10-PZ06NRA069FP03-P967F78Y 10

10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
flow NPC 0
600V/60A & 99mΩ PS*
Features
flow 0 12mm housing
● *PS: 65A parallel switch (60A IGBT and 99mΩ MOSFET)
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
59
60
A
180
A
118
179
W
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Ptot
Gate-emitter peak voltage
VGE
±20
V
Tjmax
175
°C
VRRM
600
V
28
30
A
120
A
40
60
W
150
°C
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation per IGBT
Buck FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Non Repetitive peak Surge current
IFSM
tp limited by Tjmax
60Hz Single Half-Sine Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Tc=80°C
16
19
A
tp limited by Tjmax
Tc=25°C
112
A
Tj=Tjmax
Th=80°C
Tc=80°C
60
91
W
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
59
60
A
225
A
93
141
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
Maximum Junction Temperature
Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
tSC
VCC
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Power dissipation per Diode
Maximum Junction Temperature
IF
Tj=Tjmax
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
17
17
44
61
A
W
Tjmax
175
°C
VRRM
1200
V
17
23
A
36
A
33
50
W
150
°C
25
V
Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak Surge current
Power dissipation per Diode
Maximum Junction Temperature
IF
IFSM
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tjmax
DC link Capacitor
Max.DC voltage
copyright Vincotech
VMAX
Tc=25°C
2
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
3
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3,5
4,5
6
1,93
1,74
2,5
Buck IGBT *
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
none
Ω
Input capacitance **
Cies
2,9+4,7
nF
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge **
QGate
Thermal resistance chip to heatsink per chip
RthJH
VCE=VGE
f=1MHz
0,00025
60
30
0
250
±400
V
V
µA
nA
270
Tj=25°C
pF
85
400
15
60
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
189+70
nC
0,80
K/W
* see dinamic characteristic at Buck MosFET
**additional value stands for built-in capacitor
Buck FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
30
Ir
600
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
30
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,15
1,61
2,6
100
76
87
12
20
0,51
1,10
20215
16847
0,12
0,19
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,77
K/W
Buck MOSFET
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
10
18
VDS=VGS
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0,0012
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Rgon=4 Ω
Rgoff=4 Ω
350
±15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,4
106
214
3
mΩ
3,6
100
5
37
38
2
3
405
422
4
5
0,05
0,22
0,04
0,22
V
nA
µA
ns
mWs
119
10
480
18,1
Tj=25°C
14
Gate to drain charge
Qgd
61
Input capacitance
Ciss
2660
Output capacitance
Coss
nC
pF
Gate resistor
Thermal resistance chip to heatsink per chip
f=1MHz
0
100
rG
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
Tj=25°C
154
1,6
Ω
1,16
K/W
** see schematic of the Gate-complex at characteristic figures
copyright Vincotech
4
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,11
1,12
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
75
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,038
600
Rgon=8 Ω
Rgoff=8 Ω
350
±15
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
87
88
11
12
177
204
85
93
0,37
0,54
1,69
2,25
ns
mWs
4620
f=1MHz
0
25
15
480
288
Tj=25°C
pF
137
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,02
K/W
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
10
Tj=25°C
Tj=125°C
1,25
Thermal grease
thickness≤50um
λ = 1 W/mK
1,88
1,22
1,95
2,17
V
K/W
Boost FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
trr
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovered charge
Peak rate of fall of recovery current
18
Rgon=8 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,23
2,04
3,5
100
69
91
25,4
87,9
3,4
5,7
9632
6270
1,04
1,97
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
2,11
K/W
4,7
nF
22000
Ω
DC link Capacitor
C value
C
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100= 1486Ω
Tc=100°C
Power dissipation constant
%
mW
Tj=25°C
3,5
