V23990 P640 G20 D2 14

V23990-P640-G20-PM
flow CON 0 2nd gen
1200 V / 35 A
Features
flow 0
● 3 phase input rectifier with BRC
● Compatible with flow PACK0 and flow PACK1
● Clip-in PCB mounting
Target Applications
Schematic
● Motor drives
● Servo drives
● UPS
Types
● V23990-P640-G20-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
68
91
A
600
A
1800
A 2s
84
127
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms, half sine wave
Tj=150°C
I2t-value
I 2t
Power dissipation per Diode
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
49
65
A
tp limited by Tjmax
150
A
VCE ≤ 1200V, Tj ≤ Top max
100
A
121
183
W
±20
V
10
800
µs
V
175
°C
Tj=Tjmax
Th=80°C
Tc=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Turn off safe operating area
Power dissipation per IGBT
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
18
20
A
20
A
44
67
W
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Brake Inverse Diode
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
175
°C
V RRM
1200
V
28
30
A
50
A
55
83
W
Th=80°C
Tc=80°C
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation per Diode
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
DC voltage
CTI
>200
2
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,21
1,21
0,89
0,78
5,03
6,60
1,7
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
V to
65
Slope resistance (for power loss calc. only)
rt
65
Reverse current
Ir
50
1600
R th(j-s)
Phase-Change
Material
Gate emitter threshold voltage
V GE(th)
VCE=VGE
Collector-emitter saturation voltage
V CEsat
Thermal resistance chip to heatsink per chip
V
V
mΩ
0,05
0,84
mA
K/W
Brake Transistor
Collector-emitter cut-off incl diode
Gate-emitter leakage current
I GES
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
50
0
1200
20
0
tr
t d(off)
tf
Turn-on energy loss per pulse
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
R th(j-s)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,3
1,88
2,26
2,2
0,01
600
4
t d(on)
E on
Thermal resistance chip to heatsink per chip
15
I CES
Integrated Gate resistor
0,0017
Rgoff=8 Ω
Rgon=8 Ω
600
15
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
32
31
17
21
372
482
69
122
1,34
1,98
2,16
3,71
ns
mWs
2770
f=1MHz
25
0
205
Tj=25°C
pF
160
15
960
50
Tj=25°C
Phase-Change
Material
230
nC
0,79
K/W
Brake Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
R th(j-s)
10
Tj=25°C
Tj=150°C
1,3
Phase-Change
Material
1,86
1,80
2,2
2,14
V
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
VF
25
Ir
1200
I RRM
t rr
Q rr
Rgon=8 Ω
15
600
( di rf/dt )max
E rec
R th(j-s)
Phase-Change
Material
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,3
1,85
1,81
10
56
64
143
260
2,99
5,48
3694
2005
1,29
2,44
1,73
3
2,2
V
µA
A
ns
µC
A/µs
mWs
K/W
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Brake
Figure 1
Typical output characteristics
I C = f(V CE)
Brake IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
175
Brake IGBT
IC (A)
IC (A)
175
150
150
125
125
100
100
75
75
50
50
25
25
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
0
5
1
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Brake IGBT
2
3
4
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake FWD
100
IC (A)
IF (A)
50
V CE (V)
40
80
30
60
20
40
10
20
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
0
Tj = 25°C
0
0
2
At
tp =
V CE =
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
4
1
250
2
3
V F (V)
4
µs
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Brake
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
7
Brake IGBT
7
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Eoff
6
6
5
5
Eon
Eoff
Tj = Tjmax -25°C
4
4
Eoff
Eon
Tj = Tjmax -25°C
Eon
3
3
Eoff
Eon
2
Tj = 25°C
2
Tj = 25°C
1
1
0
0
0
10
