70-W624N3A1K2SC-L400FP datasheet flow NPC 12w 2400 V / 1200 A Features flow SCREW 12w housing ● 2400V NPC-topology ● Low inductive ● High power screw interface Target Applications ● Solar inverter Schematic ● Wind Power ● Motor Drive Types ● 70-W624N3A1K2SC-L400FP Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 940 1200 A 3600 A Buck IGBT( T1 ,T4 ) Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C T j=T jmax T j≤150°C V GE=15V T jmax 1 T s=80°C T c=80°C 2400 A 2470 3742 W ±20 V 10 800 µs V 175 °C 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 744 984 A 2400 A 1490 2257 W 175 °C 1200 V 922 1200 A 3600 A Buck Diode( D5 ,D6 ) Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j=T jmax T s=80°C T c=80°C t p=10ms, sin 180° T j=T jmax T s=80°C T c=80°C T jmax Boost IGBT( T2 ,T3 ) Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C T j=T jmax T s=80°C T c=80°C T j≤150°C V GE=15V T jmax 2400 A 2192 3322 W ±20 V 10 800 µs V 175 °C 1200 V 634 856 A 1800 A 1069 1619 W 175 °C 1200 V 648 870 A 1800 A 1069 1619 W 175 °C Boost Inverse Diode( D1 ,D4 ) Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T s=80°C T c=80°C T jmax Boost Diode( D2 ,D3 ) Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature copyright Vincotech V RRM IF I FRM P tot T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T jmax 2 T s=80°C T c=80°C 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance Stage copyright Vincotech CTI 4000 V min 12,7 mm min 12,7 mm >200 3 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 5,2 5,8 6,4 1,7 2,37 2,78 2,4 Buck IGBT( T1 ,T4 ) Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0408 1200 15 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time Per gate access tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) R goff=0,3 Ω R gon=0,3 Ω 0,024 2880 1 tr t d(off) 25 125 25 125 25 125 25 125 -10/+15 600 1200 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 113 115 43 45 183 229 38 68 44,08 48,91 49,18 86,78 ns mWs 66480 f=1MHz 0 25 25 3600 pF 3840 ±15 960 960 25 phase-change material λ = 3,4 W/mK 5550 nC 0,038 K/W 0,025 Buck Diode( D5 ,D6 ) Diode forward voltage Reverse leakage current Peak reverse recovery current VF IR Reverse recovery time t rr Q rr Reverse recovered energy R gon=0,3 Ω -10/+15 ( di rf/dt )max E rec Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) copyright Vincotech 1200 I RRM Reverse recovered charge Peak rate of fall of recovery current 1200 phase-change material λ = 3,4 W/mK 600 1200 25 125 25 125 25 125 25 125 25 125 25 125 25 125 2,34 2,38 2,52 1440 1075 1355 169 214 73,24 136,71 26252 24254 28,02 61,41 V µA A ns µC A/µs mWs 0,06 K/W 0,04 4 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Boost IGBT( T2 ,T3 ) Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0456 15 1200 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tr t d(off) tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge R goff=0,9 Ω R gon=0,9 Ω R th(j-s) Thermal resistance chip to case R th(j-c) 600 1200 5 5,80 6,5 1,91 2,14 2,05 0,0156 1440 0,625 V mA nA Ω 158 174 64 66 273 342 57 92 84,6 104,7 68,3 120,0 25 125 25 125 25 125 25 125 25 125 V ns mWs 75600 f=1MHz 0 25 1200 25 4860 pF 3240 QG Thermal resistance chip to heatsink -10/+15 25 125 25 125 25 125 25 125 25 125 15 960 1200 25 6090 phase-change material λ = 3,4 W/mK nC 0,04 K/W 0,03 Boost Inverse Diode( D1 ,D4 ) Diode forward voltage VF Reverse leakage current IR Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 900 1200 25 125 25 125 1,35 1,90 1,84 2,05 168 phase-change material λ = 3,4 W/mK V µA 0,09 K/W 0,06 Boost Diode( D2 ,D3 ) Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir t rr Reverse recovered charge Q rr Reverse recovery energy R gon=0,9 Ω -10/+15 ( di rf/dt )max E rec Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) copyright Vincotech 1200 I RRM Reverse recovery time Peak rate of fall of recovery current 900 phase-change material λ = 3,4 W/mK 600 1200 25 125 25 125 25 125 25 125 25 125 25 125 125 125 1,35 1,90 1,84 2,05 168 696 903 296 451 89 173 5538 4822 31,66 69,81 V µA A ns µC A/µs mWs 0,09 K/W 0,06 5 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Thermistor Rated resistance R Deviation of R25 Δ R/R Power dissipation P 25 R 100=1486 Ω 100 22000 -12 25 Ω +14 % 200 mW 25 2 mW/K B-value B (25/50) Tol. ±3% 25 3950 K B-value B (25/100) Tol. ±3% 25 3996 K Power dissipation constant Vincotech NTC Reference B Module Properties Module inductance (from chips to PCB) LsCE C-PCB Mounting torque for screws to heatsink MS Mounting torque for terminal screws Mt Mounting torque for Interconn PCB screws M Weight m copyright Vincotech Buck Boost 5 9 Screw M5 –according to the valid handling instructions FSWB-M-*-HI Screw M6 –according to the valid handling instructions FSWB-M-*-HI Screw M4 –according to the valid handling instructions FSWB-M-*-HI 6 nH 6 Nm 2,5 5 Nm 2 2,2 Nm 1930 g 4 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Buck T1, T4 / D5, D6 Buck IGBT and Buck FWD Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 IGBT Typical output characteristics I C = f(V CE) 2800 IC (A) IC (A) 2800 2400 2400 2000 2000 1600 1600 1200 1200 800 800 400 400 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 5 350 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) FWD 1000 IC (A) IF (A) 1000 800 800 600 600 400 400 Tj = 125°C Tj = 125°C Tj = 25°C 200 200 Tj = 25°C 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 7 0,5 350 1 1,5 2 V F (V) 2,5 µs 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Buck T1, T4 / D5, D6 Buck IGBT and Buck FWD Figure 5 IGBT Figure 6 FWD Typical switching energy losses Typical reverse recovery energy loss as a function of collector current E = f(I C) as a function of collector current E rec = f(I c) E (mWs) 125 E (mWs) Eoff High T 100 90 Erec High T 80 70 Eoff Low T 60 75 Eon High T 50 Eon Low T Erec Low T 40 50 30 20 25 10 0 0 500 1000 1500 2000 0 2500 I C (A) 0 With an inductive load at Tj = °C 25/125 25/125 V CE = 600 V V GE = -10/+15 V R gon = 0,33 Ω R goff = 0,33 Ω 500 1000 1500 2000 I C (A) 2500 With an inductive load at Tj = 25/125 °C 25/125 V CE = 600 V V GE = -10/+15 V R gon = 0,33 Ω Figure 7 Typical switching times as a function of collector current t = f(I C) IGBT Figure 8 Typical reverse recovery time as a function of collector current t rr = f(I c) 0,25 tdoff t (ms) trr High T t rr(ms) 1,00 FWD 0,20 trr Low T tdon 0,10 tf 0,15 tr 0,10 0,01 0,05 0,00 0,00 0 500 1000 1500 2000 I C (A) 2500 0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = -10/+15 V R gon = 0,33 Ω R goff = 0,33 Ω copyright Vincotech At Tj = V CE = V GE = R gon = 8 500 25/125 25/125 600 -10/+15 0,33 1000 1500 2000 I C (A) 2500 °C V V Ω 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Buck