10-FY06BIA080MF-M527E58 preliminary datasheet flowSOL 1 BI 650V/80mΩ Features flow1 12mm housing ● Low inductive 12mm flow1 package ● Booster: ○ Dual boost topology ○ MOSFET 650V/70mOhm + SiC diode ○ Bypass rectifier ● Inverter: ○ H-bridge topology ○ MOSFET 650V/80mOhm CFD ● Integrated DC-capacitor ● Temperature sensor Target Applications Schematic ● Solar Inverter: Primary of high efficient HF transformer-based solar inver Types ● 10-FY06BIA080MF-M527E58 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 41 50 A 370 A 370 A2s 50 76 W Tjmax 150 °C VDS 650 V 22 27 A 150 A 78 117 W Bypass Diode ( D1 , D2 ) Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Input Boost MOSFET ( T1, T2 ) Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Ptot Gate-source peak voltage VGS ±30 V Tjmax 150 °C Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C Power dissipation 1 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 20 24 A 57 A 46 70 W 175 °C 650 V Input Boost Diode ( D3 , D4 ) Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax H-Bridge MOSFET ( T3 , T4 , T5 , T6 ) Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 21 tp limited by Tjmax Tc=25°C 137 A Tj=Tjmax Th=80°C Tc=80°C 84 128 W 26 A Power dissipation Ptot Gate-source peak voltage Vgs ±30 V Tjmax 150 °C 650 V Maximum Junction Temperature H-Bridge Body Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax 50 50 50 140 84 128 A A W 150 °C 630 V DC link Capacitor ( C1 ) Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,18 1,17 0,91 0,80 0,01 0,01 1,21 Bypass Diode ( D1 , D2 ) Forward voltage VF 35 Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 1600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V Ω 0,05 Thermal grease thickness≤50um λ = 1 W/mK V mA 1,40 K/W 0,92 Input Boost MOSFET ( T1 , T2 ) Static drain to source ON resistance Gate threshold voltage RDS(on) 20 10 V(GS)th 0,00176 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 650 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Rgoff=2 Ω Rgon=2 Ω Rgon=2 Ω 10 400 10 480 20 26,3 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,5 78 127 3 mΩ 3,5 100 1000 22 21 4 4 105 110 6 5 0,07 0,08 0,00 0,01 170 V nA nA ns mWs nC 20 85 3900 f=1MHz 0 Tj=25°C 100 pF 215 tbd. Thermal grease thickness≤50um λ = 1 W/mK 0,90 K/W 0,60 Input Boost Diode ( D3 , D4 ) Forward voltage VF Reverse leakage current Irm Peak recovery current trr Reverse recovery charge Qrr Reverse recovered energy Erec 400 Rgon=2 Ω 10 400 di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 10 20 IRRM Reverse recovery time Peak rate of fall of recovery current 8 Thermal grease thickness≤50um λ = 1 W/mK 20 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,24 1,34 1,8 50 25 22 8 9 0,14 0,20 0,02 0,05 8216 7261 V μA A ns μC mWs A/μs 2,06 K/W 1,36 3 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 3,5 96 164 4 4,5 H-Bridge MOSFET ( T3 , T4 , T5 , T6 ) Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th 43 10 VDS=VGS Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 650 Turn On Delay Time Rise Time Turn off delay time Fall time 0,00176 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Rgoff=2 Ω Rgon=128 Ω 10 400 20 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 100 1000 355 307 149 165 94 98 4 5 2,24 3,73 0,01 0,01 0/10 480 26,3 Tj=25°C Qgd 120 Ciss 5030 Output capacitance Coss Crss RthJH Thermal resistance chip to case per chip RthJC nA ns mWs 25 Input capacitance Thermal resistance chip to heatsink per chip V nA 170 Gate to drain charge Reverse transfer capacitance mΩ f=1MHz 25 0 nC 215 Tj=25°C pF tbd. Thermal grease thickness≤50um λ = 1 W/mK 0,83 K/W 0,55 H-Bridge Body Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 43 Rgon=128 Ω 400 10 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 20 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,18 1,09 13 24 122 216 0,96 2,85 1469 2749 0,03 0,07 Thermal