70 W424NIA800SH M800F D4 14

70-W424NIA800SH-M800F
datasheet
flow NPC 8w
2400 V / 800 A
Features
2xflow SCREW 4w 12mm housing
● 2400V NPC-topology (2x 1200V)
● High power screw interface
● Low inductive interface for external DC-capacitors
and paralleling on component level
● Snubber diode for optional asymmetrical inductance
● High speed buck IGBT´s
● Temperature sensor
Target Applications
Schematic
● Solar inverter
● Wind Power
● Motor Drive
Types
● 70-W424NIA800SH-M800F
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
181
240
A
Snubber Diode (D61, D62)
Repetitive peak reverse voltage
V RRM
Forward average current
I FAV
Surge forward current
I FSM
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
sine,d=0.5
T j=T jmax
T s=80°C
T c=80°C
t p=10ms, sin 180º
T j=150°C
T j=T jmax
T s=80°C
T c=80°C
T jmax
1080
A
5832
A2s
323
490
W
175
°C
1200
V
651
800
A
2400
A
1759
2665
W
Buck IGBT (T11, T12)
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T j≤150°C
V GE=15V
T jmax
1
T s=80°C
T c=80°C
±20
V
10
800
µs
V
175
°C
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
540
711
A
4400
A
1131
1713
W
175
°C
1200
V
689
883
A
2400
A
1652
2503
W
Buck Diode (D11, D12)
Peak Repetitive Reverse Voltage
DC forward current
Surge Forward Current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FSM
P tot
T j=T jmax
T s=80°C
T c=80°C
t p=10ms, sin 180º
T j=T jmax
T s=80°C
T c=80°C
T jmax
Boost IGBT (T13, T14)
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T s=80°C
T c=80°C
T j≤150°C
V GE=15V
T jmax
±20
V
10
800
µs
V
175
°C
1200
V
680
680
A
1200
A
1759
2666
W
175
°C
1200
V
514
685
A
1200
A
905
1371
W
175
°C
Boost Inverse Diode (D15, D16)
Peak Repetitive Reverse Voltage
DC forward current
Repetitive Forward Current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T s=80°C
T c=80°C
T jmax
Boost Diode (D14, D13)
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
I FRM
P tot
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T jmax
2
T s=80°C
T c=80°C
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
-40…+125
°C
-40…+(T jmax - 25)
°C
Thermal Properties
Storage temperature
T stg
Operation temperature under switching condition
T op
for power part
V is
t=2s
Insulation Properties
Insulation voltage
DC voltage
Creepage distance
Clearance
Stage
copyright Vincotech
CTI
4000
V
min 12,7
mm
min 12,7
mm
>200
3
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Characteristic values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
1,91
1,85
1,25
1,11
0,003
0,004
2,54
Snubber Diode
Forward voltage
VF
200
Threshold voltage (for power loss calc. only)
V to
200
Slope resistance (for power loss calc. only)
rt
200
Reverse current
Ir
1200
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
phase-change
material
λ = 3,4 W/mK
Gate emitter threshold voltage
V GE(th)
V CE=V GE
Collector-emitter saturation voltage
V CEsat
25
125
25
125
25
125
25
150
V
V
mΩ
0,12
mA
0,294
K/W
0,194
Buck IGBT (T11, T12)
0,0272
15
800
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
5,2
5,8
6,4
1,7
2,14
2,44
2,4
0,096
1920
0,25
t d(on)
t d(off)
25
125
25
125
25
125
25
125
R goff=0,5 Ω
R gon=0,5 Ω
±15
600
824
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
151
135
42
40
195
231
24
48
41
50
26
43
ns
mWs
44320
f=1MHz
0
25
±15
960
25
pF
2600
2560
800
25
phase-change
material
λ = 3,4 W/mK