T1, T4 / D5, D6 Buck IGBT and Buck FWD Figure 9 FWD Figure 10 FWD Typical reverse recovery charge as a Typical reverse recovery current as a function of collector current Q rr = f(I C) function of collector current I RRM = f(I C) 1600 IrrM (A) Qrr (mC) 200 Qrr High T 175 IRRM High T 1400 IRRM Low T 1200 150 1000 125 Qrr Low T 100 800 75 600 50 400 25 200 0 0 0 500 At Tj = V CE = V GE = R gon = 1000 25/125 600 -10/+15 °C V V 0,33 Ω 1500 Tj = 2000 #REF! 25/125 I C (A) direc / dt (A/ms) 500 1000 1500 2000 2500 I C (A) °C Figure 11 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) 40000 0 2500 At Tj = V CE = V GE = 25/125 25/125 600 -10/+15 °C V V R gon = 0,33 Ω FWD dIrec/dt T dIo/dt T 35000 30000 25000 20000 15000 10000 5000 0 0 At Tj = V CE = V GE = R gon = 500 25/125 25/125 600 -10/+15 0,33 copyright Vincotech 1000 1500 2000 I C (A) 2500 °C V V Ω 9 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Buck T1, T4 / D5, D6 Buck IGBT and Buck FWD Figure 12 IGBT Figure 13 FWD IGBT transient thermal impedance FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) as a function of pulse width Z th(j-s) = f(t p) 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-5 10-4 10-3 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-5 101 At 10-4 10-3 10-2 10-1 100 t p (s) 1011 At tp/T D = tp/T D = FWD thermal model values with phase-change material R th(j-s) = R thJC = 0,064 K/W 0,050 K/W IGBT thermal model values with phase-change material R thJC = R th(j-s) = 0,038 K/W 0,030 K/W IGBT thermal model values FWD thermal model values With phase change material R (K/W) Tau (s) 0,0156 2,305 0,007 0,315 0,008 0,064 0,005 0,019 0,001 0,002 0,001 0,001 With phase change material R (K/W) Tau (s) 0,015 1,696 0,024 0,127 0,017 0,025 0,005 0,002 0,003 0,000 Figure 14 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 15 Collector current as a function of heatsink temperature I C = f(T h) 1400 Ptot (W) IC (A) 5000 IGBT 1200 4000 1000 3000 800 600 2000 400 1000 200 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = V GE = °C 10 50 175 15 100 150 T h ( o C) 200 °C V 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Buck T1, T4 / D5, D6 Buck IGBT and Buck FWD Figure 16 FWD Figure 17 FWD Power dissipation as a Forward current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I F = f(T h) 1200 IF (A) Ptot (W) 3000 2500 1000 2000 800 1500 600 1000 400 500 200 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Figure 18 Safe operating area as a function of collector-emitter voltage I C = f(V CE) IGBT 50 175 100 150 T h ( o C) 200 °C Figure 19 IGBT Gate voltage vs Gate charge V GE = f(Q g) VGE (V) IC (A) 17,5 10uS 15 103 240V 100uS 12,5 960V 102 1mS 10 101 10mS 7,5 100mS DC 100 5 2,5 10-1 0 100 At D = Th = 101 single pulse 80 ºC copyright Vincotech V GE = Tj = 0 103 102 15 T jmax 1000 2000 3000 4000 5000 6000 Q g (nC) V CE (V) At IC = V 1200 A ºC 11 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Buck T1, T4 / D5, D6 Buck IGBT and Buck FWD Figure 20 IGBT Reverse bias safe operating area IC (A) I C = f(V CE) 2600 IC MAX 2400 2200 Ic CHIP 2000 1800 1600 1400 MAX 1200 Ic MODULE VCE 1000 800 600 400 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 12 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Boost T2, T3 / D2, D3 Boost IGBT and Boost FWD Figure 1 IGBT Figure 2 Typical output