70-W424NIA800SH-M800F datasheet flow NPC 8w 2400 V / 800 A Features 2xflow SCREW 4w 12mm housing ● 2400V NPC-topology (2x 1200V) ● High power screw interface ● Low inductive interface for external DC-capacitors and paralleling on component level ● Snubber diode for optional asymmetrical inductance ● High speed buck IGBT´s ● Temperature sensor Target Applications Schematic ● Solar inverter ● Wind Power ● Motor Drive Types ● 70-W424NIA800SH-M800F Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 181 240 A Snubber Diode (D61, D62) Repetitive peak reverse voltage V RRM Forward average current I FAV Surge forward current I FSM I2t-value I 2t Power dissipation P tot Maximum Junction Temperature sine,d=0.5 T j=T jmax T s=80°C T c=80°C t p=10ms, sin 180º T j=150°C T j=T jmax T s=80°C T c=80°C T jmax 1080 A 5832 A2s 323 490 W 175 °C 1200 V 651 800 A 2400 A 1759 2665 W Buck IGBT (T11, T12) Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T j≤150°C V GE=15V T jmax 1 T s=80°C T c=80°C ±20 V 10 800 µs V 175 °C 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 540 711 A 4400 A 1131 1713 W 175 °C 1200 V 689 883 A 2400 A 1652 2503 W Buck Diode (D11, D12) Peak Repetitive Reverse Voltage DC forward current Surge Forward Current Power dissipation Maximum Junction Temperature V RRM IF I FSM P tot T j=T jmax T s=80°C T c=80°C t p=10ms, sin 180º T j=T jmax T s=80°C T c=80°C T jmax Boost IGBT (T13, T14) Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T s=80°C T c=80°C T j≤150°C V GE=15V T jmax ±20 V 10 800 µs V 175 °C 1200 V 680 680 A 1200 A 1759 2666 W 175 °C 1200 V 514 685 A 1200 A 905 1371 W 175 °C Boost Inverse Diode (D15, D16) Peak Repetitive Reverse Voltage DC forward current Repetitive Forward Current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T s=80°C T c=80°C T jmax Boost Diode (D14, D13) Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature copyright Vincotech V RRM IF I FRM P tot T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T jmax 2 T s=80°C T c=80°C 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit -40…+125 °C -40…+(T jmax - 25) °C Thermal Properties Storage temperature T stg Operation temperature under switching condition T op for power part V is t=2s Insulation Properties Insulation voltage DC voltage Creepage distance Clearance Stage copyright Vincotech CTI 4000 V min 12,7 mm min 12,7 mm >200 3 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Characteristic values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 1,91 1,85 1,25 1,11 0,003 0,004 2,54 Snubber Diode Forward voltage VF 200 Threshold voltage (for power loss calc. only) V to 200 Slope resistance (for power loss calc. only) rt 200 Reverse current Ir 1200 Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) phase-change material λ = 3,4 W/mK Gate emitter threshold voltage V GE(th) V CE=V GE Collector-emitter saturation voltage V CEsat 25 125 25 125 25 125 25 150 V V mΩ 0,12 mA 0,294 K/W 0,194 Buck IGBT (T11, T12) 0,0272 15 800 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 5,2 5,8 6,4 1,7 2,14 2,44 2,4 0,096 1920 0,25 t d(on) t d(off) 25 125 25 125 25 125 25 125 R goff=0,5 Ω R gon=0,5 Ω ±15 600 824 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 151 135 42 40 195 231 24 48 41 50 26 43 ns mWs 44320 f=1MHz 0 25 ±15 960 25 pF 2600 2560 800 25 phase-change material