10-PZ126PA080ME-M909F18Y flow 3xPHASE-SiC 1200 V / 80 mΩ Features flow 0 12mm housing ● SiC-Power MOSFET´s and Schottky Diodes ● 3 phase inverter topology with split output ● Improved switching behavior (reduced turn on energy and X-conduction) ● Ultra Low Inductance with integrated DC-capacitors ● Switching frequency >100kHz ● Temperature sensor Target Applications Schematic ● Solar Inverter ● Charger ● Power Supply Types ● 10-PZ126PA080ME-M909F18Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V T1, T2, T3, T4, T5, T6 Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C 20 A 60 A 39 59 W Power dissipation Ptot Gate-source peak voltage VGS -10/25 V Tjmax 150 °C VRRM 1200 V Maximum Junction Temperature Tj=Tjmax 16 D1, D2, D3, D4, D5, D6 Peak Repetitive Reverse Voltage Forward average current IFAV Tj=Tjmax Th=80°C Tc=80°C 13 16 A Non-Repetitive Peak Forward Surge Current IFSM tp=10ms Tj=25°C 64 A Repetitive Peak Forward Surge Current IFRM tp limited by Tjmax 39 A Power dissipation per Diode Ptot Tj=Tjmax 34 51 W 175 °C Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Revision: 4 10-PZ126PA080ME-M909F18Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1000 V C1, C2, C3 Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 9,9 mm Insulation Properties Insulation voltage copyright Vincotech t=2s DC voltage 2 Revision: 4 10-PZ126PA080ME-M909F18Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ 1,7 0,08 0,14 2,2 Unit Max T1, T2, T3, T4, T5, T6 Static drain to source ON resistance Gate threshold voltage RDS(on) V(GS)th 20 20 VDS = VGS 10 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 1200 f=1MHz; VAC=25mV Internal Gate Resistance RG Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH 0,001 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Ω V 250 100 nA µA Ω 4,6 49,2 0/20 800 20 10,8 nC 18 Tj=25°C 950 f=1MHz 0 1000 80 pF 6,5 Phase-Change Material 1,79 K/W D1, D2, D3, D4, D5, D6 Forward voltage Reverse leakage current Thermal resistance chip to heatsink per chip VF 7,5 Irm RthJH 1200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Phase-Change Material 1,45 1,75 1,8 250 2,81 V µA K/W Single ended configuration T1, T2, T3, T4, T5, T6 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Rgoff=4 Ω Rgon=4 Ω 16 700 16 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 11 11 5 4 37 39 13 14 0,112 0,103 0,058 0,058 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 18 19 10 10 0,094 0,098 0,026 0,031 4563 4485 ns mWs D1, D2, D3, D4, D5, D6 Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current copyright Vincotech Rgon=4 Ω 16 700 di(rec)max /dt 3 16 A ns µC mWs A/µs Revision: 4 10-PZ126PA080ME-M909F18Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Half bridge configuration D1, D2, D3, D4, D5, D6 Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy IRRM trr Qrr Rgon=4 Ω 700 -5/16 16 di(rec)max /dt Erec Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 26 34 16 15 0,232 0,234 6761 9363 0,084 0,081 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 14 13 4 4 45 48 7 6 0,152 0,140 0,057 0,058 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 15 14 4 3 30 32 17 13 0,058 0,042 0,075 0,074 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 15 17 34 49 0,2 0,3 2741 3343 0,04 0,05 A ns µC A/µs mWs T1, T2, T3, T4, T5, T6 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Rgoff=4 Ω Rgon=4 Ω -5/16 700 16 ns mWs Splitted output configuration T1, T2, T3, T4, T5, T6 Turn-on delay time Rise time Turn-off delay time Fall time td(on) tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Rgoff=4 Ω Rgon=4 Ω -8/16 700 16 ns mWs D1, D2, D3, D4, D5, D6 Peak reverse recovery current IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovery energy Rgon=4 Ω -8/16 700 di(rec)max /dt Erec 16 A ns µC A/µs mWs C1, C2, C3 C value C 47 nF 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -5 5 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K Vincotech NTC Reference copyright Vincotech B 4 Revision: 4 10-PZ126PA080ME-M909F18Y Half Bridge Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 1 Typical switching energy losses as a function of drain current E = f(ID) Figure 2 Typical switching energy losses as a function of gate resistor E = f(RG) T1, T2, T3, T4, T5, T6 MOSFET 0,6 E (mWs) E (mWs) 0,3 Eon Low T Eon Low T 0,5 0,25 Eon High T Eon High T 0,2 0,4 0,15 0,3 0,1 0,2 Eoff Low T 0,05 Eoff Low T Eoff High T 0,1 Eoff High T 0 0,0 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = -5/16 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 32 R G ( Ω) 40 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = -5/16 V ID = A 16 Figure 3 Typical reverse recovery energy loss as a function of drain current Erec = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 4 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,10 E (mWs) 0,20 D1, D2, D3, D4, D5, D6 FWD Erec High T Erec Low T 0,08 Erec High T 0,15 0,06 Erec Low T 0,10 0,04 0,05 0,02 0,00 0,00 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = -5/16 V Rgon = 4 Ω copyright Vincotech 8 16 24 32 R G ( Ω) 40 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = -5/16 V ID = 16 A 5 Revision: 4 10-PZ126PA080ME-M909F18Y Half Bridge Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 5 Typical switching times as a function of drain current t = f(ID) T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 0,10 tdoff 0,10 tdoff tf tdon tdon tr 0,01 0,01 tf tr 0,00 0,00 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = °C 125 VDS = 700 V VGS = -5/16 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 32 R G ( Ω) 40 With an inductive load at Tj = 125 °C VDS = 700 V VGS = -5/16 V ID = A 16 D1, D2, D3, D4, D5, D6 FWD Figure 7 Typical reverse recovery time as a function of drain current trr = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 8 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,07 trr High T t rr(ms) trr Low T t rr(ms) 0,020 0,06 trr Low T trr High T 0,015 0,05 0,04 0,010 0,03 0,02 0,005 0,01 0,00 0,000 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -5/16 4 copyright Vincotech 10 15 20 25 I D (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω 6 8 25/125 700 16 -5/16 16 24 32 R gon ( Ω) 40 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y Half Bridge Configuration Figure 9 Typical reverse recovery charge as a function of drain current Qrr = f(ID) D1, D2, D3, D4, D5, D6 FWD D1, D2, D3, D4, D5, D6 FWD Figure 10 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,5 Qrr (µC) Qrr (µC) 0,3 Qrr High T Qrr High T 0,25 Qrr Low T 0,4 0,2 0,3 Qrr Low T 0,15 0,2 0,1 0,1 0,05 0,0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -5/16 4 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Figure 11 Typical reverse recovery current as a function of drain current IRRM = f(ID) D1, D2, D3, D4, D5, D6 FWD 8 25/125 700 16 -5/16 16 24 32 R gon ( Ω) 40 °C V A V D1, D2, D3, D4, D5, D6 FWD Figure 12 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) IrrM (A) 50 IrrM (A) 60 IRRM High T 50 40 40 30 IRRM Low T 30 20 20 IRRM High T 10 10 IRRM Low T 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -5/16 4 copyright Vincotech 10 15 20 25 I D (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω 7 8 25/125 700 16 -5/16 16 24 32 R gon ( Ω) 40 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y Half Bridge Configuration D1, D2, D3, D4, D5, D6 FWD 14000 D1, D2, D3, D4, D5, D6 