characteristics I C = f(V CE) IGBT Typical output characteristics I C = f(V CE) 2800 IC (A) IC (A) 2800 2400 2400 2000 2000 1600 1600 1200 1200 800 800 400 400 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 IGBT 1 2 3 4 V CE (V) 350 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GE) 5 FWD Typical FWD forward current as a function of forward voltage I F = f(V F) 1200 IC (A) IF (A) 2800 2400 1000 2000 800 1600 600 1200 400 800 Tj = 125°C 200 400 Tj = 25°C Tj = 125°C 0 0 At tp = V CE = Tj = 25°C 0 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 13 1 350 2 3 V F (V) 4 µs 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Boost T2, T3 / D2, D3 Boost IGBT and Boost FWD Figure 5 IGBT Figure 6 FWD Typical switching energy losses Typical reverse recovery energy loss as a function of collector current E = f(I C) as a function of collector current E rec = f(I c) E (mWs) E (mWs) 250 Eon High T 80 Erec High T 70 200 Eon Low T 60 Eoff High T 50 Erec Low T 150 40 Eoff Low T 100 30 20 50 10 0 0 0 500 1000 1500 2000 I C (A) 0 2500 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = +10/ -15 V R gon = 0,9 Ω R goff = 0,9 Ω 500 1000 1500 2000 I C (A) 2500 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = +10/ -15 V R gon = 0,9 Ω Figure 7 Typical switching times as a function of collector current t = f(I C) IGBT Figure 8 Typical reverse recovery time as a function of collector current t rr = f(I c) 0,6 t rr(ms) 1 FWD t ( µs) tdoff trr High T 0,5 tdon trr Low T 0,1 0,4 tf tr 0,3 0,01 0,2 0,1 0,001 0 500 With an inductive load at Tj = 125 °C V CE = 600 V V GE = +10/ -15 V copyright Vincotech 1000 1500 R gon = R goff = 2000 0,9 0,9 I C (A) 0,0 2500 0 At Tj = V CE = V GE = R gon = Ω Ω 14 500 25/125 600 +10/ -15 0,9 1000 1500 2000 I C (A) 2500 °C V V Ω 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Boost T2, T3 / D2, D3 Boost IGBT and Boost FWD Figure 9 FWD Figure 10 FWD Typical reverse recovery current as a function of collector current Q rr = f(I C) function of collector current I RRM = f(I C) 225 1000 Qrr High T IrrM (A) Qrr (mC) Typical reverse recovery charge as a 200 IRRM High T 800 175 IRRM Low T 150 600 Qrr Low T 125 100 400 75 50 200 25 0 0 0 500 At Tj = V CE = V GE = R gon = 1000 1500 2000 I C (A) direc / dt (A/ms) 500 1000 25/125 °C 600 V +10/ -15 V At Tj = V CE = V GE = 25/125 °C 600 V +10/ -15 V 0,9 R gon = 0,9 Ω Figure 11 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) 25000 0 2500 1500 2000 I C (A) 2500 Ω FWD dIrec/dt T di0/dt T 20000 15000 10000 5000 0 0 At Tj = V CE = V GE = R gon = 500 25/125 600 +10/ -15 0,9 copyright Vincotech 1000 1500 2000 I C (A) 2500 °C V V Ω 15 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Boost T2, T3 / D2, D3 Boost IGBT and Boost FWD Figure 12 IGBT Figure 13 FWD as a function of pulse width Z th(j-s) = f(t p) as a function of pulse width Z th(j-s) = f(t p) 100 100 ZthJH (K/W) FWD transient thermal impedance ZthJH (K/W) IGBT transient thermal impedance 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 10-4 At D = 10-3 10-2 10-1 100 t p (s) 1 2 1010 10-5 10-4 At D = tp/T 10-3 10-2 10-1 100 t p (s) 10101 2 tp/T IGBT thermal model values with phase-change material R th(j-s) = R thJC = 0,043 K/W 0,034 FWD thermal model values with phase-change material R th(j-s) = R thJC = 0,089 K/W 0,069 IGBT thermal model values With phase-change material FWD