λ = 3,4 W/mK 3700 nC 0,052 K/W 0,035 Buck Diode (D11, D12) Diode forward voltage Reverse leakage current VF IR Reverse recovery time I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy 1200 R gon=0,5 Ω ±15 600 ( di rf/dt )max E rec Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) copyright Vincotech 800 phase-change material λ = 3,4 W/mK 824 25 125 25 125 25 125 25 125 25 125 25 125 25 125 2,34 2,38 2,52 960 932 1319 165 193 64 136 16722 16606 22 56 V µA A ns µC A/µs mWs 0,081 K/W 0,054 4 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Characteristic values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 5 5,80 6,5 1,55 1,91 2,14 2,05 Boost IGBT (T13, T14) Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0304 15 800 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 0,104 4800 0,9375 tr t d(off) 25 125 25 125 25 125 25 125 R goff=0,5 Ω R gon=0,5 Ω 600 ±15 800 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 290 301 57 60 384 455 43 108 49 65 49 76 ns mWs 49200 f=1MHz 0 25 25 3240 pF 2760 15 960 800 25 4060 phase-change material λ = 3,4 W/mK nC 0,058 K/W 0,038 Boost Inverse Diode (D15, D16) Diode forward voltage 25 VF Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 600 1,35 125 1,90 2,05 V 1,84 phase-change material λ = 3,4 W/mK 0,054 K/W 0,036 Boost Diode (D14, D13) Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 600 Ir 1200 I RRM t rr Q rr R gon=0,5 Ω ±15 600 ( di rf/dt )max E rec Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) copyright Vincotech phase-change material λ = 3,4 W/mK 800 25 125 25 125 25 125 25 125 25 125 25 125 25 125 1,35 1,90 1,84 2,05 112 576 806 271 341 63 118 4456 6686 23 47 V µA A ns µC A/µs mWs 0,102 K/W 0,067 5 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Characteristic values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Thermistor Rated resistance R Deviation of R25 Δ R/R Power dissipation P 25 R 100=1486 Ω 25 Power dissipation constant 22000 -5 Ω +5 % 25 200 mW 25 2 mW/K B-value B (25/50) Tol. ±3% 25 3950 K B-value B (25/100) Tol. ±3% 25 3996 K Vincotech NTC Reference B Module Properties Module inductance (from chips to PCB) LsCE Module inductance (from PCB to PCB using Intercon board) LsCE Chip module lead resistance, terminals -chip Rcc'1+EE' Resistance of Intercon boards (from PCB to PCB using Intercon board) Rcc'1+EE' Mounting torque M Mounting torque M Terminal connection torque M Weight G copyright Vincotech Buck Boost Tc=25°C, per switch 9 17 nH 5 nH tbd. mΩ 1,5 Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 6 2 mΩ 2,2 Nm 4 6 Nm 2,5 5 Nm tbd g 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck Buck IGBT and Buck FWD IGBT Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 1800 IC (A) IC (A) 1800 1600 1600 1400 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics I C = f(V GE) 1 2 3 4 V CE (V) 5 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) 1750 IC (A) IF (A) 700 600 1500 500 1250 400 1000 300 750 200 500 100 250 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 7 1 350 2 3 V F (V) 4 µs 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck Buck IGBT and Buck FWD IGBT Figure 5 IGBT Figure 6 Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) E (mWs) 140 E (mWs) 100 Eon High T Eon Low T 120 Eon High T 80 Eoff High T 100 Eon Low T Eoff Low T 60 80 