3700
nC
0,052
K/W
0,035
Buck Diode (D11, D12)
Diode forward voltage
Reverse leakage current
VF
IR
Reverse recovery time
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
1200
R gon=0,5 Ω
±15
600
( di rf/dt )max
E rec
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
copyright Vincotech
800
phase-change
material
λ = 3,4 W/mK
824
25
125
25
125
25
125
25
125
25
125
25
125
25
125
2,34
2,38
2,52
960
932
1319
165
193
64
136
16722
16606
22
56
V
µA
A
ns
µC
A/µs
mWs
0,081
K/W
0,054
4
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Characteristic values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
5
5,80
6,5
1,55
1,91
2,14
2,05
Boost IGBT (T13, T14)
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0304
15
800
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
0,104
4800
0,9375
tr
t d(off)
25
125
25
125
25
125
25
125
R goff=0,5 Ω
R gon=0,5 Ω
600
±15
800
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
290
301
57
60
384
455
43
108
49
65
49
76
ns
mWs
49200
f=1MHz
0
25
25
3240
pF
2760
15
960
800
25
4060
phase-change
material
λ = 3,4 W/mK
nC
0,058
K/W
0,038
Boost Inverse Diode (D15, D16)
Diode forward voltage
25
VF
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
600
1,35
125
1,90
2,05
V
1,84
phase-change
material
λ = 3,4 W/mK
0,054
K/W
0,036
Boost Diode (D14, D13)
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
600
Ir
1200
I RRM
t rr
Q rr
R gon=0,5 Ω
±15
600
( di rf/dt )max
E rec
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
copyright Vincotech
phase-change
material
λ = 3,4 W/mK
800
25
125
25
125
25
125
25
125
25
125
25
125
25
125
1,35
1,90
1,84
2,05
112
576
806
271
341
63
118
4456
6686
23
47
V
µA
A
ns
µC
A/µs
mWs
0,102
K/W
0,067
5
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Characteristic values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R25
Δ R/R
Power dissipation
P
25
R 100=1486 Ω
25
Power dissipation constant
22000
-5
Ω
+5
%
25
200
mW
25
2
mW/K
B-value
B (25/50)
Tol. ±3%
25
3950
K
B-value
B (25/100)
Tol. ±3%
25
3996
K
Vincotech NTC Reference
B
Module Properties
Module inductance (from chips to PCB)
LsCE
Module inductance (from PCB to PCB using
Intercon board)
LsCE
Chip module lead resistance, terminals -chip
Rcc'1+EE'
Resistance of Intercon boards (from PCB to
PCB using Intercon board)
Rcc'1+EE'
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
copyright Vincotech
Buck
Boost
Tc=25°C, per switch
9
17
nH
5
nH
tbd.
mΩ
1,5
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
6
2
mΩ
2,2
Nm
4
6
Nm
2,5
5
Nm
tbd
g
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck
Buck IGBT and Buck FWD
IGBT
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
1800
IC (A)
IC (A)
1800
1600
1600
1400
1400
1200
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
I C = f(V GE)
1
2
3
4
V CE (V)
5
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
1750
IC (A)
IF (A)
700
600
1500
500
1250
400
1000
300
750
200
500
100
250
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
7
1
350
2
3
V F (V)
4
µs
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck
Buck IGBT and Buck FWD
IGBT
Figure 5
IGBT
Figure 6
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
E (mWs)
140
E (mWs)
100
Eon High T
Eon Low T
120
Eon High T
80
Eoff High T
100
Eon Low T
Eoff Low T
60
80
60
40
Eoff High T
40
Eoff Low T
20
20
0
0
0
200
400
600