FWD Figure 14 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 13 Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(ID) di0/dtT 12000 10000 dIrec/dt T dI0/dt T 8000 10000 6000 8000 6000 4000 4000 2000 2000 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 -5/16 4 copyright Vincotech 10 15 20 25 I D (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω 8 8 25/125 700 16 -5/16 16 24 32 R gon ( Ω) 40 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 1 Typical output characteristics ID = f(VDS) T1, T2, T3, T4, T5, T6 MOSFET Figure 2 Typical output characteristics ID = f(VDS) 80 IC (A) IC (A) 80 60 60 40 40 20 20 0 0 -20 -20 -40 -40 -60 -60 -4 At tp = Tj = VGS from -2 0 2 4 6 8 10 12 -4 14 V DS (V) At tp = Tj = VGS from µs 250 25 °C -4 V to 20 V in steps of 2 V T1, T2, T3, T4, T5, T6 MOSFET Figure 3 Typical transfer characteristics ID = f(VGS) -2 0 2 4 6 8 10 12 14 V DS (V) 250 µs 125 °C -4 V to 20 V in steps of 2 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) D1, D2, D3, D4, D5, D6 FWD 30 ID (A) IF (A) 20 25 16 20 12 15 8 10 Tj = Tjmax-25°C Tj = 25°C 4 5 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VDS = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 9 1 250 2 3 4 V F (V) 5 µs Revision: 4 10-PZ126PA080ME-M909F18Y Splitted Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 5 Typical switching energy losses as a function of drain current E = f(ID) Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,15 T1, T2, T3, T4, T5, T6 MOSFET E (mWs) E (mWs) 0,2 Eon Low T Eon Low T 0,12 0,15 Eon High T Eon High T 0,09 Eoff Low T Eoff High T 0,1 Eoff High T Eoff Low T 0,06 0,05 0,03 0 0 0 5 10 15 20 25 I D (A) 0 30 With an inductive load at Tj = °C 25/126 VDS = 700 V VGS = 16/-8 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/126 °C VDS = 700 V VGS = 16/-8 V ID = A 16 Figure 7 Typical reverse recovery energy loss as a function of drain current Erec = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 0,08 Erec High T D1, D2, D3, D4, D5, D6 FWD 0,06 Erec High T 0,05 0,06 Erec Low T 0,04 Erec Low T 0,04 0,03 0,02 0,02 0,01 0 0 0 5 10 15 20 25 30 0 4 I D (A) With an inductive load at Tj = °C 25/126 VDS = 700 V VGS = 16/-8 V Rgon = 4 Ω copyright Vincotech 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/126 °C VDS = 700 V VGS = 16/-8 V ID = 16 A 10 Revision: 4 10-PZ126PA080ME-M909F18Y Splitted Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 9 Typical switching times as a function of drain current t = f(ID) T1, T2, T3, T4, T5, T6 MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 0,1 0,1 tdoff tdoff tdon tdon tf 0,01 tf 0,01 tr tr 0,001 0,001 0 5 10 15 20 25 I D (A) 0 30 With an inductive load at Tj = °C 126 VDS = 700 V VGS = 16/-8 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 126 °C VDS = 700 V VGS = 16/-8 V ID = 16 A D1, D2, D3, D4, D5, D6 FWD Figure 11 Typical reverse recovery time as a function of drain current trr = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) t rr(ms) 0,06 t rr(ms) 0,06 trr High T 0,05 0,05 0,04 0,04 trr High T trr Low T trr Low T 0,03 0,03 0,02 0,02 0,01 0,01 0,00 0,00 0 At Tj = VDS = VGS = Rgon = 5 25/126 700 16/-8 4 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 11 4 25/126 700 16 16/-8 8 12 16 R gon ( Ω) 20 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y Splitted Configuration Figure 13 Typical reverse recovery charge as a function of drain current Qrr = f(ID) D1, D2, D3, D4, D5, D6 FWD D1, D2, D3, D4, D5, D6 FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,4 Qrr (µC) Qrr (µC) 0,3 Qrr High T 0,25 Qrr High T 0,3 0,2 Qrr Low T Qrr Low T 0,2 0,15 0,1 0,1 0,05 0,0 0 0 At At Tj = VDS = VGS = Rgon = 5 25/126 700 16/-8 4 