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
B(25/100)
Tol. ±3%
Tj=25°C
copyright Vincotech
+5
210
B-value
Vincotech NTC Reference
-5
Tj=25°C
K
4000
K
A
5
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Buck
MOSFET & IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET & IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
180
IC (A)
IC (A)
180
150
150
120
120
90
90
60
60
10-PZ06NRA069FP03-P967F78Y
30
10-FZ06NRA069FP0-P967F78
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
0 V to 20 V in steps of 2 V
MOSFET & IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
µs
125
°C
0 V to 20 V in steps of 2 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
120
IF (A)
IC (A)
70
60
100
50
80
40
60
30
40
20
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
20
10
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
V GE (V)
8
0
At
tp =
µs
V
6
1
250
2
3
V F (V)
4
µs
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Buck
MOSFET & IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET & IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
0,5
E (mWs)
0,6
Eoff High T
0,5
Eon High T
0,4
Eon High T
0,4
0,3
0,3
Eoff High T
Eon Low T
0,2
0,2
Eon Low T
0,1
0,1
Eoff Low T
Eoff Low T
0,0
0
10
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
30
40
50
I C (A)
0,0
60
0
32
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
30
A
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
16
48
64
RG(Ω )
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,20
E (mWs)
0,25
80
Erec High T
0,20
0,15
Erec High T
Erec Low T
0,15
0,10
0,10
0,05
0,05
Erec Low T
0,00
0,00
0
10
20
30
40
50
60
0
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
16
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
7
32
48
64
RG(Ω )
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Buck
MOSFET & IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET & IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
0,10
t (ms)
t (ms)
1,00
tdoff
0,10
tdon
0,01
tr
tdon
0,01
tr
0,00
0,00
0
10
20
30
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
40
50
I C (A)
0
60
32
48
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
16
64
RG(Ω )
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,030
t rr(ms)
0,030
80
trr High T
trr High T
0,025
0,025
0,020
0,020
0,015
trr Low T
0,015
trr Low T
0,010
0,010
0,005
0,005
0,000
0,000
0
10
20
30
40
50
60
0
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
copyright Vincotech
°C
V
V
Ω
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
8
16
25/125
350
30
±15
32
°C
V
A
V
48
64
R gon ( Ω )
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
1,5
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1,2
Qrr (uC)
Qrr (uC)
Qrr High T
1,0
Qrr High T
1,2
0,8
0,9
Qrr Low T
0,6
0,6
0,4
Qrr Low T
0,3
0,2
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
°C
V
V
Ω
30
40
50
0
60
I C (A)
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
350
30
±15
32
°C
V
A
V
48
64
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
100
IrrM (A)
100
80
R gon ( Ω)
IRRM Low T
80
80
IRRM High T
60
60
40
40
20
20
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
IRRM High T
10
25/125
350
±15
4
copyright Vincotech
20
°C
V
V
Ω
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
9
16
25/125
350
30
±15
32
°C
V
A
V
48
64
R gon ( Ω)
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Buck
FWD
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
direc / dt (A/ms)
30000
dIrec/dt T
di0/dt T
25000
24000
dIrec/dt T
dI0/dt T
20000
20000
16000
15000
12000
10000
8000
5000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
°C
V
V
Ω
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
16
25/125
350
30
±15
32
°C
V
A
V
48
64
R gon ( Ω)
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
10
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
10-4
At
D=
RthJH =
tp / T
10-3
10-2
10-1
100
t p (s)
1012
10
0,80
K/W
IGBT thermal model values
R (C/W)
Tau (s)
0,11
1,6E+00
0,39
1,6E-01
0,19
5,5E-02
0,08
1,2E-02
0,02
1,6E-03
copyright Vincotech
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
10-4
At
D=
RthJH =
tp / T
10-3
10-2
10-1
100
t p (s)
101
1,77
K/W
FWD thermal model values
R (C/W)
Tau (s)
0,10
5,3E+00
0,23