800
1000
1200
0,0
1400 I (A) 1600
C
With an inductive load at
Tj =
°C
25/125
V CE =
600
V
V GE =
±15
V
R gon =
0,5
Ω
R goff =
0,6
Ω
0,5
1,0
1,5
2,0
2,5
R G ( Ω)
With an inductive load at
Tj =
°C
25/125
V CE =
600
V
V GE =
±15
V
IC =
824
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
80
70
60
60
50
Erec High T
40
40
Erec Low T
30
20
20
Erec Low T
10
0
0
0
200
400
600
800
1000
1200
1400
1600
I C (A)
0,0
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
0,5
Ω
copyright Vincotech
0,5
1,0
1,5
2,0
R G ( Ω)
2,5
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
824
A
8
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck
Buck IGBT and Buck FWD
IGBT
Figure 9
IGBT
Figure 10
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
10,00
t (µ s)
t (µ s)
1,00
tdoff
1,00
tdon
0,10
tdon
tr
tdoff
0,10
tf
tf
0,01
tr
0,01
0,00
0,00
0
250
500
750
1000
1250 I (A)
C
1500
0,0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
0,5
Ω
R goff =
0,6
Ω
0,5
1,0
1,5
2,0
2,5
R G ( Ω)
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
824
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
t rr(µ s)
0,30
t rr(µ s)
0,25
trr High T
trr High T
0,25
0,20
trr Low T
0,20
trr Low T
0,15
0,15
0,10
0,10
0,05
0,05
0,00
0
200
400
600
800
1000
1200
1400
0,00
1600
0
I C (A)
At
Tj =
V CE =
V GE =
R gon =
25/125
600
±15
0,5
copyright Vincotech
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
9
1
25/125
600
824
±15
1
2
2
R gon ( Ω)
3
°C
V
A
V
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck
Buck IGBT and Buck FWD
FWD
Figure 13
FWD
Figure 14
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr (µ C)
150
Qrr (µ C)
200
Qrr High T
Qrr High T
125
150
100
Qrr Low T
100
75
Qrr Low T
50
50
25
0
0
0
200
400
600
800
1000
1200
1400
At
At
Tj =
V CE =
V GE =
R gon =
1600
I C (A)
0
1
25/125
600
°C
V
At
Tj =
VR=
25/125
600
°C
V
±15
0,5
V
Ω
IF=
V GE =
824
±15
A
V
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
1,5
2
R gon ( Ω)
2,5
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
1800
IrrM (A)
1600
IrrM (A)
0,5
IRRM High T
1400
1600
1400
1200
IRRM Low T
1200
1000
1000
800
IRRM High T
800
600
IRRM Low T
600
400
400
200
200
0
0
200
400
600
800
1000
1200
1400
0
1600
0,0
I C (A)
At
Tj =
V CE =
V GE =
R gon =
25/125
600
±15
0,5
copyright Vincotech
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
10
0,5
25/125
600
824
±15
1,0
1,5
2,0
R gon ( Ω) 2,5
°C
V
A
V
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck
Buck IGBT and Buck FWD
FWD
Figure 17
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
25000
36000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Typical rate of fall of forward
dIo/dt T
20000
dIrec/dt T
dI0/dt T
32000
28000
24000
15000
20000
16000
10000
12000
8000
5000
4000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
250
500
750
1000
1250
0,0
I C (A) 1500
°C
V
At
Tj =
VR=
25/125
600
°C
V
±15
0,5
V
Ω
IF=
V GE =
824
±15
A
V
IGBT
2,0
R gon ( Ω)
2,5
FWD
ZthJH (K/W)
ZthJH (K/W)
10-1
10-2
10-2
10-3
10-3
10-4
10-4
thJH
1,5
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
10-1
At
D =
R =
1,0
25/125
600
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
10-5
0,5
10-4
10-3
10-2
10-1
t p (s)
100
10-5
101 1
At
D =
R thJH =
tp/T
0,054
K/W
R thJC =
0,035
K/W
IGBT thermal model values
10-4
10-3
10-2
K/W
R thJC =
10-1
t p (s)
100
tp/T
0,084
0,054
K/W
