10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 flow NPC 0 600V/60A & 99mΩ PS* Features flow 0 12mm housing ● *PS: 65A parallel switch (60A IGBT and 99mΩ MOSFET) ● neutral point clamped inverter ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 59 60 A 180 A 118 179 W Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Ptot Gate-emitter peak voltage VGE ±20 V Tjmax 175 °C VRRM 600 V 28 30 A 120 A 40 60 W 150 °C Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C Power dissipation per IGBT Buck FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Non Repetitive peak Surge current IFSM tp limited by Tjmax 60Hz Single Half-Sine Wave Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Tc=80°C 16 19 A tp limited by Tjmax Tc=25°C 112 A Tj=Tjmax Th=80°C Tc=80°C 60 91 W Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 59 60 A 225 A 93 141 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V Maximum Junction Temperature Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature tSC VCC Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature IF Tj=Tjmax Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 17 17 44 61 A W Tjmax 175 °C VRRM 1200 V 17 23 A 36 A 33 50 W 150 °C 25 V Boost FWD Peak Repetitive Reverse Voltage DC forward current Repetitive peak Surge current Power dissipation per Diode Maximum Junction Temperature IF IFSM Ptot Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tjmax DC link Capacitor Max.DC voltage copyright Vincotech VMAX Tc=25°C 2 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 3 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,5 4,5 6 1,93 1,74 2,5 Buck IGBT * Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint none Ω Input capacitance ** Cies 2,9+4,7 nF Output capacitance Coss Reverse transfer capacitance Crss Gate charge ** QGate Thermal resistance chip to heatsink per chip RthJH VCE=VGE f=1MHz 0,00025 60 30 0 250 ±400 V V µA nA 270 Tj=25°C pF 85 400 15 60 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 189+70 nC 0,80 K/W * see dinamic characteristic at Buck MosFET **additional value stands for built-in capacitor Buck FWD Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 30 Ir 600 IRRM trr Qrr Rgon=4 Ω ±15 350 30 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,15 1,61 2,6 100 76 87 12 20 0,51 1,10 20215 16847 0,12 0,19 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,77 K/W Buck MOSFET Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th 10 18 VDS=VGS Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time 0,0012 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Rgon=4 Ω Rgoff=4 Ω 350 ±15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,4 106 214 3 mΩ 3,6 100 5 37 38 2 3 405 422 4 5 0,05 0,22 0,04 0,22 V nA µA ns mWs 119 10 480 18,1 Tj=25°C 14 Gate to drain charge Qgd 61 Input capacitance Ciss 2660 Output capacitance Coss nC pF Gate resistor Thermal resistance chip to heatsink per chip f=1MHz 0 100 rG RthJH Thermal grease thickness≤50um λ = 1 W/mK Tj=25°C 154 1,6 Ω 1,16 K/W ** see schematic of the Gate-complex at characteristic figures copyright Vincotech 4 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,11 1,12 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,038 600 Rgon=8 Ω Rgoff=8 Ω 350 ±15 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 87 88 11 12 177 204 85 93 0,37 0,54 1,69 2,25 ns mWs 4620 f=1MHz 0 25 15 480 288 Tj=25°C pF 137 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,02 K/W Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 10 Tj=25°C Tj=125°C 1,25 Thermal grease thickness≤50um λ = 1 W/mK 1,88 1,22 1,95 2,17 V K/W Boost FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time trr Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovered charge Peak rate of fall of recovery current 18 Rgon=8 Ω ±15 350 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,23 2,04 3,5 100 69 91 25,4 87,9 3,4 5,7 9632 6270 1,04 1,97 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 2,11 K/W 4,7 nF 22000 Ω DC link Capacitor C value C Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100= 1486Ω Tc=100°C Power dissipation constant % mW Tj=25°C 3,5 mW/K B-value B(25/50) Tol. ±3% Tj=25°C