10-PZ126PA080ME-M909F18Y Maximum Ratings

10-PZ126PA080ME-M909F18Y
flow 3xPHASE-SiC
1200 V / 80 mΩ
Features
flow 0 12mm housing
● SiC-Power MOSFET´s and Schottky Diodes
● 3 phase inverter topology with split output
● Improved switching behavior (reduced turn on energy and
X-conduction)
● Ultra Low Inductance with integrated DC-capacitors
● Switching frequency >100kHz
● Temperature sensor
Target Applications
Schematic
● Solar Inverter
● Charger
● Power Supply
Types
● 10-PZ126PA080ME-M909F18Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
T1, T2, T3, T4, T5, T6
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
20
A
60
A
39
59
W
Power dissipation
Ptot
Gate-source peak voltage
VGS
-10/25
V
Tjmax
150
°C
VRRM
1200
V
Maximum Junction Temperature
Tj=Tjmax
16
D1, D2, D3, D4, D5, D6
Peak Repetitive Reverse Voltage
Forward average current
IFAV
Tj=Tjmax
Th=80°C
Tc=80°C
13
16
A
Non-Repetitive Peak Forward Surge Current
IFSM
tp=10ms
Tj=25°C
64
A
Repetitive Peak Forward Surge Current
IFRM
tp limited by Tjmax
39
A
Power dissipation per Diode
Ptot
Tj=Tjmax
34
51
W
175
°C
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Revision: 4
10-PZ126PA080ME-M909F18Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1000
V
C1, C2, C3
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 9,9
mm
Insulation Properties
Insulation voltage
copyright Vincotech
t=2s
DC voltage
2
Revision: 4
10-PZ126PA080ME-M909F18Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
1,7
0,08
0,14
2,2
Unit
Max
T1, T2, T3, T4, T5, T6
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
V(GS)th
20
20
VDS = VGS
10
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
1200
f=1MHz; VAC=25mV
Internal Gate Resistance
RG
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
0,001
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Ω
V
250
100
nA
µA
Ω
4,6
49,2
0/20
800
20
10,8
nC
18
Tj=25°C
950
f=1MHz
0
1000
80
pF
6,5
Phase-Change
Material
1,79
K/W
D1, D2, D3, D4, D5, D6
Forward voltage
Reverse leakage current
Thermal resistance chip to heatsink per chip
VF
7,5
Irm
RthJH
1200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Phase-Change
Material
1,45
1,75
1,8
250
2,81
V
µA
K/W
Single ended configuration
T1, T2, T3, T4, T5, T6
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Rgoff=4 Ω
Rgon=4 Ω
16
700
16
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
11
11
5
4
37
39
13
14
0,112
0,103
0,058
0,058
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
18
19
10
10
0,094
0,098
0,026
0,031
4563
4485
ns
mWs
D1, D2, D3, D4, D5, D6
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
copyright Vincotech
Rgon=4 Ω
16
700
di(rec)max
/dt
3
16
A
ns
µC
mWs
A/µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Half bridge configuration
D1, D2, D3, D4, D5, D6
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
IRRM
trr
Qrr
Rgon=4 Ω
700
-5/16
16
di(rec)max
/dt
Erec
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
26
34
16
15
0,232
0,234
6761
9363
0,084
0,081
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
14
13
4
4
45
48
7
6
0,152
0,140
0,057
0,058
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
15
14
4
3
30
32
17
13
0,058
0,042
0,075
0,074
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
15
17
34
49
0,2
0,3
2741
3343
0,04
0,05
A
ns
µC
A/µs
mWs
T1, T2, T3, T4, T5, T6
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Rgoff=4 Ω
Rgon=4 Ω
-5/16
700
16
ns
mWs
Splitted output configuration
T1, T2, T3, T4, T5, T6
Turn-on delay time
Rise time
Turn-off delay time
Fall time
td(on)
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Rgoff=4 Ω