FWD thermal model values
With thermal grease
With phase change interface
With thermal grease
With phase change interface
R (K/W)
0,0224
Tau (s)
3,378
R (K/W)
0,0217
R (K/W)
0,0091
Tau (s)
8,788
R (K/W)
0,0089
0,0101
0,0066
0,0105
0,0020
0,0025
0,6296
0,1078
0,0309
0,0049
0,0005
0,0098
0,0064
0,0102
0,0020
0,0024
0,0156
0,0159
0,0215
0,0166
0,0052
1,882
0,3424
0,0747
0,0242
0,0022
0,0152
0,0155
0,0208
0,0161
0,0050
copyright Vincotech
101 1
Tau (s)
3,378
0,6296
0,1078
0,0309
0,0049
0,0005
11
Tau (s)
8,788
1,882
0,3424
0,0747
0,0242
0,0022
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck
Buck IGBT and Buck FWD
IGBT
Figure 21
IGBT
Figure 22
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
1000
IC (A)
Ptot (W)
3500
3000
800
2500
600
2000
1500
400
1000
200
500
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
FWD
Figure 23
175
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Forward current as a
function of heatsink temperature
I F = f(T h)
1000
Ptot (W)
IF (A)
2500
2000
800
1500
600
1000
400
500
200
0
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
12
50
175
100
150
T h ( o C)
200
°C
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck
Buck IGBT and Buck FWD
IGBT
Figure 25
Safe operating area as a function
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
IGBT
VGE (V)
IC (A)
17,5
15
103
12,5
102
10
10
1
7,5
100
5
2,5
10-1
0
10
102
101
0
At
D =
0
103
80
15
T jmax
V GE =
Tj =
600
900
1200
1500
1800
Q g (nC)
At
IC =
single pulse
Th =
300
V CE (V)
800
A
ºC
V
ºC
IGBT
Figure 27
Reverse bias safe operating area
I C = f(V CE)
IC (A)
1800
1600
1400
1200
1000
800
600
400
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
ºC
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
13
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost
Boost IGBT and Boost FWD
IGBT
Figure 1
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
Typical output characteristics
I C = f(V CE)
1800
IC (A)
IC (A)
1800
1600
1600
1400
1400
1200
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
1
2
3
4
V CE (V)
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical transfer characteristics
I C = f(V GE)
5
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
800
IF (A)
IC (A)
1800
1600
700
1400
600
1200
500
1000
400
800
300
600
200
400
100
200
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
10 V GE (V)
12
0
At
tp =
µs
V
14
1
350
2
3
V F (V)
4
µs
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost
Boost IGBT and Boost FWD
IGBT
Figure 5
IGBT
Figure 6
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
180
E (mWs)
E (mWs)
180
Eon High T
150
Eon High T
150
Eon Low T
Eoff High T
120
120
Eon Low T
Eoff Low T
90
90
Eoff High T
60
60
30
30
0
0
0
200
400
600
800
1000
1200
1400
1600
1800
I C (A)
0
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
0,5
Ω
R goff =
0,5
Ω
1
2
3
4
RG(Ω )
5
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
796
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
60
E (mWs)
70
E (mWs)
Eoff Low T
Erec High T
60
50
50
40
Erec High T
40
Erec Low T
30
30
20
Erec Low T
20
10
10
0
0
0
200
400
600
800
1000
1200
1400
0
1600
1800
I C (A)
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
0,5
Ω
copyright Vincotech
1
2
3
4
RG (Ω )
5
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
796
A
15
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost
Boost IGBT and Boost FWD
IGBT
Figure 9
IGBT
Figure 10
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
1
tdoff
t ( µs)
t ( µs)
tdoff
tdon
0,1
tr
tdon
0,1
tf
tf
tr
0,01
0,01
0
200
400
600
800
1000
1200
1400
1600
0
1800
I C (A)
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
0,5
Ω
R goff =
0,5
Ω
1
2
3
4
5
RG(Ω )
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
796
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,7
trr High T
t rr(µ s)
t rr(µ s)
0,6
trr High T
0,6
0,5
0,5
trr Low T
0,4
trr Low T
0,4
0,3
0,3
0,2
0,2
0,1
0,1
0
0
0
At
Tj =
V CE =
V GE =
R gon =
200
400
25/125
600
±15
0,5
copyright Vincotech
600
800
1000
1200
1400
1600
1800
I C (A)
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
16
1
25/125
600
796
±15
2
3
4
R gon ( Ω)
5
°C
V
A
V
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost
Boost IGBT and Boost FWD
FWD
Figure 13
FWD
Figure 14
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
180
Qrr (µ C)
150
Qrr (µ C)
Qrr High T
150
Qrr High T
120
120
Qrr Low T
90
90
Qrr Low T
60
60
30
30
0
0
0
200
400
600
800
1000
1200
1400
1600
At
At
Tj =
V CE =
V GE =
R gon =
1800
I C (A)
0
1
2
25/125
600
°C
V
At
Tj =
VR=
25/125
600
°C
V
±15
0,5
V
Ω
IF=
V GE =
796
±15
A
V
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
3
4
R gon ( Ω)
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
IrrM (A)
1000
IrrM (A)
800
5
IRRM High T
IRRM Low T
800
600
600
400
400
IRRM High T
IRRM Low T
200
200
0
0
0
At
Tj =
V CE =
V GE =
R gon =
400
25/125
600
±15
0,5
copyright Vincotech
800
1200
1600
I C (A)
0
2000
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
17
1
25/125
600
796
±15
2
3
4
R gon ( Ω)
5
°C
V
A
V
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost
Boost IGBT and Boost FWD
FWD
Figure 17
FWD
Figure 18
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
17500
direc / dt (A/ms)
direc / dt (A/ms)
18000
dIrec/dt T
di0/dt T
dIrec/dt T
dI0/dt T
15000
15000
12500
12000
10000
9000
7500
6000
5000
3000
2500
0
0
0
At
Tj =
V CE =
V GE =
R gon =
200
400
600
800
1000
1200
1400
1600
1800
I C (A)
0
1
2
25/125
600
°C
V
At
Tj =
VR=
25/125
600
°C
V
±15
0,5
V
Ω
IF=
V GE =
796
±15
A
V
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
3
4
R gon ( Ω)
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
10-1
ZthJH (K/W)
ZthJH (K/W)
10-1
5
10-2
10-2
10-3
10-3
10-4
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-4
101 10
10-5
At
D =
R thJH =
tp/T
0,058
K/W
R thJC =
0,038
IGBT thermal model values
10-4
10-3
10-2
10-1
100
10110
tp/T
0,105
K/W
R thJC =
0,067
FWD thermal model values
With thermal grease
With phase change interface
With thermal grease
With phase change interface
R (K/W)
0,0060
Tau (s)
9,881
R (K/W)
0,0058
Tau (s)
9,881
R (K/W)
0,0104
Tau (s)
8,269
R (K/W)
0,0101
Tau (s)
8,269
0,0238
0,0103
0,0066
0,0100
0,0009
2,747
0,6136
0,1357
0,0302
0,0035
0,0231
0,01
0,0064
0,0097
0,0009
2,747
0,6136
0,1357
0,0302
0,0035
0,0336
0,0241
0,0274
0,0062
0,0033
1,883
0,4658
0,0479
0,0119
0,0012
0,0326
0,0233
0,0266
0,0060
0,0032
1,883
0,4658
0,0479
0,0119
0,0012
copyright Vincotech
t p (s)
18
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost
Boost IGBT and Boost FWD
IGBT
Figure 21
IGBT
Figure 22
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
1000
IC (A)
Ptot (W)
3000
2500
800
2000
600
1500
400
1000
200
500