B(25/100) Tol. ±3% Tj=25°C copyright Vincotech +5 210 B-value Vincotech NTC Reference -5 Tj=25°C K 4000 K A 5 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Buck MOSFET & IGBT Figure 1 Typical output characteristics IC = f(VCE) MOSFET & IGBT Figure 2 Typical output characteristics IC = f(VCE) 180 IC (A) IC (A) 180 150 150 120 120 90 90 60 60 10-PZ06NRA069FP03-P967F78Y 30 10-FZ06NRA069FP0-P967F78 30 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 0 V to 20 V in steps of 2 V MOSFET & IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 µs 125 °C 0 V to 20 V in steps of 2 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 120 IF (A) IC (A) 70 60 100 50 80 40 60 30 40 20 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C 20 10 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 V GE (V) 8 0 At tp = µs V 6 1 250 2 3 V F (V) 4 µs Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Buck MOSFET & IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET & IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 0,5 E (mWs) 0,6 Eoff High T 0,5 Eon High T 0,4 Eon High T 0,4 0,3 0,3 Eoff High T Eon Low T 0,2 0,2 Eon Low T 0,1 0,1 Eoff Low T Eoff Low T 0,0 0 10 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 30 40 50 I C (A) 0,0 60 0 32 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 30 A Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) 16 48 64 RG(Ω ) Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,20 E (mWs) 0,25 80 Erec High T 0,20 0,15 Erec High T Erec Low T 0,15 0,10 0,10 0,05 0,05 Erec Low T 0,00 0,00 0 10 20 30 40 50 60 0 I C (A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 16 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS 7 32 48 64 RG(Ω ) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Buck MOSFET & IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET & IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff 0,10 t (ms) t (ms) 1,00 tdoff 0,10 tdon 0,01 tr tdon 0,01 tr 0,00 0,00 0 10 20 30 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 40 50 I C (A) 0 60 32 48 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 30 A Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) 16 64 RG(Ω ) Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,030 t rr(ms) 0,030 80 trr High T trr High T 0,025 0,025 0,020 0,020 0,015 trr Low T 0,015 trr Low T 0,010 0,010 0,005 0,005 0,000 0,000 0 10 20 30 40 50 60 0 I C (A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 copyright Vincotech °C V V Ω At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS 8 16 25/125 350 30 ±15 32 °C V A V 48 64 R gon ( Ω ) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 1,5 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1,2 Qrr (uC) Qrr (uC) Qrr High T 1,0 Qrr High T 1,2 0,8 0,9 Qrr Low T 0,6 0,6 0,4 Qrr Low T 0,3 0,2 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 °C V V Ω 30 40 50 0 60 I C (A) At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 350 30 ±15 32 °C V A V 48 64 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 100 IrrM (A) 100 80 R gon ( Ω) IRRM Low T 80 80 IRRM High T 60 60 40 40 20 20 IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = IRRM High T 10 25/125 350 ±15 4 copyright Vincotech 20 °C V V Ω 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS 9 16 25/125 350 30 ±15 32 °C V A V 48 64 R gon ( Ω) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Buck FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) direc / dt (A/ms) 30000 dIrec/dt T di0/dt T 25000 24000 dIrec/dt T dI0/dt T 20000 20000 16000 15000 12000 10000 8000 5000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 °C V V Ω 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 16 25/125 350 30 ±15 32 °C V A V 48 64 R gon ( Ω) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 10-4 At D= RthJH = tp / T 10-3 10-2 10-1 100 t p (s) 1012 10 0,80 K/W IGBT thermal model values R (C/W) Tau (s) 0,11 1,6E+00 0,39 1,6E-01 0,19 5,5E-02 0,08 1,2E-02 0,02 1,6E-03 copyright Vincotech 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 10-4 At D= RthJH = tp / T 10-3 10-2 10-1 100 t p (s) 101 1,77 K/W FWD thermal model values R (C/W) Tau (s) 0,10 5,3E+00 0,23 8,1E-01 0,71 1,4E-01 0,45 