10-FZ06NRA099FS-P963F68 preliminary datasheet flowNPC 0 600V/18A Features flow0 12mm housing ● neutral point clamped inverter ● reactive power capability ● C6 CoolMOS™ and SiC buck diode ● clip-in pcb mounting ● low inductance layout ● LVRT capability Schematic Target Applications ● solar inverter ● UPS Types ● 10-FZ06NRA099FS-P963F68 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Buck FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 15 19 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 82 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 32 49 W Tjmax 175 °C VDS 600 V Maximum Junction Temperature Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 15 19 A tp limited by Tjmax Tc=25°C 112 A Tj=Tjmax Th=80°C Tc=80°C 62 93 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C Maximum Junction Temperature Copyright by Vincotech 1 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 49 56 A 150 A 83 126 W ±20 V Tj≤150°C 6 μs VGE=15V 360 V 175 °C 1200 V 16 22 A 36 A 31 47 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Boost IGBT Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tc=80°C Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 1 1,57 1,87 21 18 9,5 10,4 0,08 0,08 5560 4224 0,004 0,005 1,8 Buck FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 12 IRRM trr Qrr Rgon=2 Ω ±15 350 18 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK Rds(on) VGS=VDS Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V A ns μC A/μs mWs 2,18 K/W Buck MOSFET Static drain to source ON resistance Gate threshold voltage Gate to Source Leakage Current Zero Gate Voltage Drain Current Turn On Delay Time Rise Time Turn off delay time Fall time 18 10 VDS=VGS V(GS)th Igss 0 20 Idss 0,0012 600 0 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Rgon=2 Ω Rgoff=2 Ω 350 ±15 18 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 90 2,4 3 200 5000 20 20 4 4 89 93 3 3 0,05 0,06 0,01 0,02 Qgs Gate to drain charge Qgd 61 Input capacitance Ciss 2660 Output capacitance Coss Reverse transfer capacitance Crss Copyright by Vincotech RthJH V nA nA ns mWs 119 Gate to source charge Thermal resistance chip to heatsink per chip mΩ 3,6 480 10/0 f=1MHz 0 100 18 Tj=25°C Tj=25°C 14 154 nC pF tbd. Thermal grease thickness≤50um λ = 1 W/mK 1,14 3 K/W Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,46 1,61 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0008 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,0026 600 Rgon=8 Ω Rgoff=8 Ω V V mA nA Ω none Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 95 96 11 11 225 267 64 100 0,56 0,71 0,65 0,89 ns mWs 3140 f=1MHz 0 25 ±15 480 Tj=25°C 200 pF Tj=25°C 310 nC 1,15 K/W 93 50 Thermal grease thickness≤50um λ = 1 W/mK Boost FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 18 Rgon=8 Ω 350 ±15 di(rec)max /dt Erec RthJH 18 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,37 2,04 3,3 1000 69 76 43 56 1,71 4,09 11874 9394 0,25 0,98 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC A/μs mWs 2,25 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant % mW Tj=25°C 3,5 mW/K 4000 K B-value B(25/50) Tol. ±3% Tc=25°C B(25/100) Tol. ±3% Tj=25°C Copyright by Vincotech +5 210 B-value Vincotech NTC Reference -5 Tj=25°C K A 4 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Buck MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0 2 At tp = Tj = VGE from 4 6 8 V CE (V) 0 10 At tp = Tj = VGE from 250 μs 25 °C 3 V to 13 V in steps of 1 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 2 4 6 8 V CE (V) 10 250 μs 125 °C 3 V to 13 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 40 IC (A) IF (A) 20 16 30 12 20 8 Tj = 25°C 10 4 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C 0 0 0 At tp = VCE = 1 250 10 2 3 4 5 V GE (V) 6 0 At tp = μs V Copyright by Vincotech 5 0,8 250 1,6 2,4 3,2 V F (V) 4 μs Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,12 E (mWs) E (mWs) 0,12 Eon High T Eon High T 0,09 0,09 Eon Low T Eon Low T 0,06 0,06 Eoff High T Eoff Low T Eoff High T 0,03 0,03 Eoff Low T 0,00 0,00 0 8 16 24 32 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 R G (W) 10 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 18 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,012 E (mWs) E (mWs) 0,010 Erec High T 0,008 0,009 Erec Low T Erec High