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
FWD
Figure 23
Power dissipation as a
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
P tot = f(T h)
200
function of heatsink temperature
I F = f(T h)
2000
Ptot (W)
IF (A)
800
1500
600
1000
400
500
200
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
175
100
150
Th ( o C)
200
ºC
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost
Boost IGBT
IGBT
Figure 25
Reverse bias safe operating area
I C = f(V CE)
IC (A)
1800
1600
1400
1200
1000
800
600
400
200
0
0
At
Tj =
200
400
T jmax-25
ºC
600
800
1000
1200
1400
V CE (V)
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
20
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost Inverse Diode
Boost Inverse Diode
Figure 25
Boost Inverse Diode
Figure 26
Typical FWD forward current as
FWD transient thermal impedance
a function of forward voltage
I F = f(V F)
as a function of pulse width
Z thJH = f(t p)
2000
ZthJC (K/W)
IF (A)
10-1
1500
10-2
1000
10-3
500
0
0
At
tp =
1
250
2
3
V F (V)
10-4
4
µs
Boost Inverse Diode
Figure 27
10-5
10-4
At
D =
R thJH =
tp/T
10-3
0,054
10-2
100
t p (s)
10110
K/W
Boost Inverse Diode
Figure 28
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
10-1
Forward current as a
function of heatsink temperature
I F = f(T h)
800
IF (A)
Ptot (W)
3500
3000
600
2500
2000
400
1500
1000
200
500
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
21
50
175
100
150
Th ( o C)
200
ºC
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Snubber Diode
Snubber Diode
Figure 1
Snubber Diode
Figure 2
Typical thyristor forward current as
Thyristor transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z thJH = f(t p)
100
ZthJC (K/W)
IF (A)
1200
1000
10-1
800
600
400
10-2
200
0
0
At
tp =
1
2
250
3
4
V F (V)
10-3
5
10-5
10-4
At
D =
R thJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Snubber Diode
10-3
10-2
100
t p (s)
10110
tp/T
0,294
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Snubber Diode
250
IF (A)
Ptot (W)
600
10-1
500
200
400
150
300
100
200
50
100
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
22
50
175
100
150
T h ( o C)
200
ºC
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
23
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck switching definitions
General conditions
Tj
= 125 °C
= 0,625 Ω
R gon
R goff
= 0,625 Ω
Test setup inductance: 9nH
Figure 1
Buck IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Buck IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
250
%
%
125
200
100
VCE
75
90%
150
VGE 90%
100
50
tdon
25
50
IC
1%
0
VCE 3%
VGE 10%
0
-25
-50
-0,1
-50
0
0,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-8
15
600
t doff =
t E off =
0,2
0,3
0,4
2,2
0,5
0,6
time (us)
2,3
2,4
2,5
2,6
2,7
time(us)
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
804
A
I C (100%) =
804
A
0,23
0,61
µs
µs
t don =
t E on =
0,10
0,29
µs
µs
Figure 3
Buck IGBT
Turn-off Switching Waveforms & definition of t f
-8
15
600
V
V
V
Figure 4
Buck IGBT
Turn-on Switching Waveforms & definition of t r
150
300
%
%
125
250
fitted
100
200
Ic 90%
75
150
Ic 60%
50
100
IC
Ic 40%
25
90%
50
Ic 10%
0
IC 10%
0
-25
-50
0,0
0,1
0,2
0,3
time (us)
0,4
2,3
2,4
2,5
V C (100%) =
I C (100%) =
600
804
V
A
V C (100%) =
I C (100%) =
600
804
V
A
tf =
0,046
µs
tr =
0,04
µs
copyright Vincotech
24
2,6
time(us)
2,7
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck switching definitions
