70-W224NIA400SH-M400P datasheet flow NPC 4w 2400 V / 400 A Features flow SCREW 4w housing ● 2400V NPC-topology (2x 1200V) ● High power screw interface ● Low inductive interface for external DC-capacitors and paralleling on component level ● Snubber diode for optional asymmetrical inductance ● High speed buck IGBT´s ● Temperature sensor Target Applications Schematic ● Solar inverter ● Wind Power ● Motor Drive Types ● 70-W224NIA400SH-M400P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 326 400 A 1200 A 800 A 881 1335 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 270 356 A 800 A 565 857 W 175 °C Buck IGBT ( T1 , T4 ) Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpulse Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ T op max Turn off safe operating area Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Buck Diode ( D5 , D6 ) Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp=10ms, sin 180° Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 348 400 A 1200 A 800 A 826 1252 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 400 400 A 600 A 881 1355 W 175 °C 1200 V 257 342 A 600 A 452 685 W 175 °C Boost IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpuls Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ T op max Turn off safe operating area Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Boost Inverse Diode ( D2 , D3 ) Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Boost Diode ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature copyright Vincotech VRRM IF IFRM Ptot Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tjmax 2 Th=80°C Tc=80°C 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 90 120 A 540 A 730 A s 162 245 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Snubber Diode ( D7 , D8 ) Repetitive peak reverse voltage VRRM Forward average current IFAV Surge forward current IFSM I2t-value I2t Power dissipation Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms, sin 180° Tj=150°C Th=80°C Tc=80°C Tj=Tjmax 2 Thermal Properties Insulation Properties Insulation voltage Stage copyright Vincotech Vis t=2s DC voltage >200 CTI 3 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,2 5,8 6,4 1,7 2,14 2,44 Buck IGBT ( T1 , T4 ) Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE 0,0136 15 VCE(sat) 400 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC V 0,048 960 0,5 Rgoff=1 Ω Rgon=1 Ω ±15 600 398 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω 171 172 24 29 238 290 21 38 9,03 14,33 13,20 21,33 ns mWs 22160 f=1MHz 0 25 Tj=25°C pF 1520 1280 15 960 400 Tj=25°C Phase-Change Material λ = 3,4 W/mK nC 1840 0,105 K/W 0,069 Buck Diode ( D5 , D6 ) Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy 1200 IR IRRM trr Qrr Rgon=1 Ω ±15 600 di(rec)max /dt Erec Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC copyright Vincotech 400 VF Phase-Change Material λ = 3,4 W/mK 398 Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,34 2,38 V 480 506 624 86 117 34,86 57,89 14614 15212 15,14 26,14 µA A ns µC A/µs mWs 0,163 K/W 0,108 4 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Unit Min Typ Max 5 5,80 6,5 Boost IGBT ( T2 , T3 ) Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE 0,0152 15 VCE(sat) 400 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 1,91 2,14 2400 Rgoff=1 Ω Rgon=1 Ω 600 ±15 398 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,052 mA nA Ω 1,875 td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 233 242 44 49 334 405 43 99 15,2 21,5 ns mWs 24,2 37,6 24600 f=1MHz 0 25 398 Tj=25°C pF 1620 1380 ±15 960 400 Tj=25°C nC 3700 Phase-Change Material λ = 3,4 W/mK 0,112 K/W 0,074 Boost Inverse Diode ( D2 , D3 ) Diode forward voltage Reverse leakage current 300 VF 1200 Ir Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,90 1,84 V 56 Phase-Change Material λ = 3,4 W/mK µA 0,108 K/W 0,071 Boost Diode ( D1 , D4 ) Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current trr Reverse recovered charge Qrr Rgon=1 Ω ±15 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC copyright Vincotech 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 300 398 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=125°C Tj=125°C Phase-Change Material λ = 3,4 W/mK 1,35 1,90 1,84 V 56 368 403 251 341 34 59 3292 3343 13,60 24,53 µA A ns µC A/µs mWs 0,204 K/W 0,135 5 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Min Typ Unit Max Snubber Diode ( D7 , D8 ) Forward voltage Reverse