grease thickness≤50um λ = 1 W/mK V A ns μC A/μs mWs 0,83 K/W 0,55 DC link Capacitor ( C1 ) C value C 47 nF 22000 Ω Thermistor Rated resistance R Deviation of R25 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Tj=100°C Power dissipation constant +5 -5 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference Copyright by Vincotech Tj=25°C 4 B Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet H-Bridge MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 70 IC (A) IC (A) 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 2 At tp = Tj = VGE from 4 6 8 V CE (V) 0 10 At tp = Tj = VGE from 250 μs 25 °C 0 V to 20 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 2 4 6 8 V CE (V) 250 μs 125 °C 0 V to 20 V in steps of 2 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 10 IF (A) IC (A) 80 25 60 20 40 15 10 20 Tj = Tjmax-25°C 5 Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 V GE (V) 0 8 At tp = μs V Copyright by Vincotech 5 0,5 250 1 1,5 V F (V) 2 μs Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet H-Bridge MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,30 E (mWs) E (mWs) 8 Eon High T Eoff High T 0,25 Eoff Low T 6 0,20 Eon Low T 4 0,15 0,10 2 0,05 Eoff High T Eoff Low T 0 0,00 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 128 Ω Rgoff = 2 Ω 10 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = 20 A 20 Rgon = 30 128 R goff (Ω) 40 Ω FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) 0,12 Erec High T 0,10 0,08 0,06 Erec Low T 0,04 0,02 0,00 0 10 20 30 I C (A) 40 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V Rgon = 128 Ω Copyright by Vincotech 6 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet H-Bridge MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdon tr tdoff 0,10 tdoff t (ms) t (ms) 1,00 0,10 tf 0,01 0,01 tf 0,00 0,00 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V Rgon = 128 Ω Rgoff = 2 Ω 10 20 30 R G (Ω) 40 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = 20 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) t rr(ms) 0,30 0,25 trr High T 0,20 0,15 trr Low T 0,10 0,05 0,00 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 128 20 30 I C (A) 40 °C V V Ω Copyright by Vincotech 7 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet H-Bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr (mC) 4 Qrr High T 3 2 Qrr Low T 1 0 0 10 At At Tj = VCE = VGE = Rgon = 25/125 400 10 128 20 30 40 I C (A) °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) IrrM (A) 30 IRRM High T 25 20 IRRM Low T 15 10 5 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 128 20 30 I C (A) 40 °C V V Ω Copyright by Vincotech 8 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet H-Bridge FWD direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 3000 dIrec/dt T dIo/dt T 2500 2000 1500 1000 500 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 128 20 30 I C (A) 40 °C V V Ω MOSFET Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 101 0 10 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10 -5 -4 10 At D= RthJH = 10 -3 -2 10 -1 10 0 10 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 1 10 10 tp / T 0,83 K/W 10-5 10-4 At D= RthJH = tp / T 0,83 10-3 FWD thermal model values R (C/W) 0,03 0,10 0,33 0,26 0,08 0,04 R (C/W) 0,03 0,10 0,33 0,26 0,08 0,04 Copyright by Vincotech 9 10-1 100 t p (s) 10110 K/W IGBT thermal model values Tau (s) 4,8E+00 1,1E+00 2,3E-01 8,5E-02 1,3E-02 1,0E-03 10-2 Tau (s) 4,8E+00 1,1E+00 2,3E-01 8,5E-02 1,3E-02 1,0E-03 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet H-Bridge MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 40 IC (A) Ptot (W) 200 160 30 120 20 80 10 40 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 200 200 Ptot (W) IF (A) 60 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 150 100 150 T h ( o C) 200 °C Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet H-Bridge MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 VGE (V) IC (A) 10 100uS 102 120V 480V 8 1mS 100mS 10 1 10mS 6 DC 4 100 2 -1 10 0 0 100 At D= Th = VGE = Tj = 10 1 10 2 100 150 200 Q g (nC) At IC = single pulse 80 ºC 15 V Tjmax ºC Copyright by Vincotech 50 V CE (V) 1 11 43 A Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST MOSFET Figure 2 Typical output characteristics ID = f(VDS) 80 IC (A) IC(A) 80 60 60 40 40 20 20 0 0 0 2 At tp = Tj = VGS from 4 6 8 V CE (V) 0 10 At tp = Tj = VGS from 250 μs 25 °C 0 V to 20 V in steps of 2 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VGS) 2 4 6 8 V CE (V) 10 250 μs 125 °C 0 V to 20 V in steps of 2 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 80 IF (A) ID (A) 25 20 60 15 40 10 Tj = 25°C Tj = Tjmax-25°C 20 5 Tj = 25°C Tj = Tjmax-25°C 0 0 0 At tp = VDS = 1 250 10 2 3 4 5 V GS (V) 6 0 At tp = μs V Copyright by Vincotech 12 2 250 4 6 V F (V) 8 μs Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) BOOST MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,15 E (mWs) 0,25 E (mWs) Eon High T 0,12 Eon High T 0,20 Eon Low T 0,09 0,15 0,06 0,10 Eoff Low T Eoff High T Eon Low T 0,05 0,03 Eoff High T Eoff Low T 0,00 0 0 10 20 30 I C (A) 0 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω 5 10 15 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 20 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,04 E (mWs) E (mWs) 0,05 Erec High T 0,04 0,03 Erec Low T Erec Low T Erec High T 0,03 0,02 0,02 0,01 0,01 0 0 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω Copyright by Vincotech 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 20 A 13 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdoff 0,1 0,1 tf tdon tdon 0,01 0,01 tf tr tr 0,001 0,001 0 10 20 30 I D (A) 40 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = 20 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,01 t rr( μs) t rr( μs) 0,015 trr High T trr High T 0,012 0,008 trr Low T trr Low T 0,006 0,009 0,004 0,006 0,002 0,003 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 I C (A) 0 40 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 14 5 25/125 400 20 10 10 15 R Gon ( Ω ) 20 °C V A V Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,20 0,2 Qrr ( μC) Qrr ( μC) Qrr High T Qrr Low T 0,15 0,15 Qrr Low T Qrr High T 0,10 0,1 0,05 0,05 0 0,00 0 At At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 I C (A) 0 40 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 5 25/125 400 20 10 10 15 R Gon ( Ω ) 20 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 40 IrrM (A) 30 IrrM (A) IRRM Low T 25 30 IRRM High T 20 20 15 10 10 IRRM Low T IRRM High T 5 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 I C (A) 0 40 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 15 5 25/125 400 20 10 10 15 R Gon ( Ω ) 20 °C V A V Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 10000 14000 dI0/dt dI0/dt direc / dt (A/ μs) direc / dt (A/ μs) BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt dIrec/dt 12000 8000 10000 6000 8000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 I C (A) 30 40 0 At Tj = VR = IF = VGS = °C V V Ω BOOST MOSFET Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) R Gon ( Ω) 15 20 °C V A V BOOST FWD ZthJH (K/W) ZthJH (K/W) 101 0 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 25/125 400 20 10 10 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 5 -2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10-2 10110 10-5 At D= RthJH = tp / T 0,90 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-3 R (C/W) 3,43E-02 1,09E-01 4,48E-01 1,86E-01 8,11E-02 4,45E-02 R (C/W) 3,27E-02 1,23E-01 5,18E-01 7,80E-01 3,95E-01 2,09E-01 16 100 t p (s) 1 10 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 2,06 IGBT thermal model values Tau (s) 5,75E+00 1,04E+00 1,90E-01 6,29E-02 1,23E-02 1,06E-03 10-2 Tau (s) 9,23E+00 1,09E+00 1,63E-01 5,62E-02 1,25E-02 2,51E-03 