Figure 5
Buck IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Buck IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
IC 1%
100
100
75
75
50
50
25
25
Uge 90%
Uce 3%
Uge 10%
0
0
-25
-0,1
-25
0
0,1
P off (100%) =
E off (100%) =
t E off =
0,2
483
38,21
0,58
0,3
0,4
0,5
2,2
0,6
0,7
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
2,3
2,4
483
13,39
0,38
2,5
2,6
time(us)
2,7
kW
mJ
µs
Figure 7
Buck FWD
Turn-off Switching Waveforms & definition of t rr
150
%
100
trr
50
0
IRRM 10%
-50
-100
IRRM 90%
-150
IRRM 100%
-200
2,3
2,4
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
2,5
600
804
-1215
0,26
2,6
2,7 time(us)
2,8
V
A
A
µs
25
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Buck switching definitions
Figure 8
Buck FWD
Turn-on Switching Waveforms & definition of t Qrr
Figure 9
Buck FWD
Turn-on Switching Waveforms & definition of t Erec
(t Qrr= integrating time for Q rr)
(t Erec= integrating time for E rec)
150
150
%
%
100
125
tQint
50
100
0
75
-50
50
-100
25
-150
0
-200
-25
2,3
2,4
I d (100%) =
Q rr (100%) =
t Qint =
2,5
2,6
804
132,40
0,33
2,7
2,8
2,9
time(us)
3
2,4
A
µC
µs
2,5
P rec (100%) =
E rec (100%) =
t E rec =
2,6
482,56
63,38
0,33
2,7
2,8
2,9
time(us) 3
kW
mJ
µs
Buck IGBT switching measurement circuit
Figure 10
copyright Vincotech
26
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost switching definitions
General conditions
Tj
= 125 °C
= 0,625 Ω
R gon
R goff
= 0,625 Ω
Test setup inductance: 9nH
Figure 1
Boost IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Boost IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
150
%
%
125
125
100
100
VCE
90%
VGE 90%
75
75
tdon
50
50
25
25
VGE 10%
IC
VCE 3%
IC 10%
1%
0
0
-25
-25
-0,1
0,1
0,3
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-8
15
600
t doff =
t E off =
0,5
0,7
2,8
0,9
time (us)
3
3,2
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
827
A
I C (100%) =
827
A
0,34
0,70
µs
µs
t don =
t E on =
0,18
0,47
µs
µs
Figure 3
Boost IGBT
Turn-off Switching Waveforms & definition of t f
-8
15
600
3,4
3,6
time(us)
3,8
V
V
V
Figure 4
Boost IGBT
Turn-on Switching Waveforms & definition of t r
150
150
%
%
125
125
fitted
100
100
Ic 90%
IC
75
90%
75
Ic 60%
50
50
Ic 40%
25
25
Ic 10%
IC 10%
0
0
-25
0,1
0,2
0,3
0,4
0,5
0,6
-25
0,7
3
time (us)
3,1
3,2
3,3
V C (100%) =
I C (100%) =
600
827
V
A
V C (100%) =
I C (100%) =
600
827
V
A
tf =
0,079
µs
tr =
0,072
µs
copyright Vincotech
27
3,4
time(us) 3,5
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost switching definitions
Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
IC 1%
Uce 3%
100
100
75
75
50
50
25
25
Uge 90%
Uge 10%
0
0
-25
-0,2
-25
0
0,2
P off (100%) =
E off (100%) =
t E off =
496
75
0,70
0,4
0,6
time (us)
2,8
0,8
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
3
3,2
496
40
0,47
3,4
time(us)
3,6
kW
mJ
µs
Figure 7
Boost FWD
Turn-off Switching Waveforms & definition of t rr
150
%
100
trr
50
0
IRRM 10%
IRRM 90%
IRRM
100%
-50
-100
-150
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,3
3,5
600
827
-396
0,47
3,7
time(us)
3,9
V
A
A
µs
28
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Boost switching definitions
Figure 8
Boost FWD
Turn-on Switching Waveforms & definition of t Qrr
Figure 9
Boost FWD
Turn-on Switching Waveforms & definition of t Erec
(t Qrr= integrating time for Q rr)