60 40 Eoff High T 40 Eoff Low T 20 20 0 0 0 200 400 600 800 1000 1200 0,0 1400 I (A) 1600 C With an inductive load at Tj = °C 25/125 V CE = 600 V V GE = ±15 V R gon = 0,5 Ω R goff = 0,6 Ω 0,5 1,0 1,5 2,0 2,5 R G ( Ω) With an inductive load at Tj = °C 25/125 V CE = 600 V V GE = ±15 V IC = 824 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 80 70 60 60 50 Erec High T 40 40 Erec Low T 30 20 20 Erec Low T 10 0 0 0 200 400 600 800 1000 1200 1400 1600 I C (A) 0,0 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = ±15 V R gon = 0,5 Ω copyright Vincotech 0,5 1,0 1,5 2,0 R G ( Ω) 2,5 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = ±15 V IC = 824 A 8 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck Buck IGBT and Buck FWD IGBT Figure 9 IGBT Figure 10 Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 10,00 t (µ s) t (µ s) 1,00 tdoff 1,00 tdon 0,10 tdon tr tdoff 0,10 tf tf 0,01 tr 0,01 0,00 0,00 0 250 500 750 1000 1250 I (A) C 1500 0,0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 0,5 Ω R goff = 0,6 Ω 0,5 1,0 1,5 2,0 2,5 R G ( Ω) With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 824 A FWD Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) t rr(µ s) 0,30 t rr(µ s) 0,25 trr High T trr High T 0,25 0,20 trr Low T 0,20 trr Low T 0,15 0,15 0,10 0,10 0,05 0,05 0,00 0 200 400 600 800 1000 1200 1400 0,00 1600 0 I C (A) At Tj = V CE = V GE = R gon = 25/125 600 ±15 0,5 copyright Vincotech At Tj = VR= IF= V GE = °C V V Ω 9 1 25/125 600 824 ±15 1 2 2 R gon ( Ω) 3 °C V A V 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck Buck IGBT and Buck FWD FWD Figure 13 FWD Figure 14 Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Qrr (µ C) 150 Qrr (µ C) 200 Qrr High T Qrr High T 125 150 100 Qrr Low T 100 75 Qrr Low T 50 50 25 0 0 0 200 400 600 800 1000 1200 1400 At At Tj = V CE = V GE = R gon = 1600 I C (A) 0 1 25/125 600 °C V At Tj = VR= 25/125 600 °C V ±15 0,5 V Ω IF= V GE = 824 ±15 A V FWD Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) 1,5 2 R gon ( Ω) 2,5 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 1800 IrrM (A) 1600 IrrM (A) 0,5 IRRM High T 1400 1600 1400 1200 IRRM Low T 1200 1000 1000 800 IRRM High T 800 600 IRRM Low T 600 400 400 200 200 0 0 200 400 600 800 1000 1200 1400 0 1600 0,0 I C (A) At Tj = V CE = V GE = R gon = 25/125 600 ±15 0,5 copyright Vincotech At Tj = VR= IF= V GE = °C V V Ω 10 0,5 25/125 600 824 ±15 1,0 1,5 2,0 R gon ( Ω) 2,5 °C V A V 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck Buck IGBT and Buck FWD FWD Figure 17 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 25000 36000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Typical rate of fall of forward dIo/dt T 20000 dIrec/dt T dI0/dt T 32000 28000 24000 15000 20000 16000 10000 12000 8000 5000 4000 0 0 0 At Tj = V CE = V GE = R gon = 250 500 750 1000 1250 0,0 I C (A) 1500 °C V At Tj = VR= 25/125 600 °C V ±15 0,5 V Ω IF= V GE = 824 ±15 A V IGBT 2,0 R gon ( Ω) 2,5 FWD ZthJH (K/W) ZthJH (K/W) 10-1 10-2 10-2 10-3 10-3 10-4 10-4 thJH 1,5 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 10-1 At D = R = 1,0 25/125 600 Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) 10-5 0,5 10-4 10-3 10-2 10-1 t p (s) 100 10-5 101 1 At D = R thJH = tp/T 0,054 K/W R thJC = 0,035 K/W IGBT thermal model values 10-4 10-3 10-2 K/W R thJC = 10-1 t p (s) 100 tp/T 