Rgon=4 Ω
-8/16
700
16
ns
mWs
D1, D2, D3, D4, D5, D6
Peak reverse recovery current
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovery energy
Rgon=4 Ω
-8/16
700
di(rec)max
/dt
Erec
16
A
ns
µC
A/µs
mWs
C1, C2, C3
C value
C
47
nF
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-5
5
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
K
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
Vincotech NTC Reference
copyright Vincotech
B
4
Revision: 4
10-PZ126PA080ME-M909F18Y
Half Bridge Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
Typical switching energy losses
as a function of drain current
E = f(ID)
Figure 2
Typical switching energy losses
as a function of gate resistor
E = f(RG)
T1, T2, T3, T4, T5, T6 MOSFET
0,6
E (mWs)
E (mWs)
0,3
Eon Low T
Eon Low T
0,5
0,25
Eon High T
Eon High T
0,2
0,4
0,15
0,3
0,1
0,2
Eoff Low T
0,05
Eoff Low T
Eoff High T
0,1
Eoff High T
0
0,0
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
-5/16
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
32
R G ( Ω)
40
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
-5/16
V
ID =
A
16
Figure 3
Typical reverse recovery energy loss
as a function of drain current
Erec = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 4
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,10
E (mWs)
0,20
D1, D2, D3, D4, D5, D6 FWD
Erec High T
Erec Low T
0,08
Erec High T
0,15
0,06
Erec Low T
0,10
0,04
0,05
0,02
0,00
0,00
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
-5/16
V
Rgon =
4
Ω
copyright Vincotech
8
16
24
32
R G ( Ω)
40
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
-5/16
V
ID =
16
A
5
Revision: 4
10-PZ126PA080ME-M909F18Y
Half Bridge Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
Typical switching times as a
function of drain current
t = f(ID)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
0,10
tdoff
0,10
tdoff
tf
tdon
tdon
tr
0,01
0,01
tf
tr
0,00
0,00
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
°C
125
VDS =
700
V
VGS =
-5/16
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
32
R G ( Ω)
40
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
-5/16
V
ID =
A
16
D1, D2, D3, D4, D5, D6 FWD
Figure 7
Typical reverse recovery time as a
function of drain current
trr = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 8
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,07
trr High T
t rr(ms)
trr Low T
t rr(ms)
0,020
0,06
trr Low T
trr High T
0,015
0,05
0,04
0,010
0,03
0,02
0,005
0,01
0,00
0,000
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-5/16
4
copyright Vincotech
10
15
20
25
I D (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
6
8
25/125
700
16
-5/16
16
24
32
R gon ( Ω)
40
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
Half Bridge Configuration
Figure 9
Typical reverse recovery charge as a
function of drain current
Qrr = f(ID)
D1, D2, D3, D4, D5, D6 FWD
D1, D2, D3, D4, D5, D6 FWD
Figure 10
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,5
Qrr (µC)
Qrr (µC)
0,3
Qrr High T
Qrr High T
0,25
Qrr Low T
0,4
0,2
0,3
Qrr Low T
0,15
0,2
0,1
0,1
0,05
0,0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-5/16
4
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 11
Typical reverse recovery current as a
function of drain current
IRRM = f(ID)
D1, D2, D3, D4, D5, D6 FWD
8
25/125
700
16
-5/16
16
24
32
R gon ( Ω)
40
°C
V
A
V
D1, D2, D3, D4, D5, D6 FWD
Figure 12
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
50
IrrM (A)
60
IRRM High T
50
40
40
30
IRRM Low T
30
20
20
IRRM High T
10
10
IRRM Low T
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-5/16
4
