V23990-P640-G20-PM flow CON 0 2nd gen 1200 V / 35 A Features flow 0 ● 3 phase input rectifier with BRC ● Compatible with flow PACK0 and flow PACK1 ● Clip-in PCB mounting Target Applications Schematic ● Motor drives ● Servo drives ● UPS Types ● V23990-P640-G20-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 68 91 A 600 A 1800 A 2s 84 127 W Input Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM Tj=Tjmax Th=80°C Tc=80°C tp=10ms, half sine wave Tj=150°C I2t-value I 2t Power dissipation per Diode P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V 49 65 A tp limited by Tjmax 150 A VCE ≤ 1200V, Tj ≤ Top max 100 A 121 183 W ±20 V 10 800 µs V 175 °C Tj=Tjmax Th=80°C Tc=80°C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Turn off safe operating area Power dissipation per IGBT P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V T jmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 18 20 A 20 A 44 67 W Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Brake Inverse Diode P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C V RRM 1200 V 28 30 A 50 A 55 83 W Th=80°C Tc=80°C Brake Diode Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation per Diode P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech V is t=2s DC voltage CTI >200 2 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,21 1,21 0,89 0,78 5,03 6,60 1,7 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) V to 65 Slope resistance (for power loss calc. only) rt 65 Reverse current Ir 50 1600 R th(j-s) Phase-Change Material Gate emitter threshold voltage V GE(th) VCE=VGE Collector-emitter saturation voltage V CEsat Thermal resistance chip to heatsink per chip V V mΩ 0,05 0,84 mA K/W Brake Transistor Collector-emitter cut-off incl diode Gate-emitter leakage current I GES R gint Turn-on delay time Rise time Turn-off delay time Fall time 50 0 1200 20 0 tr t d(off) tf Turn-on energy loss per pulse Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG R th(j-s) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,3 1,88 2,26 2,2 0,01 600 4 t d(on) E on Thermal resistance chip to heatsink per chip 15 I CES Integrated Gate resistor 0,0017 Rgoff=8 Ω Rgon=8 Ω 600 15 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 32 31 17 21 372 482 69 122 1,34 1,98 2,16 3,71 ns mWs 2770 f=1MHz 25 0 205 Tj=25°C pF 160 15 960 50 Tj=25°C Phase-Change Material 230 nC 0,79 K/W Brake Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF R th(j-s) 10 Tj=25°C Tj=150°C 1,3 Phase-Change Material 1,86 1,80 2,2 2,14 V K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink per chip copyright Vincotech VF 25 Ir 1200 I RRM t rr Q rr Rgon=8 Ω 15 600 ( di rf/dt )max E rec R th(j-s) Phase-Change Material 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,3 1,85 1,81 10 56 64 143 260 2,99 5,48 3694 2005 1,29 2,44 1,73 3 2,2 V µA A ns µC A/µs mWs K/W 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Brake Figure 1 Typical output characteristics I C = f(V CE) Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) 175 Brake IGBT IC (A) IC (A) 175 150 150 125 125 100 100 75 75 50 50 25 25 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 0 5 1 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Brake IGBT 2 3 4 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Brake FWD 100 IC (A) IF (A) 50 V CE (V) 40 80 30 60 20 40 10 20 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C 0 Tj = 25°C 0 0 2 At tp = V CE = 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 4 1 250 2 3 V F (V) 4 µs 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Brake Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 7 Brake IGBT 7 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Eoff 6 6 5 5 Eon Eoff Tj = Tjmax -25°C 4 4 Eoff Eon Tj = Tjmax -25°C Eon 3 3 Eoff Eon 2 Tj = 25°C 2 Tj = 25°C 1 1 0 0 