4,0E-02 0,16 8,4E-03 0,12 1,3E-03 10 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 Ptot (W) IC (A) 250 200 60 150 40 100 20 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 200 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 11 50 150 100 150 T h ( o C) 200 °C Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Buck IGBT Safe operating area as a function of collector-emitter voltage Figure 25 Figure 26 Gate voltage vs Gate charge IC = f(VCE) VGE = f(Qg) 3 15 10 VGE (V) IC (A) 10 IGBT 100uS 2 12 200V 1mS 400V 10mS 100mS 9 101 DC 10 6 0 3 10-1 0 0 10 At D= Th = VGE = Tj = 0 10 1 10 2 V CE (V) 10 25 50 75 100 125 150 175 Q g (nC) 3 200 At IG(REF)=1mA, RL=15Ω single pulse ºC 80 ±15 V Tjmax ºC MOSFET Figure 27 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) MOSFET Figure 28 Gate voltage vs Gate charge VGE = f(Qg) 101 VGE (V) ZthJH (K/W) 10 120V 8 100 480V 6 4 10 -1 2 0 At10-2 10 -5 D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 0 10 tp / T At IC = 1,16 K/W MOSFET thermal model values R (C/W) Tau (s) 0,11 4,7E+00 0,22 9,0E-01 0,39 1,7E-01 0,25 4,8E-02 0,10 1,3E-02 0,05 2,5E-03 copyright Vincotech 20 40 1 12 18 60 80 100 Q g (nC) 120 A Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 250 IC (A) IC (A) 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 70 IC (A) IF (A) 80 60 60 50 40 40 30 20 Tj = Tjmax-25°C 20 Tj = 25°C Tj = Tjmax-25°C 10 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 0 10 At tp = µs V 13 1 250 2 3 V F (V) 4 µs Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,5 Eoff High T E (mWs) E (mWs) 4 Eoff High T 2 Eon High T 3 Eoff Low T Eoff Low T Eon Low T 1,5 2 1 Eon High T 1 0,5 Eon Low T 0 0 0 20 40 60 80 0 100 I C (A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 51 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3 E (mWs) E (mWs) 2,5 Erec High T 2,5 2 Erec High T 2 1,5 Erec Low T 1,5 1 Erec Low T 1 0,5 0,5 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 51 A 14 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff tdon tf tf 0,1 0,1 tdon tr 0,01 0,01 tr 0,001 0,001 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 R G ( Ω) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 51 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,15 0,5 trr High T t rr(ms) t rr(ms) trr High T 0,12 0,4 0,09 0,3 0,06 0,2 trr Low T 0,03 0,1 trr Low T 0,00 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 0,0 100 0 At Tj = VR = IF = VGE = °C V V Ω 15 4 25/125 350 51 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 8 Qrr (mC) Qrr (mC) 10 Qrr High T 8 Qrr High T 6 6 Qrr Low T 4 Qrr Low T 4 2 2 0 0 0 20 At At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 40 80 60 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 51 ±15 8 12 16 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 100 IrrM (A) 100 20 IRRM High T 80 80 IRRM Low T 60 60 40 40 20 20 0 IRRM High T IRRM Low T 0 0 20 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 16 4 25/125 350 51 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Boost FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) Figure 18 Typical rate of fall of forward and reverse recovery current as a and reverse recovery current dI0/dt,dIrec/dt = f(Rgon) 16000 direc / dt (A/ms) direc / dt (A/ms) 10000 dIrec/dt T dIo/dt T dI0/dt T dIrec/dt T 14000 8000 FWD 12000 10000 6000 8000 4000 6000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 4 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 51 ±15 8 12 R gon ( Ω) 16 20 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 4 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10 -5 At D= RthJH = 10 -4 tp / T 1,02 10 -3 10 -2 10 -1 10 0 t p (s) 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 12 1010 10 -5 At D= RthJH = K/W 10 -4 tp / T 2,11 10 FWD thermal model values R (C/W) 0,08 0,12 0,47 0,26 0,08 R (C/W) 0,04 0,11 0,53 0,96 0,30 0,17 copyright Vincotech 17 10 -2 10 -1 10 0 t p (s) 12 1010 K/W IGBT thermal model values Tau (s) 4,30 1,00 0,15 0,05 0,01 -3 Tau (s) 6,53 1,19 0,18 0,06 0,01 0,00 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 Ptot (W) IC (A) 200 150 60 100 40 50 20 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = ºC 