copyright Vincotech
10
15
20
25
I D (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
7
8
25/125
700
16
-5/16
16
24
32
R gon ( Ω)
40
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
Half Bridge Configuration
D1, D2, D3, D4, D5, D6 FWD
14000
D1, D2, D3, D4, D5, D6 FWD
Figure 14
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 13
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(ID)
di0/dtT
12000
10000
dIrec/dt T
dI0/dt T
8000
10000
6000
8000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-5/16
4
copyright Vincotech
10
15
20
25
I D (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
8
8
25/125
700
16
-5/16
16
24
32
R gon ( Ω)
40
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
80
IC (A)
IC (A)
80
60
60
40
40
20
20
0
0
-20
-20
-40
-40
-60
-60
-4
At
tp =
Tj =
VGS from
-2
0
2
4
6
8
10
12
-4
14
V DS (V)
At
tp =
Tj =
VGS from
µs
250
25
°C
-4 V to 20 V in steps of 2 V
T1, T2, T3, T4, T5, T6 MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGS)
-2
0
2
4
6
8
10
12
14
V DS (V)
250
µs
125
°C
-4 V to 20 V in steps of 2 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D1, D2, D3, D4, D5, D6 FWD
30
ID (A)
IF (A)
20
25
16
20
12
15
8
10
Tj = Tjmax-25°C
Tj = 25°C
4
5
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VDS =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
9
1
250
2
3
4
V F (V)
5
µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Splitted Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
Typical switching energy losses
as a function of drain current
E = f(ID)
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,15
T1, T2, T3, T4, T5, T6 MOSFET
E (mWs)
E (mWs)
0,2
Eon Low T
Eon Low T
0,12
0,15
Eon High T
Eon High T
0,09
Eoff Low T
Eoff High T
0,1
Eoff High T
Eoff Low T
0,06
0,05
0,03
0
0
0
5
10
15
20
25
I D (A)
0
30
With an inductive load at
Tj =
°C
25/126
VDS =
700
V
VGS =
16/-8
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/126
°C
VDS =
700
V
VGS =
16/-8
V
ID =
A
16
Figure 7
Typical reverse recovery energy loss
as a function of drain current
Erec = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
0,08
Erec High T
D1, D2, D3, D4, D5, D6 FWD
0,06
Erec High T
0,05
0,06
Erec Low T
0,04
Erec Low T
0,04
0,03
0,02
0,02
0,01
0
0
0
5
10
15
20
25
30
0
4
I D (A)
With an inductive load at
Tj =
°C
25/126
VDS =
700
V
VGS =
16/-8
V
Rgon =
4
Ω
copyright Vincotech
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/126
°C
VDS =
700
V
VGS =
16/-8
V
ID =
16
A
10
Revision: 4
10-PZ126PA080ME-M909F18Y
Splitted Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 9
Typical switching times as a
function of drain current
t = f(ID)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
0,1
0,1
tdoff
tdoff
tdon
tdon
tf
0,01
tf
0,01
tr
tr
0,001
0,001
0
5
10
15
20
25
I D (A)
0
30
With an inductive load at
Tj =
°C
126
VDS =
700
V
VGS =
16/-8
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
126
°C
VDS =
700
V
VGS =
16/-8
V
ID =
16
A
D1, D2, D3, D4, D5, D6 FWD
Figure 11
Typical reverse recovery time as a
function of drain current
trr = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,06
t rr(ms)
0,06
trr High T
0,05
0,05
0,04
0,04
trr High T
trr Low T
trr Low T
0,03
0,03
0,02
0,02
0,01
0,01
0,00
0,00
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/126
700
16/-8
4
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
11
4
25/126
700
16
16/-8
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
Splitted Configuration
Figure 13
Typical reverse recovery charge as a
function of drain current
Qrr = f(ID)
D1, D2, D3, D4, D5, D6 FWD
D1, D2, D3, D4, D5, D6 FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,4