thermal model values With phase-change material R (K/W) 0,020 0,010 0,011 0,001 0,001 R (K/W) 0,014 0,018 0,016 0,022 0,009 0,003 0,006 Tau (s) 1,78 0,17 0,03 0,00 0,00 Figure 14 IGBT Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Collector current as a function of heatsink temperature I C = f(T h) 1400 IC (A) 4500 Ptot (W) Tau (s) 5,78 1,38 0,26 0,05 0,02 0,00 0,00 4000 1200 3500 1000 3000 800 2500 2000 600 1500 400 1000 200 500 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = V GE = ºC 16 50 175 15 100 150 T h ( o C) 200 ºC V 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Boost T2, T3 / D2, D3 Boost IGBT and Boost FWD Figure 16 FWD Figure 17 FWD Power dissipation as a Forward current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I F = f(T h) 2000 Ptot (W) IF (A) 1200 1000 1500 800 1000 600 400 500 200 0 0 0 50 At Tj = 175 100 150 Th ( o C) 0 At Tj = ºC Figure 18 Reverse bias safe operating area I C = f(V CE) IC (A) 200 50 175 100 150 Th ( o C) 200 ºC IGBT 2600 IC MAX 2400 Ic CHIP 2200 2000 1800 Ic MODULE 1400 1200 1000 VCE MAX 1600 800 600 400 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 17 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Boost Inverse Diode D1, D4 Figure 19 Boost Inverse Diode D1, D4 Figure 20 Boost Inverse Diode D1, D4 Typical FWD forward current as FWD transient thermal impedance a function of forward voltage I F = f(V F) as a function of pulse width Z th(j-s) = f(t p) 100 ZthJC (K/W) IF (A) 2800 2400 2000 10-1 1600 1200 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 800 Tj = Tjmax-25°C 400 Tj = 25°C 0 10-3 0 At tp = 1 250 2 3 V F (V) 4 10-5 At D = R th(j-s) = µs Figure 21 10-4 Boost Inverse Diode D1, D4 10-3 10-2 100 t p (s) 10110 tp/T 0,09 K/W Figure 22 Power dissipation as a function of heatsink temperature P tot = f(T h) 10-1 Boost Inverse Diode D1, D4 Forward current as a function of heatsink temperature I F = f(T h) 1200 Ptot (W) IF (A) 2000 1000 1500 800 600 1000 400 500 200 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Switching Definitions Buck General conditions Tj = 125 °C = 0,33 Ω R gon R goff = 0,33 Ω Figure 1 Buck IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Buck IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 % 250 % VCE IC 125 200 tdoff 100 VGE 75 VGE 90% VCE 90% 150 IC 100 VGE VCE 50 tdon tEoff 50 25 VGE 10% IC 1% 0 0 VCE 3% IC 10% tEon -50 -25 -0,2 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -10 15 600 t doff = t E off = 0,4 0,6 time (us) 2,1 0,8 2,2 2,3 2,4 2,5 V V V V GE (0%) = V GE (100%) = V C (100%) = 1201 A I C (100%) = 1201 A 0,23 0,48 µs µs t don = t E on = 0,11 0,29 µs µs Figure 3 Buck IGBT Turn-off Switching Waveforms & definition of t f -10 15 600 2,6 2,7 2,8 time(us) V V V Figure 4 Buck IGBT Turn-on Switching Waveforms & definition of t r 150 250 % % 125 Ic 200 VCE fitted IC 100 150 IC 90% 75 VCE 100 IC 60% IC 90% 50 tr IC 40% 50 25 IC 10% 0 IC 10% 0 tf -50 -25 0 0,1 0,2 0,3 0,4 time(us) 2,3 0,5 2,35 2,4 2,45 V C (100%) = I C (100%) = 600 1201 V A V C (100%) = I C (100%) = 600 1201 V A tf = 0,07 µs tr = 0,04 µs copyright Vincotech 20 2,5 2,55 2,6 time(us) 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Switching Definitions Buck Figure 5 Buck IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Buck IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % Poff Eoff 100 IC 1% 75 