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = 15 V R gon = 8 Ω R goff = 8 Ω 16 24 RG (Ω ) 32 40 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = 15 V IC = 35 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 4 E (mWs) E (mWs) 8 3,5 Brake FWD 4 3,5 Erec 3 3 2,5 2,5 Tj = Tjmax -25°C Tj = Tjmax - 25°C Erec Erec 2 2 1,5 1,5 1 1 Tj = 25°C Erec 0,5 0,5 Tj = 25°C 0 0 0 10 20 30 40 50 60 0 I C (A) 70 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = 15 V R gon = 8 Ω copyright Vincotech 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = 15 V IC = 35 A 5 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Brake Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 10,00 t ( µs) t ( µs) 10,00 Brake IGBT 1,00 tf tf 0,10 tdoff 1,00 tdoff 0,10 tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 10 20 30 40 50 60 I C (A) 0 70 With an inductive load at Tj = 150 °C V CE = 600 V V GE = 15 V R gon = 8 Ω R goff = 8 Ω 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 150 °C V CE = 600 V V GE = 15 V IC = 35 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake FWD ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 8 -2 10-5 10-4 At Thermal grease R thJH = 0,79 copyright Vincotech 10-3 10-2 10-1 100 t p (s) D = tp/T K/W Phase change interface R thJH = 0,76 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 101 10 10-4 At Thermal grease R thJH = 1,73 6 10-3 10-2 10-1 100 t p (s) D = tp/T K/W Phase change interface R thJH = 1,68 K/W 101 10 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Brake Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake IGBT Figure 14 Collector current as a function of heatsink temperature I C = f(T h) 75 IC (A) Ptot (W) 250 Brake IGBT 200 60 150 45 100 30 50 15 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake FWD 50 175 15 100 150 200 ºC V Figure 16 Forward current as a function of heatsink temperature I F = f(T h) Brake FWD 50 IF (A) Ptot (W) 120 T h ( o C) 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 7 50 175 100 150 Th ( o C) 200 ºC 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Brake Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Brake IGBT Figure 26 Gate voltage vs Gate charge Brake IGBT V GE = f(Q GE) 103 IC (A) VGE (V) 16 100uS 102 960V 10uS 12 10 1mS 100mS 240V 14 10mS 10 8 1 6 DC 10 4 0 2 10-1 0 100 At D = Th = V GE = Tj = 101 102 10 3 0 V CE (V) At IC = single pulse 80 ºC 15 V T jmax ºC Figure 27 Brake IGBT 50 100 50 150 200 250 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Q g (nC) Brake IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) 50 tsc (µS) IC (sc) 400 350 40 300 250 30 200 20 150 100 10 50 0 0 10 At V CE = Tj ≤ 12 14 1200 V 175 ºC copyright Vincotech 16 18 V GE (V) 20 10 At V CE ≤ Tj = 8 12 14 1200 V 175 ºC 16 V GE (V) 18 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Figure 29 Reverse bias safe operating area Brake IGBT I C = f(V CE) IC (A) 120 IC MAX Ic CHIP 100 VCE MAX Ic MODULE 80 60 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 ºC Uccminus=Uccplus copyright Vincotech 9 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Brake Inverse Diode Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Brake Inverse Diode Figure 26 Brake Inverse Diode Gate voltage vs Gate charge V GE = f(Q GE) 101 IF (A) ZthJC (K/W) 40 30 10 0 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = Tjmax-25°C Tj = 25°C 0 0 At D = Th = V GE = Tj = 1 2 3 V F (V) 10-2 4 single pulse 80 ºC 15 V T jmax ºC Figure 27 Brake Inverse Diode 10-5 10-4 At IC = 10 10-2 10-1 100 t p (s) 10110 A Figure 28 Brake Inverse Diode Typical short circuit collector current as a function of gate-emitter voltage 25 V GE = f(Q GE) Ptot (W) IF (A) Short circuit withstand time as a function of gate-emitter voltage 100 t sc = f(V GE) 80 20 60 15 40 10 20 5 0 0 0 Tj = 10-3 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 