Qrr (µC)
Qrr (µC)
0,3
Qrr High T
0,25
Qrr High T
0,3
0,2
Qrr Low T
Qrr Low T
0,2
0,15
0,1
0,1
0,05
0,0
0
0
At
At
Tj =
VDS =
VGS =
Rgon =
5
25/126
700
16/-8
4
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of drain current
IRRM = f(ID)
D1, D2, D3, D4, D5, D6 FWD
5
25/126
700
16
16/-8
10
15
R gon ( Ω)
20
°C
V
A
V
D1, D2, D3, D4, D5, D6 FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
20
IrrM (A)
IrrM (A)
25
20
15
IRRM High T
IRRM High T
15
10
IRRM Low T
IRRM Low T
10
5
5
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/126
700
16/-8
4
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
12
5
25/126
700
16
16/-8
10
15
R gon ( Ω)
20
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
Splitted Configuration
D1, D2, D3, D4, D5, D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
dIo/dt T
dI0/dt T
direc / dt (A/ms)
direc / dt (A/ms)
10000
dIrec/dt T
8000
dIrec/dt T
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/126
700
16/-8
4
copyright Vincotech
10
15
20
25
I D (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
13
5
25/126
700
16
16/-8
10
15
R gon ( Ω)
20
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
1
10
0
10
-1
1
ZthJH (K/W)
10
ZthJH (K/W)
10
D1, D2, D3, D4, D5, D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,79
10-3
10-2
10-1
100
t p (s)
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
2
10101
K/W
10-5
10-4
At
D=
RthJH =
tp / T
2,81
10-3
FWD thermal model values
R (K/W)
0,12
0,33
1,01
0,19
0,14
R (K/W)
0,08
0,21
1,43
0,71
0,33
0,05
copyright Vincotech
14
10-1
100
t p (s)
2
101
10
K/W
MOSFET thermal model values
Tau (s)
1,7E+00
2,5E-01
7,6E-02
5,1E-03
6,5E-04
10-2
Tau (s)
2,3E+00
3,3E-01
6,8E-02
1,2E-02
2,4E-03
5,2E-04
Revision: 4
10-PZ126PA080ME-M909F18Y
T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 22
Drain current as a
function of heatsink temperature
ID = f(Th)
25
ID (A)
Ptot (W)
100
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
150
D1, D2, D3, D4, D5, D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
T h ( o C)
200
ºC
V
D1, D2, D3, D4, D5, D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
20
IF (A)
Ptot (W)
70
150
60
15
50
40
10
30
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
15
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
10-PZ126PA080ME-M909F18Y
T1, T2, T3, T4, T5, T6
T1, T2, T3, T4, T5, T6 MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
ID (A)
100uS
VGS = f(Qg)
UGS (V)
102
T1, T2, T3, T4, T5, T6 MOSFET
Figure 26
Gate voltage vs Gate charge
10uS
1mS
10mS
100mS
DC
20
18
16
4
14
101
12
10
8
100
6
4
2
0
10-1
10
0
At
D=
Th =
VGS =
Tj =
101
10
2
103
0
V DS (V)
single pulse
80
ºC
V
16
Tjmax
ºC
copyright Vincotech
16
10
20
At
IDS =
VDS=
IGS=
20
800
10
A
V
mA
Tj =
25
ºC
30
40
Qg (nC)
50
Revision: 4
10-PZ126PA080ME-M909F18Y
Booster Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
Typical switching energy losses
as a function of drain current
E = f(ID)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 2
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,25
E (mWs)
E (mWs)
0,5
Eon Low T
0,2
Eon Low T
0,4
Eon High T
Eon High T
0,15
0,3
Eoff High T
Eoff High T
Eoff Low T
0,1
0,2
Eoff Low T
0,05
0,1
0
0
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
16
V
Rgon =
4
Ω
Rgoff =
4
Ω
10
20
30
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
ID =
A
16
Figure 3
Typical reverse recovery energy loss
as a function of drain current
Erec = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 4
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
D1, D2, D3, D4, D5, D6 FWD