T 0,006 Erec Low T 0,006 0,004 0,003 0,002 0,000 0,000 0 8 16 24 32 I C (A) 0 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 2 Ω Copyright by Vincotech 2 4 6 8 R G (W) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 18 A 6 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Buck MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff 0,10 0,10 tdoff tdon tdon 0,01 0,01 tr tr 0,00 0,00 0 8 16 24 32 I C (A) 0 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 R G (W) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 18 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,020 t rr(ms) t rr(ms) 0,015 trr High T 0,016 0,012 trr Low T trr High T trr Low T 0,009 0,012 0,006 0,008 0,003 0,004 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 8 25/125 350 ±15 2 16 24 32 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 2 25/125 350 18 ±15 4 6 8 R gon (W) 10 °C V A V Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,12 Qrr (mC) Qrr (mC) 0,12 Qrr Low T 0,09 Qrr High T 0,09 Qrr High T Qrr Low T 0,06 0,06 0,03 0,03 0,00 0,00 At At Tj = VCE = VGE = Rgon = 0 8 25/125 350 ±15 2 16 24 32 40 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 350 18 ±15 4 6 R g on ( Ω) 8 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 30 IrrM (A) IrrM (A) 25 IRRM Low T 25 20 IRRM High T 20 15 15 IRRM Low T IRRM High T 10 10 5 5 0 0 0 8 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 2 16 24 32 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 2 25/125 350 18 ±15 4 6 8 R gon (W) 10 °C V A V Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Buck FWD 8000 8000 dI0/dt dIrec/dt 7000 dI0/dt dIrec/dt 7000 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 350 ±15 2 16 24 32 I C (A) 40 0 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/125 350 18 ±15 4 6 8 R gon (W) 10 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 1,14 K/W 10-4 10-3 2,18 R (C/W) 0,07 0,22 0,32 0,32 0,14 0,07 R (C/W) 0,09 0,36 0,91 0,43 0,32 0,06 9 100 t p (s) 1011 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 7,2E+00 1,3E+00 2,3E-01 6,3E-02 1,3E-02 1,4E-03 10-2 Tau (s) 3,6E+00 3,7E-01 7,3E-02 1,2E-02 2,5E-03 5,8E-04 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Buck MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 25 IC (A) Ptot (W) 150 125 20 100 15 75 10 50 5 25 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 20 IF (A) Ptot (W) 100 200 80 16 60 12 40 8 20 4 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Buck MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 3 IC (A) VGE (V) 10 10 2 10 9 120V 8 480V 7 100uS 100mS 10mS 1mS 6 1 10 5 DC 4 100 3 2 10-1 1 0 0 10 At D= Th = VGE = Tj = 1 10 10 2 V CE (V) 0 103 40 60 80 100 120 Q g (nC) At IC = single pulse 80 ºC 15 V Tjmax ºC Copyright by Vincotech 20 11 18 A Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 160 IC (A) IC (A) 160 140 140 120 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 μs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 5 IF (A) IC (A) 60 50 40 40 30 30 20 20 Tj = Tjmax-25°C 10 Tj = Tjmax-25°C 10 Tj = 25°C 0 Tj = 25°C 0 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 0 At tp = μs V Copyright by Vincotech 12 1 250 2 3 V F (V) 4 μs Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) E (mWs) 1,5 Eoff High T Eon High T 1,2 1,2 Eon High T Eon Low T Eoff Low T 0,9 0,9 Eoff High T Eon Low T Eoff Low T 0,6 0,6 0,3 0,3 0 0 0 8 16 24 32 I C (A) 0 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 18 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,5 E (mWs) E (mWs) 1,5 Erec High T 1,2 1,2 0,9 0,9 0,6 0,6 Erec High T Erec Low T 0,3 0,3 0 0 Erec Low T 0 8 16 24 32 I C (A) 0 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 18 A 13 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdon tdoff tf tdon 0,1 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 8 16 24 32 I C (A) 40 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 18 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,10 0,12 t rr(ms) t rr(ms) trr High T 0,08 0,09 trr High T 0,06 0,06 trr Low T trr Low T 0,04 0,03 0,02 0,00 0,00 0 8 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 16 24 32 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 14 8 25/125 350 18 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 6 Qrr (mC) 5 Qrr (mC) Qrr High T 5 4 Qrr High T 4 3 3 2 Qrr Low T 2 Qrr Low T 1 1 0 0 0 At At Tj = VCE = VGE = Rgon = 8 25/125 350 ±15 8 16 24 32 I C (A) 0 40 8 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 350 18 ±15 24 32 40 R g on ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 120 IrrM (A) IrrM (A) 120 100 100 IRRM High T 80 80 IRRM Low T 60 60 40 40 IRRM High T IRRM Low T 20 20 0 0 0 8 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 16 24 32 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 15 8 25/125 350 18 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Boost FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 20000 14000 dI0/dt direc / dt (A/ms) direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 12000 dI0/dt dIrec/dt 16000 10000 12000 8000 6000 8000 4000 4000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 350 ±15 8 16 24 32 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 350 18 ±15 16 24 32 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 40 R gon (W) 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 1,15 10-3 10-2 10-1 100 t p (s) 101 1 K/W 10-5 10-4 10-3 At D= RthJH = tp / T 2,25 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,17 0,32 0,42 0,15 0,05 0,04 R (C/W) 0,07 0,19 1,10 0,39 0,26 0,18 Tau (s) 2,0E+00 2,5E-01 6,8E-02 1,2E-02 1,7E-03 2,5E-04 Copyright by Vincotech 16 10-2 10-1 100 t p (s) 101 1 Tau (s) 4,4E+00 5,6E-01 1,1E-01 4,1E-02 7,7E-03 1,6E-03 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 160 140 50 120 40 100 30 80 60 20 40 10 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = ºC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 70 200 IF (A) Ptot (W) 30 60 25 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 At Tj = ºC Copyright by Vincotech 17 50 150 100 150 Th ( o C) 200 ºC Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Thermistor Thermistor R/Ω Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 18 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω Output inverter MOSFET Figure 1 Output inverter MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 IC % % tdoff 100 150 VGE 90% 50 IC tEoff 100 VCE 90% VCE IC 1% 0 tdon VCE 50 VGE IC 10% VCE 3% VGE 10% -50 0 VGE -100 -0,15 tEon -50 -0,1 -0,05 0 0,05 0,1 0,15 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 10 700 18 0,09 0,12 2,95 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter MOSFET Figure 3 0 10 700 18 0,02 0,04 3,05 time(us) 3,15 V V V A μs μs Output inverter MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 3,1 Turn-on Switching Waveforms & definition of tr 125 200 fitted % % IC 100 150 IC 90% 75 100 IC 60% IC 90% 50 tr IC 40% 50 VCE 25 Ic IC10% VCE IC 10% 0 0 tf -25 -0,02 VC (100%) = IC (100%) = tf = 0 0,02 700 18 0,00 Copyright by Vincotech 0,04 0,06 time (us) -50 2,95 0,08 VC (100%) = IC (100%) = tr = V A μs 19 3,00 3,05 700 18 0,00 3,10 time(us) 3,15 V A μs Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 120 Eoff % Eon % 100 100 80 75 60 50 IC 1% 40 25 20 Poff VGE 90% VGE 10% VCE 3% Pon 0 0 tEon tEoff -20 -0,10 -0,05 Poff (100%) = Eoff (100%) = tEoff = 0,00 12,62 0,02 0,12 0,05 time (us) -25 2,95 0,10 3 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 3,05 12,62 0,06 0,04 3,1 time(us) 3,15 kW mJ μs Output inverter MOSFET Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 15 Id % 80 10 trr 40 5 0 IRRM 10% Vd -40 0 fitted -80 IRRM 90% -5 IRRM 100% -120 -160 -10 -40 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -20 0 20 0 10 700 18 77,73 V V V A nC Copyright by Vincotech 40 60 Qg (nC) 2,9 80 2,95 3 3,05 3,1 3,15 3,2 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 20 700 18 -18 0,01 V A A μs Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 % % Id 100 Erec 100 tErec tQrr 50 50 Prec Qrr 0 0 -50 -50 -100 2,95 Id (100%) = Qrr (100%) = tQrr = -100 3 3,05 18 0,13 0,21 3,1 3,15 3,2 3,25 3 3,3 time(us) 3,05 3,1 3,15 3,2 3,25 3,3 time(us) Prec (100%) = Erec (100%) = tErec = A μC μs 12,62 0,02 0,21 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 21 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06NRA099FS-P963F68 in DataMatrix as P963F68 in packaging barcode as P963F68 Outline Pinout Copyright by Vincotech 22 Revision: 1 10-FZ06NRA099FS-P963F68 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 23 Revision: 1