Tj = ºC 10 50 175 100 150 T h ( o C) 200 ºC 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 250 1 ZthJC (K/W) IF (A) 10 Rectifier diode 200 10 0 150 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100 10-1 50 Tj = 25°C Tj = Tjmax-25°C 0 0 At tp = 0,5 1 250 1,5 2 V F (V) 10-2 2,5 10 -5 10 At D = R thJH = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Rectifier diode -4 10 -3 10 -2 10 -1 10 t p (s) 1 10 10 tp/T 0,84 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Rectifier diode 125 IF (A) Ptot (W) 200 0 160 100 120 75 80 50 40 25 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 11 50 150 100 150 T h ( o C) 200 ºC 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Switching Definitions Brake General Tj R gon R goff conditions = 150 °C = 8Ω = 8Ω Figure 1 Brake IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Brake IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 300 IC % tdoff % VCE 250 100 VGE 90% VCE 90% 200 75 IC 150 50 tEoff VGE VCE 100 tdon 25 50 IC 1% VGE VGE10% 0 IC 10% 0 -25 -0,2 0 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,2 0,4 0 15 600 35 0,48 0,83 V V V A µs µs 0,6 0,8 time (us) -50 2,95 1 3 VCE 3% tEon 3,05 3,1 3,15 3,2 3,25 time(us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Brake IGBT Turn-off Switching Waveforms & definition of t f 0 15 600 35 0,03 0,20 V V V A µs µs Figure 4 Brake IGBT Turn-on Switching Waveforms & definition of t r 125 300 fitted % % VCE IC 100 Ic 250 IC 90% 200 75 150 IC 60% 50 IC 40% 100 VCE IC 90% tr 25 50 IC10% 0 tf 0 -50 3,02 -25 0,2 0,3 0,4 0,5 0,6 0,7 0,8 IC 10% 3,04 3,06 3,08 V C (100%) = I C (100%) = tf = copyright Vincotech 600 35 0,12 3,1 3,12 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 12 600 35 0,02 V A µs 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Switching Definitions Brake Figure 5 Brake IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Brake IGBT Turn-on Switching Waveforms & definition of t Eon 200 125 % Pon % Poff Eoff 100 150 IC 1% 75 Eon 100 50 50 25 VGE 10% VGE 90% VCE 3% 0 tEon 0 tEoff -25 -0,2 -50 0 0,2 0,4 0,6 0,8 2,9 1 2,98 3,06 3,14 3,22 P off (100%) = E off (100%) = t E off = 21,00 3,71 0,83 kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Gate voltage vs Gate charge (measured) 3,3 time(us) time (us) Brake IGBT 21,00 1,98 0,20 kW mJ µs Figure 8 Brake FWD Turn-off Switching Waveforms & definition of t rr 20 150 VGE (V) % Id 100 15 trr 50 10 Vd 0 fitted IRRM 10% -50 5 -100 0 -150 IRRM 90% IRRM 100% -200 -5 -50 0 V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech 50 0 15 600 35 188,05 100 150 Qg (nC) 2,9 200 3 3,1 3,2 3,3 3,4 3,5 time(us) V V V A nC V d (100%) = I d (100%) = I RRM (100%) = t rr = 13 600 35 -64 0,26 V A A µs 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Switching Definitions Brake Figure 9 Brake FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Brake FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Qrr Id 100 Erec 100 tQrr 50 tErec 75 0 50 -50 25 -100 Prec 0 -150 -200 -25 2,8 3 3,2 3,4 3,6 3,8 4 4,2 2,8 3 3,2 3,4 3,6 time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 35 5,48 1,00 A µC µs P rec (100%) = E rec (100%) = t E rec = 14 21,00 2,44 1,00 3,8 4 time(us) 4,2 kW mJ µs 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 17mm housing Ordering Code V23990-P640-G20-PM in DataMatrix as P640-G20 in packaging barcode as P640-G20 Outline Pin Pin table X Y 1 2 33,5 30,7 0 0 3 26,4 0 4 5 6 23,9 21,4 18,9 0 0 0 7 11,9 0 8 9 7,5 4,7 0 0 10 0 0 11 12 13 14 0 0 0 0 2,5 5 7,5 22,5 15 16 2,5 5 22,5 22,5 17 18 12 14,5 22,5 22,5 19 20 21 17 24 26,5 22,5 22,5 22,5 22 23 29 33,5 22,5 17,1 24 25 33,5 33,5 14,6 7 Pinout copyright Vincotech 15 30 Jun. 2015 / Revision 2 V23990-P640-G20-PM DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 16 30 Jun. 2015 / Revision 2