0,04
E (mWs)
E (mWs)
0,05
0,04
Erec High T
0,03
0,03
Erec High T
Erec Low T
0,02
Erec Low T
0,02
0,01
0,01
0
0
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
16
V
Rgon =
4
Ω
Rgoff =
4
Ω
copyright Vincotech
10
20
30
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
ID =
16
A
17
Revision: 4
10-PZ126PA080ME-M909F18Y
Booster Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
Typical switching times as a
function of drain current
t = f(ID)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( ms)
t ( ms)
1
tdoff
0,1
0,1
tdoff
tdon
tf
tdon
tr
0,01
0,01
tf
tr
0,001
0,001
0
5
10
15
20
25
I D (A)
0
30
10
20
30
40
R G ( Ω)
With an inductive load at
Tj =
°C
125
VDS =
700
V
VGS =
16
V
Rgon =
4
Ω
Rgoff =
4
Ω
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
16
V
IC =
A
16
D1, D2, D3, D4, D5, D6 FWD
Figure 7
Typical reverse recovery time as a
function of drain current
trr = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 8
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,020
t rr( ms)
t rr( ms)
0,015
0,012
0,015
trr High T
trr High T
trr Low T
trr Low T
0,009
0,010
0,006
0,005
0,003
0
0
5
10
15
20
25
0,000
30
0
I D (A)
At
Tj =
VDS =
VGS =
Rgon =
25/125
700
16
4
copyright Vincotech
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
18
10
25/125
700
16
16
20
30
R Gon ( Ω)
40
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
Booster Configuration
Figure 9
Typical reverse recovery charge as a
function of drain current
Qrr = f(ID)
D1, D2, D3, D4, D5, D6 FWD
D1, D2, D3, D4, D5, D6 FWD
Figure 10
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,12
Qrr ( µC)
Qrr ( µC)
0,15
Qrr High T
0,12
0,1
Qrr Low T
Qrr High T
0,09
0,08
Qrr Low T
0,06
0,06
0,03
0,04
0
0,02
0
At
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
16
4
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 11
Typical reverse recovery current as a
function of drain current
IRRM = f(ID)
D1, D2, D3, D4, D5, D6 FWD
10
25/125
700
16
16
20
30
R Gon ( Ω)
40
°C
V
A
V
D1, D2, D3, D4, D5, D6 FWD
Figure 12
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
25
IrrM (A)
IrrM (A)
30
IRRM High T
25
20
IRRM Low T
20
15
15
10
10
IRRM High T
5
5
IRRM Low T
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
16
4
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
19
10
25/125
700
16
16
20
30
R Gon ( Ω)
40
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
Booster Configuration
D1, D2, D3, D4, D5, D6 FWD
Figure 13
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(ID)
D1, D2, D3, D4, D5, D6 FWD
Figure 14
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
10000
dIrec/dt
8000
dI0/dt
dIrec/dt
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
16
4
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
20
5
25/125
700
16
16
10
15
20
25
30 R ( Ω) 35
Gon
°C
V
A
V
Revision: 4
10-PZ126PA080ME-M909F18Y
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
21
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Half Bridge Configuration
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
tdoff
%
T1, T2, T3, T4, T5, T6 MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
300
%
VDS
ID
250
100
VGS 90%
VDS 90%
ID
200
75
VGS
VGS
150
50
tEoff
25
VDS
100
ID 1%
tdon
50
ID 10%
VGS 10%
0
-25
VDS 3%
tEon
0
-50
-50
-100
0
0,02
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdoff =
tEoff =
0,04
0,06
0,08
time (us)
0,1
3
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
16
700
16
0,048
0,058
T1, T2, T3, T4, T5, T6 MOSFET
Figure 3
3,01
3,02
0
16
700
16
0,013
0,024
time(us)
3,04
V
V
V
A
µs
µs
T1, T2, T3, T4, T5, T6 MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