(t Erec= integrating time for E rec)
125
150
%
%
100
100
75
tQint
50
50
0
25
-50
0
-100
-25
2,9
I d (100%) =
Q rr (100%) =
t Qint =
3,3
3,7
827
83,52
1,17
4,1
time(us)
4,5
3,2
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
3,5
3,8
496,41
44,13
1,17
4,1
4,4
time(us)
4,7
kW
mJ
µs
Boost IGBT switching measurement circuit
Figure 10
copyright Vincotech
29
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Ordering Code and Marking - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W424NIA800SH-M800F
in DataMatrix as in packaging barcode as
M800F
M800F
Pinout
copyright Vincotech
30
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Outline
Driver pins
Pin
X1
Y1
Function
1.1
-2,15
81,95
S11-a-1
Group
T11-a
1.2
-2,15
84,85
G11-a-1
T11-a
1.3
46,15
81,95
S11-a-2
T11-a
1.4
46,15
84,85
G11-a-2
T11-a
1.5
19,45
93,05 DC+ (desat)
1.6
24,55
93,05 DC+ (desat)
1.7
-7,65
67,15
S13-a-1
T13-a
1.8
-7,65
70,05
G13-a-1
T13-a
1.9
51,65
67,15
S13-a-2
T13-a
1.10
51,65
70,05
G13-a-2
T13-a
1.11
-5,45
28,00
S14-a-1
T14-a
1.12
-2,55
28,00
G14-a-1
T14-a
1.13
46,55
28,00
G14-a-2
T14-a
1.14
49,45
28,00
S14-a-2
T14-a
1.15
-4,80
50,85
G12-a-1
T12-a
1.16
-1,60
49,05
S12-a-1
T12-a
1.17
45,60
49,05
S12-a-2
T12-a
1.18
48,80
50,85
G12-a-2
T12-a
1.19
16,75
75,35 GND (desat)
1.20
27,25
75,35 GND (desat)
1.21
67,65
86,70
Therm12
1.22
67,65
89,80
Therm11
Rt-1
1.23
98,85
81,95
S11-b-1
T11-b
98,85
T11-b
1.24
Rt-1
84,85
G11-b-1
1.25
147,15 81,95
S11-b-2
T11-b
1.26
147,15 84,85
G11-b-2
T11-b
1.27
120,45 93,05 DC+ (desat)
1.28
125,55 93,05 DC+ (desat)
1.29
93,35
67,15
S13-b-1
T13-b
1.30
93,35
70,05
G13-b-1
T13-b
1.31
152,65 67,15
S13-b-2
T13-b
1.32
152,65 70,05
G13-b-2
T13-b
1.33
95,55
28,00
S14-b-1
T14-b
1.34
98,45
28,00
G14-b-1
T14-b
1.35
147,55 28,00
G14-b-2
T14-b
1.36
150,45 28,00
S14-b-2
T14-b
1.37
1.38
96,20
50,85
G12-b-1
T12-b
99,40
T12-b
49,05
S12-b-1
1.39
146,60 49,05
S12-b-2
T12-b
1.40
149,80 50,85
G12-b-2
T12-b
1.41
117,75 75,35 GND (desat)
1.42
128,25 75,35 GND (desat)
1.43
168,65 86,70
Therm22
Rt-2
1.44
168,65 89,80
Therm21
Rt-2
Low current connections
Power connections
M4 screw
X3
Y3
Function
M6 screw
X2
Y2
Function
3.1
-39,1
89,8
TR+
2.1
0
0
Phase
3.2
184,1
89,8
TR+
2.2
22
0
Phase
3.3
-39,1
65,2
DC+
2.3
44
0
Phase
3.4
184,1
65,2
DC+
2.4
0
110,4
DC+
3.5
-39,1
45,2
DC-
2.5
22
110,4
GND
3.6
184,1
45,2
DC-
2.6
44
110,4
DC-
3.7
-39,1
20,6
TR-
2.7
101
0
Phase
3.8
184,1
20,6
TR-
2.8
123
0
Phase
3.9
-39,1
89,8
GND
2.9
145
0,0
Phase
3.10
184,1
89,8
GND
2.10
101
110,4
DC+
Tolerance of pinpositions: ±0,5mm at the end of pins
3.11
-39,1
45,2
GND
2.11
123
110,4
GND
PCB holes and connection parameters of pins see in
3.12
184,1
45,2
GND
2.12
145
110,4
DC-
the handling instruction document
copyright Vincotech
31
14 Nov 2015 / Revision 4
70-W424NIA800SH-M800F
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
6
Standard
<SPQ
Sample
Handling instruction
Handling instructions for 2xflowSCREW 4w packages see vincotech.com website.
General datasheet
General datasheet for 2xflowSCREW 4w packages see vincotech.com website.
Package data
Package data for 2xflowSCREW 4w packages see vincotech.com website.
Document No.:
Date:
Modification:
Pages
70-W424NIA800SH-M800F-D4-14
14.nov.15
axis label correction
11,13,18,21,22
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
32
14 Nov 2015 / Revision 4