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 200 Ptot (W) IC (A) 35 30 150 25 20 100 15 10 50 5 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = VGS = ºC BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 Th ( o C) 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 17 50 175 100 150 T h ( o C) 200 ºC Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) VGS = f(Qg) 10 3 ID (A) UGS (V) 10 10 BOOST MOSFET Figure 26 Gate voltage vs Gate charge 2 120V 8 10uS 480V 1mS 6 100uS 10mS 10 1 4 DC 100mS 100 2 0 10-1 100 At D= Th = VGS = Tj = 101 102 103 0 V DS (V) At ID = single pulse 80 ºC V 10 Tjmax ºC Copyright by Vincotech 18 50 20 100 150 Qg (nC) 200 A Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 60 1 50 ZthJC (K/W) IF (A) 10 40 100 30 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = Tjmax-25°C Tj = 25°C 0 0 0,3 At tp = 0,6 0,9 1,2 V F (V) 10-2 1,5 μs 250 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = tp / T 1,397 10-2 10-1 100 t p (s) 10110 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 120 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 10-3 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 19 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 20 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Switching Definitions H-Bridge MOSFET General conditions = 125 °C Tj = 128 Ω Rgon Rgoff = 2Ω H-Bridge MOSFET Figure 1 H-Bridge MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 125 tdoff % % IC 100 VGE 90% IC 200 VCE 90% 75 VGE 150 50 tEoff VCE 100 25 IC 1% VCE VGE tdon 0 50 -25 VCE 3% IC 10% 0 tEon -50 VGE 10% -75 -0,2 -50 -0,15 -0,1 -0,05 3,8 0 4 4,2 4,4 0 10 400 20 0,31 0,98 V V V A μs μs 4,6 4,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 10 400 20 0,10 0,13 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs H-Bridge MOSFET Figure 3 5 H-Bridge MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 250 125 fitted % % IC 100 IC 200 IC 90% 75 150 IC 60% 50 VCE IC 40% 100 IC 90% 25 tr VCE IC 10% 50 tf 0 IC 10% 0 -25 -50 -0,075 VC (100%) = IC (100%) = tf = -50 -0,0725 -0,07 400 20 0,01 Copyright by Vincotech -0,0675 -0,065 -0,0625 -0,06 time (us) 4,1 VC (100%) = IC (100%) = tr = V A μs 21 4,2 4,3 400 20 0,16 4,4 4,5 4,6 time(us) 4,7 V A μs Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Switching Definitions H-Bridge MOSFET H-Bridge MOSFET Figure 5 H-Bridge MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 250 200 Eoff % % Pon 200 150 150 100 Eon 100 IC 1% 50 50 VGE 90% Poff VGE 10% 0 VCE 3% 0 tEoff tEon -50 -50 -0,2 -0,15 Poff (100%) = Eoff (100%) = tEoff = -0,1 8,05 0,01 0,13 -0,05 time (us) 3,8 0 4 Pon (100%) = Eon (100%) = tEon = kW mJ μs H-Bridge MOSFET Figure 7 Gate voltage vs Gate charge (measured) 4,2 4,4 8,05 3,68 0,98 kW mJ μs 4,6 4,8 time(us) 5 H-Bridge FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 15 Id % 80 10 trr 40 5 Vd fitted 0 IRRM 10% 0 -40 -5 -80 IRRM 90% -120 4,15 -10 -10 10 30 50 70 90 110 130 150 IRRM 100% 4,3 4,45 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 10 400 20 145,99 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 22 400 20 -24 0,21 4,6 time(us) 4,75 V A A μs Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Switching Definitions H-Bridge MOSFET H-Bridge FWD Figure 9 H-Bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 % % Id 125 100 Erec 100 tQrr 50 tErec 75 Qrr 0 50 -50 25 Prec -100 0 -150 -25 4,2 Id (100%) = Qrr (100%) = tQrr = 4,4 4,6 20 2,74 0,43 Copyright by Vincotech 4,8 time(us) 5 4,2 Prec (100%) = Erec (100%) = tErec = A μC μs 23 4,4 4,6 8,05 0,05 0,43 4,8 time(us) 5 kW mJ μs Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FY06BIA080MF-M527E58 in DataMatrix as M527E58 in packaging barcode as M527E58 Outline Pinout Pins 3,4,9,12,27,34 are not connected. Copyright by Vincotech 24 Revision: 1 10-FY06BIA080MF-M527E58 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 25 Revision: 1