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Figure 15 Typical reverse recovery current as a function of drain current IRRM = f(ID) D1, D2, D3, D4, D5, D6 FWD 5 25/126 700 16 16/-8 10 15 R gon ( Ω) 20 °C V A V D1, D2, D3, D4, D5, D6 FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 20 IrrM (A) IrrM (A) 25 20 15 IRRM High T IRRM High T 15 10 IRRM Low T IRRM Low T 10 5 5 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/126 700 16/-8 4 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 12 5 25/126 700 16 16/-8 10 15 R gon ( Ω) 20 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y Splitted Configuration D1, D2, D3, D4, D5, D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 dIo/dt T dI0/dt T direc / dt (A/ms) direc / dt (A/ms) 10000 dIrec/dt T 8000 dIrec/dt T 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/126 700 16/-8 4 copyright Vincotech 10 15 20 25 I D (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω 13 5 25/126 700 16 16/-8 10 15 R gon ( Ω) 20 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 1 10 0 10 -1 1 ZthJH (K/W) 10 ZthJH (K/W) 10 D1, D2, D3, D4, D5, D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 At D= RthJH = 10-4 tp / T 1,79 10-3 10-2 10-1 100 t p (s) 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 2 10101 K/W 10-5 10-4 At D= RthJH = tp / T 2,81 10-3 FWD thermal model values R (K/W) 0,12 0,33 1,01 0,19 0,14 R (K/W) 0,08 0,21 1,43 0,71 0,33 0,05 copyright Vincotech 14 10-1 100 t p (s) 2 101 10 K/W MOSFET thermal model values Tau (s) 1,7E+00 2,5E-01 7,6E-02 5,1E-03 6,5E-04 10-2 Tau (s) 2,3E+00 3,3E-01 6,8E-02 1,2E-02 2,4E-03 5,2E-04 Revision: 4 10-PZ126PA080ME-M909F18Y T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6 T1, T2, T3, T4, T5, T6 MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1, T2, T3, T4, T5, T6 MOSFET Figure 22 Drain current as a function of heatsink temperature ID = f(Th) 25 ID (A) Ptot (W) 100 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 150 D1, D2, D3, D4, D5, D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 T h ( o C) 200 ºC V D1, D2, D3, D4, D5, D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 20 IF (A) Ptot (W) 70 150 60 15 50 40 10 30 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 15 50 175 100 150 Th ( o C) 200 ºC Revision: 4 10-PZ126PA080ME-M909F18Y T1, T2, T3, T4, T5, T6 T1, T2, T3, T4, T5, T6 MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) ID (A) 100uS VGS = f(Qg) UGS (V) 102 T1, T2, T3, T4, T5, T6 MOSFET Figure 26 Gate voltage vs Gate charge 10uS 1mS 10mS 100mS DC 20 18 16 4 14 101 12 10 8 100 6 4 2 0 10-1 10 0 At D= Th = VGS = Tj = 101 10 2 103 0 V DS (V) single pulse 80 ºC V 16 Tjmax ºC copyright Vincotech 16 10 20 At IDS = VDS= IGS= 20 800 10 A V mA Tj = 25 ºC 30 40 Qg (nC) 50 Revision: 4 10-PZ126PA080ME-M909F18Y Booster Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 1 Typical switching energy losses as a function of drain current E = f(ID) T1, T2, T3, T4, T5, T6 MOSFET Figure 2 Typical switching energy losses as a function of gate resistor E = f(RG) 0,25 E (mWs) E (mWs) 0,5 Eon Low T 0,2 Eon Low T 0,4 Eon High T Eon High T 0,15 0,3 Eoff High T Eoff High T Eoff Low T 0,1 0,2 Eoff Low T 0,05 0,1 0 0 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 16 V Rgon = 4 Ω Rgoff = 4 Ω 10 20 30 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V ID = A 16 Figure 3 Typical reverse recovery energy loss as a function of drain current Erec = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 4 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) D1, D2, D3, D4, D5, D6 FWD 0,04 E (mWs) E (mWs) 0,05 0,04 Erec High T 0,03 0,03 Erec High T Erec Low T 0,02 Erec Low T 0,02 0,01 0,01 0 0 