8,1E-01
0,71
1,4E-01
0,45
4,0E-02
0,16
8,4E-03
0,12
1,3E-03
10
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
Ptot (W)
IC (A)
250
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
200
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
11
50
150
100
150
T h ( o C)
200
°C
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Buck
IGBT
Safe operating area as a function of collector-emitter voltage
Figure 25
Figure 26
Gate voltage vs Gate charge
IC = f(VCE)
VGE = f(Qg)
3
15
10
VGE (V)
IC (A)
10
IGBT
100uS
2
12
200V
1mS
400V
10mS
100mS
9
101
DC
10
6
0
3
10-1
0
0
10
At
D=
Th =
VGE =
Tj =
0
10
1
10
2
V CE (V)
10
25
50
75
100
125
150
175
Q g (nC)
3
200
At
IG(REF)=1mA, RL=15Ω
single pulse
ºC
80
±15
V
Tjmax
ºC
MOSFET
Figure 27
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
MOSFET
Figure 28
Gate voltage vs Gate charge
VGE = f(Qg)
101
VGE (V)
ZthJH (K/W)
10
120V
8
100
480V
6
4
10
-1
2
0
At10-2
10
-5
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
0
10
tp / T
At
IC =
1,16
K/W
MOSFET thermal model values
R (C/W)
Tau (s)
0,11
4,7E+00
0,22
9,0E-01
0,39
1,7E-01
0,25
4,8E-02
0,10
1,3E-02
0,05
2,5E-03
copyright Vincotech
20
40
1
12
18
60
80
100
Q g (nC) 120
A
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
250
IC (A)
IC (A)
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
70
IC (A)
IF (A)
80
60
60
50
40
40
30
20
Tj = Tjmax-25°C
20
Tj = 25°C
Tj = Tjmax-25°C
10
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
0
10
At
tp =
µs
V
13
1
250
2
3
V F (V)
4
µs
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,5
Eoff High T
E (mWs)
E (mWs)
4
Eoff High T
2
Eon High T
3
Eoff Low T
Eoff Low T
Eon Low T
1,5
2
1
Eon High T
1
0,5
Eon Low T
0
0
0
20
40
60
80
0
100
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
51
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3
E (mWs)
E (mWs)
2,5
Erec High T
2,5
2
Erec High T
2
1,5
Erec Low T
1,5
1
Erec Low T
1
0,5
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
51
A
14
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tdon
tf
tf
0,1
0,1
tdon
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
R G ( Ω)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
51
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,15
0,5
trr High T
t rr(ms)
t rr(ms)
trr High T
0,12
0,4
0,09
0,3
0,06
0,2
trr Low T
0,03
0,1
trr Low T
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
0,0
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
4
25/125
350
51
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Boost
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
8
Qrr (mC)
Qrr (mC)
10
Qrr High T
8
Qrr High T
6
6
Qrr Low T
4
Qrr Low T
4
2
2
0
0
0
20
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
40
80
60
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
51
±15
8
12
16
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
100
IrrM (A)
100
20
IRRM High T
80
80
IRRM Low T
60
60
40
40
20
20
0
IRRM High T
IRRM Low T
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
4
25/125
350
51
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Boost
FWD
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
Figure 18
Typical rate of fall of forward and reverse recovery current
as a and reverse recovery current
dI0/dt,dIrec/dt = f(Rgon)
16000
direc / dt (A/ms)
direc / dt (A/ms)
10000
dIrec/dt T
dIo/dt T
dI0/dt T
dIrec/dt T
14000
8000
FWD
12000
10000
6000
8000
4000
6000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
4
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
51
±15
8
12
R gon ( Ω)
16
20
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
4
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10
-5
At
D=
RthJH =
10
-4
tp / T
1,02
10
-3
10
-2
10
-1
10
0
t p (s)
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
12
1010
10
-5
At
D=
RthJH =
K/W
10
-4
tp / T
2,11
10
FWD thermal model values
R (C/W)
0,08
0,12
0,47
0,26
0,08
R (C/W)
0,04
0,11
0,53
0,96
0,30
0,17
copyright Vincotech
17
10
-2
10
-1
10
0
t p (s)
12
1010
K/W
IGBT thermal model values
Tau (s)
4,30
1,00
0,15
0,05
0,01
-3
Tau (s)
6,53
1,19
0,18
0,06
0,01
0,00
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
Ptot (W)
IC (A)
200
150
60
100
40
50
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