Eon 100 75 Pon 50 50 25 25 VCE 3% VGE90% VGE 10% 0 0 tEon tEoff -25 -25 -0,1 0 0,1 P off (100%) = E off (100%) = t E off = 0,2 720,80 86,78 0,48 0,3 0,4 2,2 0,5 0,6 time (us) kW mJ µs P on (100%) = E on (100%) = t E on = 2,3 2,4 720,80 48,91 0,29 2,5 2,6 2,7 2,8 time(us) kW mJ µs Figure 7 Buck FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd 0 fitted IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 2,3 2,4 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 2,5 600 1201 -1355 0,21 2,6 2,7 time(us) 2,8 V A A µs 21 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Switching Definitions Buck Figure 8 Buck FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Buck FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 125 150 % % Id Qrr Erec 100 100 Prec tQrr 50 75 0 50 -50 25 -100 0 tErec -25 -150 2,3 2,4 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 2,5 1201 136,71 0,42 2,6 2,7 2,8 time(us) 2,4 2,9 2,5 2,6 2,7 2,8 2,9 time(us) A µC µs P rec (100%) = E rec (100%) = t E rec = 22 720,80 61,41 0,42 kW mJ µs 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Switching Definitions Boost General conditions Tj = 125 °C = 0,9 Ω R gon R goff = 0,9 Ω Figure 1 Boost IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Boost IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 200 % % VCE 125 tdoff IC 150 VGE 100 VCE VGE 90% VCE 90% 100 75 IC tdon 50 50 tEoff 25 IC VGE 10% 1% VCE 3% IC 10% 0 VGE tEon 0 -25 -0,2 -50 0 0,2 0,4 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -10 15 600 t doff = t E off = 0,6 0,8 1 1,2 time (us) 2,3 2,4 2,5 2,6 2,7 V V V V GE (0%) = V GE (100%) = V C (100%) = 1200 A I C (100%) = 1200 A 0,34 0,70 µs µs t don = t E on = 0,17 0,55 µs µs Figure 3 Boost IGBT Turn-off Switching Waveforms & definition of t f -10 15 600 2,8 2,9 3 time(us) V V V Figure 4 Boost IGBT Turn-on Switching Waveforms & definition of t r 150 200 % % VCE Ic 125 fitted 150 IC 100 Ic 90% VCE 100 75 IC Ic 60% 90% tr 50 50 Ic 40% 25 IC 10% Ic 10% 0 tf 0 -25 -50 0,1 0,2 0,3 0,4 0,5 0,6 time (us) 0,7 2,4 2,5 2,6 2,7 V C (100%) = I C (100%) = 600 1200 V A V C (100%) = I C (100%) = 600 1200 V A tf = 0,092 µs tr = 0,065 µs copyright Vincotech 23 2,8 2,9 time(us) 3 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Switching Definitions Boost Figure 5 Boost IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % Poff Eon Eoff 100 100 Pon IC 1% 75 75 50 50 25 25 Uge 90% Uce 3% Uge 10% 0 0 tEon tEoff -25 -25 -0,2 0 0,2 P off (100%) = E off (100%) = t E off = 719,72 119,96 0,70 0,4 0,6 time (us) 2,2 0,8 kW mJ µs P on (100%) = E on (100%) = t E on = 2,4 2,6 719,724 104,74 0,55 2,8 time(us) 3 kW mJ µs Figure 7 Boost FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 fitted Ud 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 2,4 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 2,6 2,8 600 1200 -903 0,45 3 time(us) 3,2 V A A µs 24 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Switching Definitions Boost Figure 8 Boost FWD Turn-on Switching Waveforms & definition of t Qrr Figure 9 Boost FWD Turn-on Switching Waveforms & definition of t Erec (t Qrr= integrating time for Q rr) (t Erec= integrating time for E rec) 150 125 % % Id 100 Erec 100 Qrr tErec 75 tQint 50 50 0 25 Prec -50 0 -100 -25 2,4 2,6 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 2,8 1200 172,55 0,90 3 3,2 3,4 time(us) 