0,084 0,054 K/W FWD thermal model values With thermal grease With phase change interface With thermal grease With phase change interface R (K/W) 0,0224 Tau (s) 3,378 R (K/W) 0,0217 R (K/W) 0,0091 Tau (s) 8,788 R (K/W) 0,0089 0,0101 0,0066 0,0105 0,0020 0,0025 0,6296 0,1078 0,0309 0,0049 0,0005 0,0098 0,0064 0,0102 0,0020 0,0024 0,0156 0,0159 0,0215 0,0166 0,0052 1,882 0,3424 0,0747 0,0242 0,0022 0,0152 0,0155 0,0208 0,0161 0,0050 copyright Vincotech 101 1 Tau (s) 3,378 0,6296 0,1078 0,0309 0,0049 0,0005 11 Tau (s) 8,788 1,882 0,3424 0,0747 0,0242 0,0022 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck Buck IGBT and Buck FWD IGBT Figure 21 IGBT Figure 22 Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 1000 IC (A) Ptot (W) 3500 3000 800 2500 600 2000 1500 400 1000 200 500 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C FWD Figure 23 175 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T h) Forward current as a function of heatsink temperature I F = f(T h) 1000 Ptot (W) IF (A) 2500 2000 800 1500 600 1000 400 500 200 0 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 12 50 175 100 150 T h ( o C) 200 °C 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck Buck IGBT and Buck FWD IGBT Figure 25 Safe operating area as a function Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) IGBT VGE (V) IC (A) 17,5 15 103 12,5 102 10 10 1 7,5 100 5 2,5 10-1 0 10 102 101 0 At D = 0 103 80 15 T jmax V GE = Tj = 600 900 1200 1500 1800 Q g (nC) At IC = single pulse Th = 300 V CE (V) 800 A ºC V ºC IGBT Figure 27 Reverse bias safe operating area I C = f(V CE) IC (A) 1800 1600 1400 1200 1000 800 600 400 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 ºC Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 13 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Boost IGBT and Boost FWD IGBT Figure 1 IGBT Figure 2 Typical output characteristics I C = f(V CE) Typical output characteristics I C = f(V CE) 1800 IC (A) IC (A) 1800 1600 1600 1400 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 1 2 3 4 V CE (V) 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical transfer characteristics I C = f(V GE) 5 Typical FWD forward current as a function of forward voltage I F = f(V F) 800 IF (A) IC (A) 1800 1600 700 1400 600 1200 500 1000 400 800 300 600 200 400 100 200 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 14 1 350 2 3 V F (V) 4 µs 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Boost IGBT and Boost FWD IGBT Figure 5 IGBT Figure 6 Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 180 E (mWs) E (mWs) 180 Eon High T 150 Eon High T 150 Eon Low T Eoff High T 120 120 Eon Low T Eoff Low T 90 90 Eoff High T 60 60 30 30 0 0 0 200 400 600 800 1000 1200 1400 1600 1800 I C (A) 0 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = ±15 V R gon = 0,5 Ω R goff = 0,5 Ω 1 2 3 4 RG(Ω ) 5 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = ±15 V IC = 796 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 60 E (mWs) 70 E (mWs) Eoff Low T Erec High T 60 50 50 40 Erec High T 40 Erec Low T 30 30 20 Erec Low T 20 10 10 0 0 0 200 400 600 800 1000 1200 1400 0 1600 1800 I C (A) With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = ±15 V R gon = 0,5 Ω copyright Vincotech 1 2 3 4 RG (Ω ) 5 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = ±15 V IC = 