175
50
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
Ptot (W)
IF (A)
80
200
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
150
100
150
Th ( o C)
200
ºC
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
1
ZthJC (K/W)
IF (A)
10
30
100
Tj = Tjmax-25°C
20
Tj = 25°C
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
0
0
At
tp =
1
2
V F (V)
10-2
3
µs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
tp / T
2,17
10-3
10-2
100
t p (s)
1012
10
K/W
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
12
IF (A)
Ptot (W)
100
10-1
10
80
8
60
6
40
4
20
2
0
0
0
50
100
150
Th ( o C)
0
200
At
Tj =
50
100
150
Th ( o C)
200
At
175
copyright Vincotech
Tj =
ºC
19
175
ºC
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
R(T ) = R25 ⋅ e
NTC-typical temperature characteristic



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
R/Ω
24000
Thermistor
Figure 2
Typical NTC resistance values
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Switching Definitions BUCK MOSFET&IGBT
General conditions
= 125°C
Rgon MOSFET
Rgoff MOSFET
Tj
Rgon IGBT
Rgoff IGBT
4Ω
4Ω
=
=
=
=
4Ω
4Ω
MOSFET turn off delayed time with 350 nS
Figure 1
BUCK MOSFET
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Figure 2
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
BUCK MOSFET
400
tdoff
%
IC
%
100
VGE 90%
300
VGE
75
200
50
VCE 90%
tEoff
10-PZ06NRA069FP03-P967F78Y
25
10-FZ06NRA069FP0-P967F78
100
IC 1%
VGE
tdon
VCE
VCE
0
VGE10%
IC
-25
tEon
-50
-0,1
0
0,1
0,2
0,3
0,4
-100
2,98
0,5
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
700
30
0,42
0,48
BUCK MOSFET
3,02
3,04
-15
15
700
30
0,04
0,06
3,06
400
%
fitted
IC
time(us)
3,08
V
V
V
A
µs
µs
Figure 4
Turn-on Switching Waveforms & definition of tr
125
100
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Figure 3
Turn-off Switching Waveforms & definition of tf
%
VCE 3%
Ic10%
0
BUCK MOSFET
IC
350
IC 90%
300
75
250
VCE
IC 60%
50
200
IC 40%
150
25
IC10%
0
100
tf
50
-25
0,4
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,42
700
30
0,005
0,44
V
A
µs
0,46
time (us)
-50
3,02
0,48
VC (100%) =
IC (100%) =
tr =
21
90%
IC10%
0
-50
0,38
IC
tr
VCE
3,03
3,04
700
30
0,00
3,05
time(us) 3,06
V
A
µs
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Switching Definitions BUCK MOSFET
Figure 5
Turn-off Switching Waveforms & definition of tEoff
BUCK MOSFET
Figure 6
Turn-on Switching Waveforms & definition of tEon
125
BUCK MOSFET
125
%
%
Eoff
100
Eon
100
Pon
IC 1%
75
75
50
50
25
25
VGE
VGE10%
90%
Poff
VCE 3%
0
0
tEon
tEoff
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
21,13
0,22
0,48
0,4
-25
2,98
0,6
BUCK MOSFET
3,02
3,04
21,13
0,22
0,06
3,06
time(us)
3,08
kW
mJ
µs
Figure 8
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
BUCK FWD
200
Id
%
trr
Id
50
0
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
100
time (us)
Qrr
100
tQrr
Vd
IRRM 10%
-50
0
-100
fitted
-150
-100
-200
-250
-350
3,02
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
-200
IRRM 90%
IRRM 100%
-300
-300
3,04
3,06
700
30
-87
0,02
V
A
A
µs
3,08
time(us)
3,1
3
Id (100%) =
Qrr (100%) =
tQrr =
22
3,025
3,05
30
1,10
0,04
3,075
time(us)
3,1
A
µC
µs
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Switching Definitions BUCK MOSFET
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
%
Erec
100
tErec
75
50
Prec
25
0
-25
3,02
Prec (100%) =
Erec (100%) =
tErec =
3,04
3,06
21,13
0,19
0,04
3,08
time(us)
3,1
kW
mJ
µs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Figure 12
BOOST stage switching measurement circuit
Cg is included in the module
copyright Vincotech
23
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 12mm housing with PressFiT
without thermal paste 12mm housing
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
in DataMatrix as
in packaging barcode as
P967F78Y
P967F78
P967F78Y
P967F78
Outline
Pin
X
Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
33,6
30,7
27,8
22
19,2
11,4
0
0
0
0
0
0
0
10,1
17,9
20,8
27,8
30,7
33,6
33,6
33,6
0
0
0
0
0
0
0
2,9
9,9
12,7
15,5
19,7
22,6
22,6
22,6
22,6
22,6
22,6
22,6
14,8
8,2
19
20
21
Pinout
copyright Vincotech
24
Revision: 2
10-PZ06NRA069FP03-P967F78Y
10-FZ06NRA069FP03-P967F78
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
25
Revision: 2