3,6 2,4 A µC µs 2,6 P rec (100%) = E rec (100%) = t E rec = 25 2,8 719,72 69,81 0,90 3 3,2 3,4 time(us) 3,6 kW mJ µs 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Outline Outline Driver pins Low current connections Pin X1 Y1 Function Group 1.1 -2,15 84,85 G1-1 T1 M6 screw 1.2 -2,15 81,95 E1-1 T1 1.3 46,15 84,85 G1-2 T1 1.4 46,15 81,95 E1-2 1.5 19,45 93,05 1.6 24,55 1.7 X2 Y2 Function 2.1 0 0 Phase 2.2 22 0 Phase T1 2.3 44 0 Phase DC+ desat 2.4 0 110,41 DC+ 93,05 DC+ desat 2.5 22 110,41 GND -7,65 70,05 G2-1 T2 2.6 44 110,41 DC- 1.8 -7,65 67,15 E2-1 T2 2.7 101 0 Phase 1.9 51,65 70,05 G2-2 T2 2.8 123 0 Phase 1.10 51,65 67,15 E2-2 T2 2.9 145 0 Phase 1.11 16,75 75,35 GND desat 2.10 101 110,41 DC+ 1.12 27,25 75,35 GND desat 2.11 123 110,41 GND 1.13 -2,55 28 G3-1 T3 2.12 145 110,41 DC- 1.14 -5,45 28 E3-1 T3 2.13 202 0 Phase 1.15 46,55 28 G3-2 T3 2.14 224 0 Phase 1.16 49,45 28 E3-2 T3 2.15 246 0 Phase 1.17 -4,8 50,85 G4-1 T4 2.16 202 110,41 DC+ 1.18 -1,6 49,05 E4-1 T4 2.17 224 110,41 GND 1.19 48,8 50,85 G4-2 T4 2.18 246 110,41 DC- 1.20 45,6 49,05 E4-2 T4 1.21 67,65 89,8 Therm11 Rt1 1.22 67,65 86,7 Therm12 Rt1 1.23 98,85 84,85 G1-3 T1 1.24 98,85 81,95 E1-3 T1 1.25 147,15 84,85 G1-4 T1 1.26 147,15 81,95 E1-4 T1 1.27 120,45 93,05 DC+ desat 1.28 125,55 93,05 DC+ desat 1.29 93,35 70,05 G2-3 T2 1.30 93,35 67,15 E2-3 T2 1.31 152,65 70,05 G2-4 T2 1.32 152,65 67,15 E2-4 T2 1.33 117,75 75,35 GND desat 1.34 128,25 75,35 GND desat 1.35 98,45 28 G3-3 T3 1.36 95,55 28 E3-3 T3 1.37 147,55 28 G3-4 T3 1.38 150,45 28 E3-4 T3 1.39 96,2 50,85 G4-3 T4 1.40 99,4 49,05 E4-3 T4 1.41 149,8 50,85 G4-4 T4 1.42 146,6 49,05 E4-4 T4 89,8 Therm21 Rt2 1.44 168,65 86,7 Therm22 Rt2 1.45 199,85 84,85 G1-5 T1 1.46 199,85 81,95 E1-5 T1 1.47 248,15 84,85 G1-6 T1 1.48 248,15 81,95 E1-6 T1 1.49 221,45 93,05 DC+ desat 1.50 226,55 93,05 DC+ desat 1.51 194,35 70,05 G2-5 T2 1.52 194,35 67,15 E2-5 T2 1.53 253,65 70,05 G2-6 T2 1.54 253,65 67,15 E2-6 T2 1.55 218,75 75,35 GND desat 1.56 229,25 75,35 GND desat 1.57 199,45 28 G3-5 T3 1.58 196,55 28 E3-5 T3 1.59 248,55 28 G3-6 T3 1.60 251,45 28 E3-6 T3 Pin X1 Y1 Function 1.43 168,65 Driver pins Group 1.61 197,2 50,85 G4-5 T4 1.64 247,6 49,05 E4-6 T4 1.62 200,4 49,05 E4-5 T4 1.65 269,7 89,8 Therm31 Rt3 1.63 250,8 50,85 G4-6 T4 1.66 269,7 86,7 Therm32 Rt3 copyright Vincotech 26 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as 70-W624N3A1K2SC-L400FP Standart Text in packaging barcode as L400FP L400FP Name Date code UL & Vinco Lot Serial NN-NNNNNNNNNNNNNN-TTTTTTTVV WWYY UL Vinco LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Datamatrix Pinout Identification ID T1, T4 D5, D6 Component IGBT FWD Voltage 1200V 1200V Current 1200A 1200A Function Buck Switch Buck Diode T2, T3 D1, D4 D2, D3 Rt1, Rt2, Rt3 IGBT FWD Diode 1200V 1200V 1200V - 1200A 900A 900A - Boost Switch Boost Diode Boost Inverse Diode Thermistor copyright Vincotech NTC 27 Comment 08 Dec. 2015 / Revision 1 70-W624N3A1K2SC-L400FP datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 5 Standard <SPQ Sample Handling instruction Handling instructions for Widebody 3phase packages see vincotech.com website. Package data Package data for Widebody 3phase packages see vincotech.com website. Document No.: Date: 70-W624N3A1K2SC-L400FP-D1-14 08 Dec. 2015 Modification: Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 28 08 Dec. 2015 / Revision 1