796 A 15 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Boost IGBT and Boost FWD IGBT Figure 9 IGBT Figure 10 Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 1 tdoff t ( µs) t ( µs) tdoff tdon 0,1 tr tdon 0,1 tf tf tr 0,01 0,01 0 200 400 600 800 1000 1200 1400 1600 0 1800 I C (A) With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 0,5 Ω R goff = 0,5 Ω 1 2 3 4 5 RG(Ω ) With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 796 A FWD Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,7 trr High T t rr(µ s) t rr(µ s) 0,6 trr High T 0,6 0,5 0,5 trr Low T 0,4 trr Low T 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0 0 0 At Tj = V CE = V GE = R gon = 200 400 25/125 600 ±15 0,5 copyright Vincotech 600 800 1000 1200 1400 1600 1800 I C (A) 0 At Tj = VR= IF= V GE = °C V V Ω 16 1 25/125 600 796 ±15 2 3 4 R gon ( Ω) 5 °C V A V 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Boost IGBT and Boost FWD FWD Figure 13 FWD Figure 14 Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 180 Qrr (µ C) 150 Qrr (µ C) Qrr High T 150 Qrr High T 120 120 Qrr Low T 90 90 Qrr Low T 60 60 30 30 0 0 0 200 400 600 800 1000 1200 1400 1600 At At Tj = V CE = V GE = R gon = 1800 I C (A) 0 1 2 25/125 600 °C V At Tj = VR= 25/125 600 °C V ±15 0,5 V Ω IF= V GE = 796 ±15 A V FWD Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) 3 4 R gon ( Ω) FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) IrrM (A) 1000 IrrM (A) 800 5 IRRM High T IRRM Low T 800 600 600 400 400 IRRM High T IRRM Low T 200 200 0 0 0 At Tj = V CE = V GE = R gon = 400 25/125 600 ±15 0,5 copyright Vincotech 800 1200 1600 I C (A) 0 2000 At Tj = VR= IF= V GE = °C V V Ω 17 1 25/125 600 796 ±15 2 3 4 R gon ( Ω) 5 °C V A V 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Boost IGBT and Boost FWD FWD Figure 17 FWD Figure 18 Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 17500 direc / dt (A/ms) direc / dt (A/ms) 18000 dIrec/dt T di0/dt T dIrec/dt T dI0/dt T 15000 15000 12500 12000 10000 9000 7500 6000 5000 3000 2500 0 0 0 At Tj = V CE = V GE = R gon = 200 400 600 800 1000 1200 1400 1600 1800 I C (A) 0 1 2 25/125 600 °C V At Tj = VR= 25/125 600 °C V ±15 0,5 V Ω IF= V GE = 796 ±15 A V IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) 3 4 R gon ( Ω) FWD Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 10-1 ZthJH (K/W) ZthJH (K/W) 10-1 5 10-2 10-2 10-3 10-3 10-4 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-4 101 10 10-5 At D = R thJH = tp/T 0,058 K/W R thJC = 0,038 IGBT thermal model values 10-4 10-3 10-2 10-1 100 10110 tp/T 0,105 K/W R thJC = 0,067 FWD thermal model values With thermal grease With phase change interface With thermal grease With phase change interface R (K/W) 0,0060 Tau (s) 9,881 R (K/W) 0,0058 Tau (s) 9,881 R (K/W) 0,0104 Tau (s) 8,269 R (K/W) 0,0101 Tau (s) 8,269 0,0238 0,0103 0,0066 0,0100 0,0009 2,747 0,6136 0,1357 0,0302 0,0035 0,0231 0,01 0,0064 0,0097 0,0009 2,747 0,6136 0,1357 0,0302 0,0035 0,0336 0,0241 0,0274 0,0062 0,0033 1,883 0,4658 0,0479 0,0119 0,0012 0,0326 0,0233 0,0266 0,0060 0,0032 1,883 0,4658 0,0479 0,0119 0,0012 copyright Vincotech t p (s) 18 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Boost IGBT and Boost FWD IGBT Figure 21 IGBT Figure 22 Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 1000 IC (A) Ptot (W) 3000 2500 800 2000 600 1500 400 