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 16 V Rgon = 4 Ω Rgoff = 4 Ω copyright Vincotech 10 20 30 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 16 V ID = 16 A 17 Revision: 4 10-PZ126PA080ME-M909F18Y Booster Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 5 Typical switching times as a function of drain current t = f(ID) T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Typical switching times as a function of gate resistor t = f(RG) 1 t ( ms) t ( ms) 1 tdoff 0,1 0,1 tdoff tdon tf tdon tr 0,01 0,01 tf tr 0,001 0,001 0 5 10 15 20 25 I D (A) 0 30 10 20 30 40 R G ( Ω) With an inductive load at Tj = °C 125 VDS = 700 V VGS = 16 V Rgon = 4 Ω Rgoff = 4 Ω With an inductive load at Tj = 125 °C VDS = 700 V VGS = 16 V IC = A 16 D1, D2, D3, D4, D5, D6 FWD Figure 7 Typical reverse recovery time as a function of drain current trr = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 8 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,020 t rr( ms) t rr( ms) 0,015 0,012 0,015 trr High T trr High T trr Low T trr Low T 0,009 0,010 0,006 0,005 0,003 0 0 5 10 15 20 25 0,000 30 0 I D (A) At Tj = VDS = VGS = Rgon = 25/125 700 16 4 copyright Vincotech At Tj = VR = IF = VGS = °C V V Ω 18 10 25/125 700 16 16 20 30 R Gon ( Ω) 40 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y Booster Configuration Figure 9 Typical reverse recovery charge as a function of drain current Qrr = f(ID) D1, D2, D3, D4, D5, D6 FWD D1, D2, D3, D4, D5, D6 FWD Figure 10 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,12 Qrr ( µC) Qrr ( µC) 0,15 Qrr High T 0,12 0,1 Qrr Low T Qrr High T 0,09 0,08 Qrr Low T 0,06 0,06 0,03 0,04 0 0,02 0 At At Tj = VDS = VGS = Rgon = 5 25/125 700 16 4 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Figure 11 Typical reverse recovery current as a function of drain current IRRM = f(ID) D1, D2, D3, D4, D5, D6 FWD 10 25/125 700 16 16 20 30 R Gon ( Ω) 40 °C V A V D1, D2, D3, D4, D5, D6 FWD Figure 12 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 25 IrrM (A) IrrM (A) 30 IRRM High T 25 20 IRRM Low T 20 15 15 10 10 IRRM High T 5 5 IRRM Low T 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 16 4 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 19 10 25/125 700 16 16 20 30 R Gon ( Ω) 40 °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y Booster Configuration D1, D2, D3, D4, D5, D6 FWD Figure 13 Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(ID) D1, D2, D3, D4, D5, D6 FWD Figure 14 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) 10000 dIrec/dt 8000 dI0/dt dIrec/dt 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VDS = VGS = Rgon = 5 25/125 700 16 4 copyright Vincotech 10 15 20 25 I D (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 20 5 25/125 700 16 16 10 15 20 25 30 R ( Ω) 35 Gon °C V A V Revision: 4 10-PZ126PA080ME-M909F18Y Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 21 Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Half Bridge Configuration General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω T1, T2, T3, T4, T5, T6 MOSFET Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 tdoff % T1, T2, T3, T4, T5, T6 MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 300 % VDS ID 250 100 VGS 90% VDS 90% ID 200 75 VGS VGS 150 50 tEoff 25 VDS 100 ID 1% tdon 50 ID 10% VGS 10% 0 -25 VDS 3% tEon 0 -50 -50 -100 0 0,02 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdoff = tEoff = 0,04 0,06 0,08 time (us) 0,1 3 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdon = tEon = V V V A µs µs 0 16 700 16 0,048 0,058 T1, T2, T3, T4, T5, T6 MOSFET Figure 3 3,01 3,02 0 16 700 16 0,013 0,024 time(us) 3,04 V V V A µs µs T1, T2, T3, T4, T5, T6 MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 