3,03
Turn-on Switching Waveforms & definition of tr
125
350
fitted
%
%
VDS
ID
ID
300
100
ID 90%
250
75
ID 60%
200
50
ID 40%
150
VDS
25
100
ID10%
50
-25
-50
0,04
VD (100%) =
ID (100%) =
tf =
copyright Vincotech
ID 90%
tr
tf
0
ID 10%
0
-50
0,05
0,06
700
16
0,006
0,07
time (us)
0,08
V
A
µs
22
3
3,01
VD (100%) =
ID (100%) =
tr =
700
16
0,004
3,02
time(us) 3,03
V
A
µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Half Bridge Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
175
%
%
Eoff
Pon
150
100
125
75
Eon
ID 1%
100
50
75
25
50
VGS 90%
Poff
0
tEoff
25
VDS 3%
VGS 10%
-25
0
tEon
-25
-50
0
0,02
Poff (100%) =
Eoff (100%) =
tEoff =
0,04
11,17
0,06
0,058
0,06
0,08
time (us)
0,1
3
3,01
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3,02
11,17
0,14
0,024
3,03
time(us)
3,04
kW
mJ
µs
D1, D2, D3, D4, D5, D6 FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
fitted
0
Vd
IRRM 10%
-50
-100
-150
IRRM 90%
-200
IRRM 100%
-250
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
23
3,01
3,02
700
16
-34
0,015
3,03
3,04
time(us)
3,05
V
A
A
µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Half Bridge Configuration
D1, D2, D3, D4, D5, D6 FWD
Figure 8
150
%
100
D1, D2, D3, D4, D5, D6 FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
250
%
Qrr
Id
Erec
200
tQrr
50
150
0
100
-50
50
-100
0
-150
-50
-200
-100
tErec
-250
3,01
3,02
Id (100%) =
Qrr (100%) =
tQrr =
3,03
16
0,23
0,031
3,04
3,05
time(us)
-150
3,01
3,06
Prec
3,02
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,03
11,17
0,08
0,031
3,04
time(us)
3,05
kW
mJ
µs
Measurement circuit
Figure 10
Half Bridge Configuration switching measurement circuit
Vcc V
L
-8V
VDC
D1
705uH
T2
700
Vce V
Vge V
T1
D2
Ic
A
0.00001
0.000003
Q
Q
Q
Q
Q
+16V
4Ohm
4Ohm
-5V
Q
copyright Vincotech
24
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Splitted Configuration
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
%
150
%
tdoff
VDS
100
VGS
150
VDS 90%
VGS 90%
ID
50
VDS
100
tEoff
ID 1%
tdon
0
50
-50
-100
VGS 10%
ID
0
VGS
VDS 3%
ID 10%
tEon
-50
-150
-0,08
-0,06
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdoff =
tEoff =
-0,04
-0,02
0
0,02
-100
2,98
0,04
time (us)
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
16
700
16
0,032
0,084
T1, T2, T3, T4, T5, T6 MOSFET
Figure 3
2,99
3
0
16
700
16
0,014
0,017
time(us)
3,02
V
V
V
A
µs
µs
T1, T2, T3, T4, T5, T6 MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
3,01
Turn-on Switching Waveforms & definition of tr
200
125
%
fitted
VDS
ID
ID
%
100
ID 90%
150
75
VDS
ID 60%
100
50
ID 90%
ID 40%
tr
25
50
ID10%
tf
0
ID 10%
0
-25
-50
-0,04
-0,03
-0,02
-0,01
0
-50
2,995
0,01
time (us)
VD (100%) =
ID (100%) =
tf =
copyright Vincotech
700
16
0,013
VD (100%) =
ID (100%) =
tr =
V
A
µs
25
3
3,005
700
16
0,003
3,01
3,015
time(us)
3,02
V
A
µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Splitted Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
Eoff
%
%
ID 1%
Eon
100
100
Pon
75
75
50
50
Poff
25
VGS 90%
25
0
tEoff
VGS 10%
-25
-50
-0,06
VDS 3%
0
tEon
-0,04
Poff (100%) =
Eoff (100%) =
tEoff =
-0,02
11,19
0,074
0,084
0
0,02
time (us)
-25
2,99
0,04
2,995
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3
11,19
0,041
0,017
3,005
3,01
time(us)
3,015
kW
mJ
µs
D1, D2, D3, D4, D5, D6 FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
-150
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
26
3,02
3,04
700
16
-17
0,049
3,06
3,08
time(us)
3,1
V
A
A
µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Splitted Configuration
D1, D2, D3, D4, D5, D6 FWD
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