1000 200 500 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC FWD Figure 23 Power dissipation as a 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature P tot = f(T h) 200 function of heatsink temperature I F = f(T h) 2000 Ptot (W) IF (A) 800 1500 600 1000 400 500 200 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 175 100 150 Th ( o C) 200 ºC 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Boost IGBT IGBT Figure 25 Reverse bias safe operating area I C = f(V CE) IC (A) 1800 1600 1400 1200 1000 800 600 400 200 0 0 At Tj = 200 400 T jmax-25 ºC 600 800 1000 1200 1400 V CE (V) Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 20 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost Inverse Diode Boost Inverse Diode Figure 25 Boost Inverse Diode Figure 26 Typical FWD forward current as FWD transient thermal impedance a function of forward voltage I F = f(V F) as a function of pulse width Z thJH = f(t p) 2000 ZthJC (K/W) IF (A) 10-1 1500 10-2 1000 10-3 500 0 0 At tp = 1 250 2 3 V F (V) 10-4 4 µs Boost Inverse Diode Figure 27 10-5 10-4 At D = R thJH = tp/T 10-3 0,054 10-2 100 t p (s) 10110 K/W Boost Inverse Diode Figure 28 Power dissipation as a function of heatsink temperature P tot = f(T h) 10-1 Forward current as a function of heatsink temperature I F = f(T h) 800 IF (A) Ptot (W) 3500 3000 600 2500 2000 400 1500 1000 200 500 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 21 50 175 100 150 Th ( o C) 200 ºC 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Snubber Diode Snubber Diode Figure 1 Snubber Diode Figure 2 Typical thyristor forward current as Thyristor transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z thJH = f(t p) 100 ZthJC (K/W) IF (A) 1200 1000 10-1 800 600 400 10-2 200 0 0 At tp = 1 2 250 3 4 V F (V) 10-3 5 10-5 10-4 At D = R thJH = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Snubber Diode 10-3 10-2 100 t p (s) 10110 tp/T 0,294 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Snubber Diode 250 IF (A) Ptot (W) 600 10-1 500 200 400 150 300 100 200 50 100 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 22 50 175 100 150 T h ( o C) 200 ºC 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 23 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck switching definitions General conditions Tj = 125 °C = 0,625 Ω R gon R goff = 0,625 Ω Test setup inductance: 9nH Figure 1 Buck IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Buck IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 250 % % 125 200 100 VCE 75 90% 150 VGE 90% 100 50 tdon 25 50 IC 1% 0 VCE 3% VGE 10% 0 -25 -50 -0,1 -50 0 0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -8 15 600 t doff = t E off = 0,2 0,3 0,4 2,2 0,5 0,6 time (us) 2,3 2,4 2,5 2,6 2,7 time(us) V V V V GE (0%) = V GE (100%) = V C (100%) = 804 A I C (100%) = 804 A 0,23 0,61 µs µs t don = t E on = 0,10 0,29 µs µs Figure 3 Buck IGBT Turn-off Switching Waveforms & definition of t f -8 15 600 V V V Figure 4 Buck IGBT Turn-on Switching Waveforms & definition of t r 150 300 % % 125 250 fitted 100 200 Ic 90% 75 150 Ic 60% 50 100 IC Ic 40% 25 90% 50 Ic 10% 0 IC 10% 0 -25 -50 0,0 0,1 0,2 0,3 time (us) 0,4 2,3 2,4 2,5 V C (100%) = I C (100%) = 600 804 V A V C (100%) = I C (100%) = 600 804 V A tf = 0,046 µs tr = 0,04 µs copyright Vincotech 24 2,6 time(us) 2,7 