3,03 Turn-on Switching Waveforms & definition of tr 125 350 fitted % % VDS ID ID 300 100 ID 90% 250 75 ID 60% 200 50 ID 40% 150 VDS 25 100 ID10% 50 -25 -50 0,04 VD (100%) = ID (100%) = tf = copyright Vincotech ID 90% tr tf 0 ID 10% 0 -50 0,05 0,06 700 16 0,006 0,07 time (us) 0,08 V A µs 22 3 3,01 VD (100%) = ID (100%) = tr = 700 16 0,004 3,02 time(us) 3,03 V A µs Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Half Bridge Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 175 % % Eoff Pon 150 100 125 75 Eon ID 1% 100 50 75 25 50 VGS 90% Poff 0 tEoff 25 VDS 3% VGS 10% -25 0 tEon -25 -50 0 0,02 Poff (100%) = Eoff (100%) = tEoff = 0,04 11,17 0,06 0,058 0,06 0,08 time (us) 0,1 3 3,01 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3,02 11,17 0,14 0,024 3,03 time(us) 3,04 kW mJ µs D1, D2, D3, D4, D5, D6 FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 fitted 0 Vd IRRM 10% -50 -100 -150 IRRM 90% -200 IRRM 100% -250 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 23 3,01 3,02 700 16 -34 0,015 3,03 3,04 time(us) 3,05 V A A µs Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Half Bridge Configuration D1, D2, D3, D4, D5, D6 FWD Figure 8 150 % 100 D1, D2, D3, D4, D5, D6 FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 250 % Qrr Id Erec 200 tQrr 50 150 0 100 -50 50 -100 0 -150 -50 -200 -100 tErec -250 3,01 3,02 Id (100%) = Qrr (100%) = tQrr = 3,03 16 0,23 0,031 3,04 3,05 time(us) -150 3,01 3,06 Prec 3,02 Prec (100%) = Erec (100%) = tErec = A µC µs 3,03 11,17 0,08 0,031 3,04 time(us) 3,05 kW mJ µs Measurement circuit Figure 10 Half Bridge Configuration switching measurement circuit Vcc V L -8V VDC D1 705uH T2 700 Vce V Vge V T1 D2 Ic A 0.00001 0.000003 Q Q Q Q Q +16V 4Ohm 4Ohm -5V Q copyright Vincotech 24 Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Splitted Configuration General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω T1, T2, T3, T4, T5, T6 MOSFET Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 % 150 % tdoff VDS 100 VGS 150 VDS 90% VGS 90% ID 50 VDS 100 tEoff ID 1% tdon 0 50 -50 -100 VGS 10% ID 0 VGS VDS 3% ID 10% tEon -50 -150 -0,08 -0,06 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdoff = tEoff = -0,04 -0,02 0 0,02 -100 2,98 0,04 time (us) VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdon = tEon = V V V A µs µs 0 16 700 16 0,032 0,084 T1, T2, T3, T4, T5, T6 MOSFET Figure 3 2,99 3 0 16 700 16 0,014 0,017 time(us) 3,02 V V V A µs µs T1, T2, T3, T4, T5, T6 MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 3,01 Turn-on Switching Waveforms & definition of tr 200 125 % fitted VDS ID ID % 100 ID 90% 150 75 VDS ID 60% 100 50 ID 90% ID 40% tr 25 50 ID10% tf 0 ID 10% 0 -25 -50 -0,04 -0,03 -0,02 -0,01 0 -50 2,995 0,01 time (us) VD (100%) = ID (100%) = tf = copyright Vincotech 700 16 0,013 VD (100%) = ID (100%) = tr = V A µs 25 3 3,005 700 16 0,003 3,01 3,015 time(us) 3,02 V A µs Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Splitted Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 Eoff % % ID 1% Eon 100 100 Pon 75 75 50 50 Poff 25 VGS 90% 25 0 tEoff VGS 10% -25 -50 -0,06 VDS 3% 0 tEon -0,04 Poff (100%) = Eoff (100%) = tEoff = -0,02 11,19 0,074 0,084 0 0,02 time (us) -25 2,99 0,04 2,995 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3 11,19 0,041 0,017 3,005 3,01 time(us) 3,015 kW mJ µs D1, D2, D3, D4, D5, D6 FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 -150 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 26 3,02 3,04 700 16 -17 0,049 3,06 3,08 time(us) 3,1 V A A µs Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Splitted Configuration D1, D2, D3, D4, D5, D6 FWD Figure 8 D1, D2, D3, D4, D5, D6 FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 