200
%
%
Qrr
Id
Erec
150
100
tQrr
50
100
tErec
0
50
-50
0
Prec
-100
-50
3
3,03
Id (100%) =
Qrr (100%) =
tQrr =
3,06
3,09
3,12
time(us)
3,15
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
16
0,27
0,100
3,03
3,06
11,19
0,05
0,100
3,09
3,12
time(us)
3,15
kW
mJ
µs
Measurement circuit
Figure 10
Splitted Configuration switching measurement circuit
Vd
Vcc V
Vd used for T2 dody diode Erec calculation
-8V
D1
VDC
V
L
T2
700
705uH
1uH
Vce
V
Vge
V
T1
D2
Ic
A
0.00001
0.000003
Q
Q
Q
Q
Q
+16V
4Ohm
4Ohm
-8V
Q
copyright Vincotech
27
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Booster Configuration
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
T1, T2, T3, T4, T5, T6 MOSFET
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
100
%
VGS 90%
ID
VGS
200
ID
VDS 90%
75
150
VGS
VDS
50
100
ID 1%
tEoff
tdon
25
50
VGS 10%
VDS
0
-25
tEon
-50
-50
-0,06
-0,04
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdoff =
tEoff =
-0,02
0
time (us)
-100
2,99
0,02
3
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
16
700
16
0,039
0,044
T1, T2, T3, T4, T5, T6 MOSFET
Figure 3
3,01
3,02
0
16
700
16
0,011
0,026
3,03
time(us)
3,04
V
V
V
A
µs
µs
T1, T2, T3, T4, T5, T6 MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
100
VDS 3%
ID 10%
0
%
VDS
ID
ID
200
ID 90%
75
150
ID 60%
50
VDS
100
ID 90%
ID 40%
tr
25
50
ID 10%
0
-25
-0,02
tf
ID 10%
0
-50
-0,01
VD (100%) =
ID (100%) =
tf =
copyright Vincotech
0
700
16
0,014
0,01
0,02
time (us)
0,03
3
VD (100%) =
ID (100%) =
tr =
V
A
µs
28
3,005
700
16
0,004
3,01
3,015
time(us)
3,02
V
A
µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Booster Configuration
T1, T2, T3, T4, T5, T6 MOSFET
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
%
150
%
Eoff
100
125
75
100
Pon
Eon
ID 1%
50
75
25
50
VGS 90%
Poff
0
25
tEoff
VGS 10%
-25
-50
-0,04
Poff (100%) =
Eoff (100%) =
tEoff =
VDS 3%
0
-0,02
11,15
0,06
0,044
0
time (us)
tEon
-25
2,99
0,02
3
3,01
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
11,15
0,10
0,026
3,02
3,03
time(us)
3,04
kW
mJ
µs
D1, D2, D3, D4, D5, D6 FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
fitted
-50
-100
IRRM 90%
IRRM 100%
-150
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
29
3,01
3,02
700
16
-19
0,010
3,03
time(us)
3,04
V
A
A
µs
Revision: 4
10-PZ126PA080ME-M909F18Y
Switching Definitions Booster Configuration
D1, D2, D3, D4, D5, D6 FWD
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
%
150
%
Qrr
125
100
Erec
100
tQrr
50
tErec
75
Id
0
50
25
-50
Prec
0
-100
-25
-150
-50
3
Id (100%) =
Qrr (100%) =
tQrr =
3,02
3,04
16
0,10
0,050
3,06
time(us)
3,08
3
3,02
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,04
11,15
0,03
0,050
3,06
time(us)
3,08
kW
mJ
µs
Measurement circuit
Figure 10
Booster Configuration switching measurement circuit
Vcc V
VDC
D1
L
-8V
705uH
T2
700
Vce V
Vge V
T1
D2
Ic
A
0.00001
0.000003
Q
Q
Q
Q
Q
+16V
4Ohm
4Ohm
0V
Q
copyright Vincotech
30
Revision: 4
10-PZ126PA080ME-M909F18Y
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
w/o thermal paste 12mm housing Press-fit pin
Ordering Code
10-PZ126PA080ME-M909F18Y
in DataMatrix as
M909F18Y
in packaging barcode as
M909F18Y
Outline
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Pin table
X
33,4
25,4
25,05
25,05
22,25
22,25
22,25
14,25
8
0
0
0
0
7,15
7,75
7,75
8,35
11,15
13,75
13,75
13,15
19,65
25,65
33,4
31,55
31,55
Y
0
0
2,8
5,6
5,6
2,8
0
0
0
0
2,8
5,6
22,2
22,2
19,2
16,4
10,2
11,5
16,4
19,2
22,2
22,2
22,2
22,2
19,2
16,4
Pinout
copyright Vincotech
31
Revision: 4
10-PZ126PA080ME-M909F18Y
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
32
Revision: 4