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck switching definitions Figure 5 Buck IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Buck IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % IC 1% 100 100 75 75 50 50 25 25 Uge 90% Uce 3% Uge 10% 0 0 -25 -0,1 -25 0 0,1 P off (100%) = E off (100%) = t E off = 0,2 483 38,21 0,58 0,3 0,4 0,5 2,2 0,6 0,7 time (us) kW mJ µs P on (100%) = E on (100%) = t E on = 2,3 2,4 483 13,39 0,38 2,5 2,6 time(us) 2,7 kW mJ µs Figure 7 Buck FWD Turn-off Switching Waveforms & definition of t rr 150 % 100 trr 50 0 IRRM 10% -50 -100 IRRM 90% -150 IRRM 100% -200 2,3 2,4 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 2,5 600 804 -1215 0,26 2,6 2,7 time(us) 2,8 V A A µs 25 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Buck switching definitions Figure 8 Buck FWD Turn-on Switching Waveforms & definition of t Qrr Figure 9 Buck FWD Turn-on Switching Waveforms & definition of t Erec (t Qrr= integrating time for Q rr) (t Erec= integrating time for E rec) 150 150 % % 100 125 tQint 50 100 0 75 -50 50 -100 25 -150 0 -200 -25 2,3 2,4 I d (100%) = Q rr (100%) = t Qint = 2,5 2,6 804 132,40 0,33 2,7 2,8 2,9 time(us) 3 2,4 A µC µs 2,5 P rec (100%) = E rec (100%) = t E rec = 2,6 482,56 63,38 0,33 2,7 2,8 2,9 time(us) 3 kW mJ µs Buck IGBT switching measurement circuit Figure 10 copyright Vincotech 26 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost switching definitions General conditions Tj = 125 °C = 0,625 Ω R gon R goff = 0,625 Ω Test setup inductance: 9nH Figure 1 Boost IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Boost IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 150 % % 125 125 100 100 VCE 90% VGE 90% 75 75 tdon 50 50 25 25 VGE 10% IC VCE 3% IC 10% 1% 0 0 -25 -25 -0,1 0,1 0,3 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -8 15 600 t doff = t E off = 0,5 0,7 2,8 0,9 time (us) 3 3,2 V V V V GE (0%) = V GE (100%) = V C (100%) = 827 A I C (100%) = 827 A 0,34 0,70 µs µs t don = t E on = 0,18 0,47 µs µs Figure 3 Boost IGBT Turn-off Switching Waveforms & definition of t f -8 15 600 3,4 3,6 time(us) 3,8 V V V Figure 4 Boost IGBT Turn-on Switching Waveforms & definition of t r 150 150 % % 125 125 fitted 100 100 Ic 90% IC 75 90% 75 Ic 60% 50 50 Ic 40% 25 25 Ic 10% IC 10% 0 0 -25 0,1 0,2 0,3 0,4 0,5 0,6 -25 0,7 3 time (us) 3,1 3,2 3,3 V C (100%) = I C (100%) = 600 827 V A V C (100%) = I C (100%) = 600 827 V A tf = 0,079 µs tr = 0,072 µs copyright Vincotech 27 3,4 time(us) 3,5 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost switching definitions Figure 5 Boost IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % IC 1% Uce 3% 100 100 75 75 50 50 25 25 Uge 90% Uge 10% 0 0 -25 -0,2 -25 0 0,2 P off (100%) = E off (100%) = t E off = 496 75 0,70 0,4 0,6 time (us) 2,8 0,8 kW mJ µs P on (100%) = E on (100%) = t E on = 3 3,2 496 40 0,47 3,4 time(us) 3,6 kW mJ µs Figure 7 Boost FWD Turn-off Switching Waveforms & definition of t rr 150 % 100 trr 50 0 IRRM 10% IRRM 90% IRRM 100% -50 -100 -150 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,3 3,5 600 827 -396 0,47 3,7 time(us) 3,9 V A A µs 28 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Boost switching definitions Figure 8 Boost FWD Turn-on Switching Waveforms & definition of t Qrr Figure 9 Boost FWD Turn-on Switching Waveforms & definition of t Erec (t Qrr= integrating