175 50 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 Ptot (W) IF (A) 80 200 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 150 100 150 Th ( o C) 200 ºC Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 1 ZthJC (K/W) IF (A) 10 30 100 Tj = Tjmax-25°C 20 Tj = 25°C 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 0 0 At tp = 1 2 V F (V) 10-2 3 µs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = tp / T 2,17 10-3 10-2 100 t p (s) 1012 10 K/W Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 12 IF (A) Ptot (W) 100 10-1 10 80 8 60 6 40 4 20 2 0 0 0 50 100 150 Th ( o C) 0 200 At Tj = 50 100 150 Th ( o C) 200 At 175 copyright Vincotech Tj = ºC 19 175 ºC Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) R(T ) = R25 ⋅ e NTC-typical temperature characteristic B25/100⋅ 1 − 1 T T 25 [Ω] R/Ω 24000 Thermistor Figure 2 Typical NTC resistance values 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Switching Definitions BUCK MOSFET&IGBT General conditions = 125°C Rgon MOSFET Rgoff MOSFET Tj Rgon IGBT Rgoff IGBT 4Ω 4Ω = = = = 4Ω 4Ω MOSFET turn off delayed time with 350 nS Figure 1 BUCK MOSFET Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Figure 2 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 BUCK MOSFET 400 tdoff % IC % 100 VGE 90% 300 VGE 75 200 50 VCE 90% tEoff 10-PZ06NRA069FP03-P967F78Y 25 10-FZ06NRA069FP0-P967F78 100 IC 1% VGE tdon VCE VCE 0 VGE10% IC -25 tEon -50 -0,1 0 0,1 0,2 0,3 0,4 -100 2,98 0,5 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 700 30 0,42 0,48 BUCK MOSFET 3,02 3,04 -15 15 700 30 0,04 0,06 3,06 400 % fitted IC time(us) 3,08 V V V A µs µs Figure 4 Turn-on Switching Waveforms & definition of tr 125 100 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Figure 3 Turn-off Switching Waveforms & definition of tf % VCE 3% Ic10% 0 BUCK MOSFET IC 350 IC 90% 300 75 250 VCE IC 60% 50 200 IC 40% 150 25 IC10% 0 100 tf 50 -25 0,4 VC (100%) = IC (100%) = tf = copyright Vincotech 0,42 700 30 0,005 0,44 V A µs 0,46 time (us) -50 3,02 0,48 VC (100%) = IC (100%) = tr = 21 90% IC10% 0 -50 0,38 IC tr VCE 3,03 3,04 700 30 0,00 3,05 time(us) 3,06 V A µs Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Switching Definitions BUCK MOSFET Figure 5 Turn-off Switching Waveforms & definition of tEoff BUCK MOSFET Figure 6 Turn-on Switching Waveforms & definition of tEon 125 BUCK MOSFET 125 % % Eoff 100 Eon 100 Pon IC 1% 75 75 50 50 25 25 VGE VGE10% 90% Poff VCE 3% 0 0 tEon tEoff -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 21,13 0,22 0,48 0,4 -25 2,98 0,6 BUCK MOSFET 3,02 3,04 21,13 0,22 0,06 3,06 time(us) 3,08 kW mJ µs Figure 8 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) BUCK FWD 200 Id % trr Id 50 0 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Turn-off Switching Waveforms & definition of trr 150 % 100 time (us) Qrr 100 tQrr Vd IRRM 10% -50 0 -100 fitted -150 -100 -200 -250 -350 3,02 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech -200 IRRM 90% IRRM 100% -300 -300 3,04 3,06 700 30 -87 0,02 V A A µs 3,08 time(us) 3,1 3 Id (100%) = Qrr (100%) = tQrr = 22 3,025 3,05 30 1,10 0,04 3,075 time(us) 3,1 A µC µs Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Switching Definitions BUCK MOSFET Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 % Erec 100 tErec 75 50 Prec 25 0 -25 3,02 Prec (100%) = Erec (100%) = tErec = 3,04 3,06 21,13 0,19 0,04 3,08 time(us) 3,1 kW mJ µs Measurement circuits Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit Cg is included in the module copyright Vincotech 23 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 12mm housing with PressFiT without thermal paste 12mm housing 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 in DataMatrix as in packaging barcode as P967F78Y P967F78 P967F78Y P967F78 Outline Pin X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 33,6 30,7 27,8 22 19,2 11,4 0 0 0 0 0 0 0 10,1 17,9 20,8 27,8 30,7 33,6 33,6 33,6 0 0 0 0 0 0 0 2,9 9,9 12,7 15,5 19,7 22,6 22,6 22,6 22,6 22,6 22,6 22,6 14,8 8,2 19 20 21 Pinout copyright Vincotech 24 Revision: 2 10-PZ06NRA069FP03-P967F78Y 10-FZ06NRA069FP03-P967F78 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 25 Revision: 2