200 % % Qrr Id Erec 150 100 tQrr 50 100 tErec 0 50 -50 0 Prec -100 -50 3 3,03 Id (100%) = Qrr (100%) = tQrr = 3,06 3,09 3,12 time(us) 3,15 3 Prec (100%) = Erec (100%) = tErec = A µC µs 16 0,27 0,100 3,03 3,06 11,19 0,05 0,100 3,09 3,12 time(us) 3,15 kW mJ µs Measurement circuit Figure 10 Splitted Configuration switching measurement circuit Vd Vcc V Vd used for T2 dody diode Erec calculation -8V D1 VDC V L T2 700 705uH 1uH Vce V Vge V T1 D2 Ic A 0.00001 0.000003 Q Q Q Q Q +16V 4Ohm 4Ohm -8V Q copyright Vincotech 27 Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Booster Configuration General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω T1, T2, T3, T4, T5, T6 MOSFET Figure 1 T1, T2, T3, T4, T5, T6 MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % 100 % VGS 90% ID VGS 200 ID VDS 90% 75 150 VGS VDS 50 100 ID 1% tEoff tdon 25 50 VGS 10% VDS 0 -25 tEon -50 -50 -0,06 -0,04 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdoff = tEoff = -0,02 0 time (us) -100 2,99 0,02 3 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdon = tEon = V V V A µs µs 0 16 700 16 0,039 0,044 T1, T2, T3, T4, T5, T6 MOSFET Figure 3 3,01 3,02 0 16 700 16 0,011 0,026 3,03 time(us) 3,04 V V V A µs µs T1, T2, T3, T4, T5, T6 MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 250 fitted % 100 VDS 3% ID 10% 0 % VDS ID ID 200 ID 90% 75 150 ID 60% 50 VDS 100 ID 90% ID 40% tr 25 50 ID 10% 0 -25 -0,02 tf ID 10% 0 -50 -0,01 VD (100%) = ID (100%) = tf = copyright Vincotech 0 700 16 0,014 0,01 0,02 time (us) 0,03 3 VD (100%) = ID (100%) = tr = V A µs 28 3,005 700 16 0,004 3,01 3,015 time(us) 3,02 V A µs Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Booster Configuration T1, T2, T3, T4, T5, T6 MOSFET Figure 5 T1, T2, T3, T4, T5, T6 MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 % 150 % Eoff 100 125 75 100 Pon Eon ID 1% 50 75 25 50 VGS 90% Poff 0 25 tEoff VGS 10% -25 -50 -0,04 Poff (100%) = Eoff (100%) = tEoff = VDS 3% 0 -0,02 11,15 0,06 0,044 0 time (us) tEon -25 2,99 0,02 3 3,01 Pon (100%) = Eon (100%) = tEon = kW mJ µs 11,15 0,10 0,026 3,02 3,03 time(us) 3,04 kW mJ µs D1, D2, D3, D4, D5, D6 FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd 0 IRRM 10% fitted -50 -100 IRRM 90% IRRM 100% -150 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 29 3,01 3,02 700 16 -19 0,010 3,03 time(us) 3,04 V A A µs Revision: 4 10-PZ126PA080ME-M909F18Y Switching Definitions Booster Configuration D1, D2, D3, D4, D5, D6 FWD Figure 8 D1, D2, D3, D4, D5, D6 FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 % 150 % Qrr 125 100 Erec 100 tQrr 50 tErec 75 Id 0 50 25 -50 Prec 0 -100 -25 -150 -50 3 Id (100%) = Qrr (100%) = tQrr = 3,02 3,04 16 0,10 0,050 3,06 time(us) 3,08 3 3,02 Prec (100%) = Erec (100%) = tErec = A µC µs 3,04 11,15 0,03 0,050 3,06 time(us) 3,08 kW mJ µs Measurement circuit Figure 10 Booster Configuration switching measurement circuit Vcc V VDC D1 L -8V 705uH T2 700 Vce V Vge V T1 D2 Ic A 0.00001 0.000003 Q Q Q Q Q +16V 4Ohm 4Ohm 0V Q copyright Vincotech 30 Revision: 4 10-PZ126PA080ME-M909F18Y Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version w/o thermal paste 12mm housing Press-fit pin Ordering Code 10-PZ126PA080ME-M909F18Y in DataMatrix as M909F18Y in packaging barcode as M909F18Y Outline Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Pin table X 33,4 25,4 25,05 25,05 22,25 22,25 22,25 14,25 8 0 0 0 0 7,15 7,75 7,75 8,35 11,15 13,75 13,75 13,15 19,65 25,65 33,4 31,55 31,55 Y 0 0 2,8 5,6 5,6 2,8 0 0 0 0 2,8 5,6 22,2 22,2 19,2 16,4 10,2 11,5 16,4 19,2 22,2 22,2 22,2 22,2 19,2 16,4 Pinout copyright Vincotech 31 Revision: 4 10-PZ126PA080ME-M909F18Y DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 32 Revision: 4