20
30
40
50
60
I C (A)
70
0
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
15
V
R gon =
8
Ω
R goff =
8
Ω
16
24
RG (Ω )
32
40
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
15
V
IC =
35
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
4
E (mWs)
E (mWs)
8
3,5
Brake FWD
4
3,5
Erec
3
3
2,5
2,5
Tj = Tjmax -25°C
Tj = Tjmax - 25°C
Erec
Erec
2
2
1,5
1,5
1
1
Tj = 25°C
Erec
0,5
0,5
Tj = 25°C
0
0
0
10
20
30
40
50
60
0
I C (A) 70
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
15
V
R gon =
8
Ω
copyright Vincotech
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
15
V
IC =
35
A
5
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
10,00
t ( µs)
t ( µs)
10,00
Brake IGBT
1,00
tf
tf
0,10
tdoff
1,00
tdoff
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
10
20
30
40
50
60
I C (A)
0
70
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
15
V
R gon =
8
Ω
R goff =
8
Ω
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
15
V
IC =
35
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake FWD
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
8
-2
10-5
10-4
At
Thermal grease
R thJH =
0,79
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
D =
tp/T
K/W
Phase change interface
R thJH =
0,76
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
101 10
10-4
At
Thermal grease
R thJH =
1,73
6
10-3
10-2
10-1
100
t p (s)
D =
tp/T
K/W
Phase change interface
R thJH =
1,68
K/W
101 10
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T h)
75
IC (A)
Ptot (W)
250
Brake IGBT
200
60
150
45
100
30
50
15
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T h)
Brake FWD
50
IF (A)
Ptot (W)
120
T h ( o C)
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
7
50
175
100
150
Th ( o C)
200
ºC
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Brake
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Brake IGBT
Figure 26
Gate voltage vs Gate charge
Brake IGBT
V GE = f(Q GE)
103
IC (A)
VGE (V)
16
100uS
102
960V
10uS
12
10
1mS
100mS
240V
14
10mS
10
8
1
6
DC
10
4
0
2
10-1
0
100
At
D =
Th =
V GE =
Tj =
101
102
10
3
0
V CE (V)
At
IC =
single pulse
80
ºC
15
V
T jmax
ºC
Figure 27
Brake IGBT
50
100
50
150
200
250
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
Q g (nC)
Brake IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
50
tsc (µS)
IC (sc)
400
350
40
300
250
30
200
20
150
100
10
50
0
0
10
At
V CE =
Tj ≤
12
14
1200
V
175
ºC
copyright Vincotech
16
18
V GE (V)
20
10
At
V CE ≤
Tj =
8
12
14
1200
V
175
ºC
16
V GE (V)
18
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Figure 29
Reverse bias safe operating area
Brake IGBT
I C = f(V CE)
IC (A)
120
IC MAX
Ic CHIP
100
VCE MAX
Ic
MODULE
80
60
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
ºC
Uccminus=Uccplus
copyright Vincotech
9
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Brake Inverse Diode
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Brake Inverse Diode
Figure 26
Brake Inverse Diode
Gate voltage vs Gate charge
V GE = f(Q GE)
101
IF (A)
ZthJC (K/W)
40
30
10
0
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
D =
Th =
V GE =
Tj =
1
2
3
V F (V)
10-2
4
single pulse
80
ºC
15
V
T jmax
ºC
Figure 27
Brake Inverse Diode
10-5
10-4
At
IC =
10
10-2
10-1
100
t p (s)
10110
A
Figure 28
Brake Inverse Diode
Typical short circuit collector current as a function of
gate-emitter
voltage
25
V GE = f(Q GE)
Ptot (W)
IF (A)
Short circuit withstand time as a function of
gate-emitter
voltage
100
t sc = f(V GE)
80
20
60
15
40
10
20
5
0
0
0
Tj =
10-3
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
Tj =
ºC
10
50
175
100
150
T h ( o C)
200
ºC
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
250
1
ZthJC (K/W)
IF (A)
10
Rectifier diode
200
10