time for Q rr) (t Erec= integrating time for E rec) 125 150 % % 100 100 75 tQint 50 50 0 25 -50 0 -100 -25 2,9 I d (100%) = Q rr (100%) = t Qint = 3,3 3,7 827 83,52 1,17 4,1 time(us) 4,5 3,2 A µC µs P rec (100%) = E rec (100%) = t E rec = 3,5 3,8 496,41 44,13 1,17 4,1 4,4 time(us) 4,7 kW mJ µs Boost IGBT switching measurement circuit Figure 10 copyright Vincotech 29 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Ordering Code and Marking - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W424NIA800SH-M800F in DataMatrix as in packaging barcode as M800F M800F Pinout copyright Vincotech 30 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Outline Driver pins Pin X1 Y1 Function 1.1 -2,15 81,95 S11-a-1 Group T11-a 1.2 -2,15 84,85 G11-a-1 T11-a 1.3 46,15 81,95 S11-a-2 T11-a 1.4 46,15 84,85 G11-a-2 T11-a 1.5 19,45 93,05 DC+ (desat) 1.6 24,55 93,05 DC+ (desat) 1.7 -7,65 67,15 S13-a-1 T13-a 1.8 -7,65 70,05 G13-a-1 T13-a 1.9 51,65 67,15 S13-a-2 T13-a 1.10 51,65 70,05 G13-a-2 T13-a 1.11 -5,45 28,00 S14-a-1 T14-a 1.12 -2,55 28,00 G14-a-1 T14-a 1.13 46,55 28,00 G14-a-2 T14-a 1.14 49,45 28,00 S14-a-2 T14-a 1.15 -4,80 50,85 G12-a-1 T12-a 1.16 -1,60 49,05 S12-a-1 T12-a 1.17 45,60 49,05 S12-a-2 T12-a 1.18 48,80 50,85 G12-a-2 T12-a 1.19 16,75 75,35 GND (desat) 1.20 27,25 75,35 GND (desat) 1.21 67,65 86,70 Therm12 1.22 67,65 89,80 Therm11 Rt-1 1.23 98,85 81,95 S11-b-1 T11-b 98,85 T11-b 1.24 Rt-1 84,85 G11-b-1 1.25 147,15 81,95 S11-b-2 T11-b 1.26 147,15 84,85 G11-b-2 T11-b 1.27 120,45 93,05 DC+ (desat) 1.28 125,55 93,05 DC+ (desat) 1.29 93,35 67,15 S13-b-1 T13-b 1.30 93,35 70,05 G13-b-1 T13-b 1.31 152,65 67,15 S13-b-2 T13-b 1.32 152,65 70,05 G13-b-2 T13-b 1.33 95,55 28,00 S14-b-1 T14-b 1.34 98,45 28,00 G14-b-1 T14-b 1.35 147,55 28,00 G14-b-2 T14-b 1.36 150,45 28,00 S14-b-2 T14-b 1.37 1.38 96,20 50,85 G12-b-1 T12-b 99,40 T12-b 49,05 S12-b-1 1.39 146,60 49,05 S12-b-2 T12-b 1.40 149,80 50,85 G12-b-2 T12-b 1.41 117,75 75,35 GND (desat) 1.42 128,25 75,35 GND (desat) 1.43 168,65 86,70 Therm22 Rt-2 1.44 168,65 89,80 Therm21 Rt-2 Low current connections Power connections M4 screw X3 Y3 Function M6 screw X2 Y2 Function 3.1 -39,1 89,8 TR+ 2.1 0 0 Phase 3.2 184,1 89,8 TR+ 2.2 22 0 Phase 3.3 -39,1 65,2 DC+ 2.3 44 0 Phase 3.4 184,1 65,2 DC+ 2.4 0 110,4 DC+ 3.5 -39,1 45,2 DC- 2.5 22 110,4 GND 3.6 184,1 45,2 DC- 2.6 44 110,4 DC- 3.7 -39,1 20,6 TR- 2.7 101 0 Phase 3.8 184,1 20,6 TR- 2.8 123 0 Phase 3.9 -39,1 89,8 GND 2.9 145 0,0 Phase 3.10 184,1 89,8 GND 2.10 101 110,4 DC+ Tolerance of pinpositions: ±0,5mm at the end of pins 3.11 -39,1 45,2 GND 2.11 123 110,4 GND PCB holes and connection parameters of pins see in 3.12 184,1 45,2 GND 2.12 145 110,4 DC- the handling instruction document copyright Vincotech 31 14 Nov 2015 / Revision 4 70-W424NIA800SH-M800F datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 6 Standard <SPQ Sample Handling instruction Handling instructions for 2xflowSCREW 4w packages see vincotech.com website. General datasheet General datasheet for 2xflowSCREW 4w packages see vincotech.com website. Package data Package data for 2xflowSCREW 4w packages see vincotech.com website. Document No.: Date: Modification: Pages 70-W424NIA800SH-M800F-D4-14 14.nov.15 axis label correction 11,13,18,21,22 DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 32 14 Nov 2015 / Revision 4