGE 10%
-50
0
VGE
-100
-0,15
tEon
-50
-0,1
-0,05
0
0,05
0,1
0,15
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
10
700
18
0,09
0,12
2,95
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter MOSFET
Figure 3
0
10
700
18
0,02
0,04
3,05
time(us)
3,15
V
V
V
A
μs
μs
Output inverter MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
3,1
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
%
IC
100
150
IC 90%
75
100
IC 60%
IC 90%
50
tr
IC 40%
50
VCE
25
Ic
IC10%
VCE
IC 10%
0
0
tf
-25
-0,02
VC (100%) =
IC (100%) =
tf =
0
0,02
700
18
0,00
Copyright by Vincotech
0,04
0,06
time (us)
-50
2,95
0,08
VC (100%) =
IC (100%) =
tr =
V
A
μs
19
3,00
3,05
700
18
0,00
3,10
time(us)
3,15
V
A
μs
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
120
Eoff
%
Eon
%
100
100
80
75
60
50
IC 1%
40
25
20
Poff
VGE 90%
VGE 10%
VCE 3%
Pon
0
0
tEon
tEoff
-20
-0,10
-0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0,00
12,62
0,02
0,12
0,05
time (us)
-25
2,95
0,10
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
3,05
12,62
0,06
0,04
3,1
time(us)
3,15
kW
mJ
μs
Output inverter MOSFET
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
15
Id
%
80
10
trr
40
5
0
IRRM 10%
Vd
-40
0
fitted
-80
IRRM 90%
-5
IRRM 100%
-120
-160
-10
-40
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-20
0
20
0
10
700
18
77,73
V
V
V
A
nC
Copyright by Vincotech
40
60
Qg (nC)
2,9
80
2,95
3
3,05
3,1
3,15
3,2
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
20
700
18
-18
0,01
V
A
A
μs
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
%
%
Id
100
Erec
100
tErec
tQrr
50
50
Prec
Qrr
0
0
-50
-50
-100
2,95
Id (100%) =
Qrr (100%) =
tQrr =
-100
3
3,05
18
0,13
0,21
3,1
3,15
3,2
3,25
3
3,3
time(us)
3,05
3,1
3,15
3,2
3,25
3,3
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
12,62
0,02
0,21
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
21
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06NRA099FS-P963F68
in DataMatrix as
P963F68
in packaging barcode as
P963F68
Outline
Pinout
Copyright by Vincotech
22
Revision: 1
10-FZ06NRA099FS-P963F68
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
23
Revision: 1