0
150
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
10-1
50
Tj = 25°C
Tj = Tjmax-25°C
0
0
At
tp =
0,5
1
250
1,5
2
V F (V)
10-2
2,5
10
-5
10
At
D =
R thJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Rectifier diode
-4
10
-3
10
-2
10
-1
10
t p (s)
1
10 10
tp/T
0,84
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Rectifier diode
125
IF (A)
Ptot (W)
200
0
160
100
120
75
80
50
40
25
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
11
50
150
100
150
T h ( o C)
200
ºC
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Switching Definitions Brake
General
Tj
R gon
R goff
conditions
= 150 °C
= 8Ω
= 8Ω
Figure 1
Brake IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Brake IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
300
IC
%
tdoff
%
VCE
250
100
VGE 90%
VCE 90%
200
75
IC
150
50
tEoff
VGE
VCE
100
tdon
25
50
IC 1%
VGE
VGE10%
0
IC 10%
0
-25
-0,2
0
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,2
0,4
0
15
600
35
0,48
0,83
V
V
V
A
µs
µs
0,6
0,8
time (us)
-50
2,95
1
3
VCE
3%
tEon
3,05
3,1
3,15
3,2
3,25
time(us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Brake IGBT
Turn-off Switching Waveforms & definition of t f
0
15
600
35
0,03
0,20
V
V
V
A
µs
µs
Figure 4
Brake IGBT
Turn-on Switching Waveforms & definition of t r
125
300
fitted
%
%
VCE
IC
100
Ic
250
IC 90%
200
75
150
IC 60%
50
IC 40%
100
VCE
IC 90%
tr
25
50
IC10%
0
tf
0
-50
3,02
-25
0,2
0,3
0,4
0,5
0,6
0,7
0,8
IC 10%
3,04
3,06
3,08
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
600
35
0,12
3,1
3,12
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
12
600
35
0,02
V
A
µs
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Switching Definitions Brake
Figure 5
Brake IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Brake IGBT
Turn-on Switching Waveforms & definition of t Eon
200
125
%
Pon
%
Poff
Eoff
100
150
IC 1%
75
Eon
100
50
50
25
VGE 10%
VGE 90%
VCE 3%
0
tEon
0
tEoff
-25
-0,2
-50
0
0,2
0,4
0,6
0,8
2,9
1
2,98
3,06
3,14
3,22
P off (100%) =
E off (100%) =
t E off =
21,00
3,71
0,83
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Gate voltage vs Gate charge (measured)
3,3
time(us)
time (us)
Brake IGBT
21,00
1,98
0,20
kW
mJ
µs
Figure 8
Brake FWD
Turn-off Switching Waveforms & definition of t rr
20
150
VGE (V)
%
Id
100
15
trr
50
10
Vd
0
fitted
IRRM 10%
-50
5
-100
0
-150
IRRM 90%
IRRM 100%
-200
-5
-50
0
V GE off =
V GE on =
V C (100%) =
I C (100%) =
Qg =
copyright Vincotech
50
0
15
600
35
188,05
100
150
Qg (nC)
2,9
200
3
3,1
3,2
3,3
3,4
3,5
time(us)
V
V
V
A
nC
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
13
600
35
-64
0,26
V
A
A
µs
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Switching Definitions Brake
Figure 9
Brake FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Brake FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Qrr
Id
100
Erec
100
tQrr
50
tErec
75
0
50
-50
25
-100
Prec
0
-150
-200
-25
2,8
3
3,2
3,4
3,6
3,8
4
4,2
2,8
3
3,2
3,4
3,6
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
35
5,48
1,00
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
14
21,00
2,44
1,00
3,8
4
time(us)
4,2
kW
mJ
µs
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 17mm housing
Ordering Code
V23990-P640-G20-PM
in DataMatrix as
P640-G20
in packaging barcode as
P640-G20
Outline
Pin
Pin table
X
Y
1
2
33,5
30,7
0
0
3
26,4
0
4
5
6
23,9
21,4
18,9
0
0
0
7
11,9
0
8
9
7,5
4,7
0
0
10
0
0
11
12
13
14
0
0
0
0
2,5
5
7,5
22,5
15
16
2,5
5
22,5
22,5
17
18
12
14,5
22,5
22,5
19
20
21
17
24
26,5
22,5
22,5
22,5
22
23
29
33,5
22,5
17,1
24
25
33,5
33,5
14,6
7
Pinout
copyright Vincotech
15
30 Jun. 2015 / Revision 2
V23990-P640-G20-PM
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
16
30 Jun. 2015 / Revision 2