current 100 VF 1200 Ir Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,91 1,85 V 0,12 Phase-Change Material λ = 3,4 W/mK mA 0,588 K/W 0,388 Thermistor Rated resistance R Deviation of R25 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Tj=100°C 22000 -12 Tj=25°C Power dissipation constant B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% Ω +12 % 200 mW Tj=25°C 2 mW/K Tj=25°C 3884 K Tj=25°C 3964 K B Vincotech NTC Reference Module Properties Module inductance (from chips to PCB) Buck 15 Boost 28 nH LsCE C-PCB LsCE PCB-PCB Module inductance (from PCB to PCB using Intercon board) 5 Mounting torque M Mounting torque M Terminal connection torque M Weight G copyright Vincotech nH 1,5 Resistance of Intercon boards (from PCB to PCBRusing cc'1+EE' Intercon board) Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 6 mΩ 2 2,2 Nm 4 6 Nm 2,5 5 Nm 580 g 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT IGBT 1000 1000 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 1 At tp = Tj = 350 µs 25 °C 7 V to 17 V in steps of 1 V VGE from IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 V CE (V) 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 1000 IF (A) IC (A) 350 5 300 800 250 600 200 150 400 100 Tj = 125°C Tj = 125°C 200 50 Tj = 25°C 0 At tp = VCE = Tj = 25°C 0 0 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 7 1 350 2 3 V F (V) 4 µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 140 E (mWs) 50 Eoff High T 120 Eon High T 40 100 Eon Low T 30 80 Eon High T Eoff Low T 60 20 Eon Low T 40 10 Eoff High T 20 Eoff Low T 0 0 0 200 400 600 800 I C (A) 1000 0 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 10 R G ( Ω) With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V IC = 398 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 40 E (mWs) 40 Erec High T 32 32 24 24 Erec Low T 16 16 Erec High T 8 8 Erec Low T 0 0 0 200 400 600 800 I C (A) 0 1000 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 1,0 Ω copyright Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 398 A 8 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff tdon t (ms) t (ms) 1,00 tdoff tdon 0,10 tr 0,10 tf tf tr 0,01 0,01 0,00 0,00 0 200 400 600 800 I C (A) 0 1000 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 10 R G ( Ω) With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 398 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,0 t rr(ms) t rr(ms) 0,2 trr High T 0,8 0,2 trr High T 0,6 0,1 trr Low T trr Low T 0,4 0,1 0,2 0,0 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 copyright Vincotech 400 600 800 I C (A) 0 1000 At Tj = VR = IF = VGE = °C V V Ω 9 2 25/125 600 398 ±15 4 6 8 R gon ( Ω) 10 °C V A V 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) 100 Qrr (mC) 100 Qrr High T 80 80 60 60 Qrr Low T Qrr High T 40 40 20 20 Qrr Low T 0 0 0 At At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 400 600 800 I C (A) 1000 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(I C) 2 25/125 600 398 ±15 4 6 8 R gon ( Ω) 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 1000 IrrM (A) IrrM (A) 1000 800 800 IRRM High T IRRM Low T 600 600 400 400 200 200 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 copyright Vincotech 400 600 800 I C (A) 0 1000 At Tj = VR = IF = VGE = °C V V Ω 10 2 25/125 600 398 ±15 4 6 8 R gon ( Ω) 10 °C V A V 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(R gon) 20000 28000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dt T dIo/dt T dI0/dt T dIrec/dt T 24000 16000 20000 12000 16000 12000 8000 8000 4000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 25/125 600 ±15 1,0 400 600 800 1000 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/125 25/125 600 398 ±15 4 6 8 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) K/W RthJC = 0,069 -2 10 -3 10-5 101 At D= RthJH = tp / T 0,105 10 K/W IGBT thermal model values D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-3 10-2 10-1 100 t p (s) tp / T 0,163 K/W RthJC = 0,108 K/W FWD thermal model values With thermal grease R (K/W) Tau (s) With phase change material R (K/W) Tau (s) With thermal grease R (K/W) Tau (s) With phase change material R (K/W) Tau (s) 0,011 0,034 0,025 0,028 0,006 0,003 0,010 0,033 0,024 0,027 0,006 0,003 0,018 0,031 0,032 0,043 0,033 0,010 0,018 0,030 0,031 0,042 0,032 0,010 5,238 1,193 0,295 0,030 0,008 0,001 copyright Vincotech 101 1 5,238 1,193 0,295 0,030 0,008 0,001 11 7,434 1,592 0,290 0,063 0,020 0,002 7,434 1,592 0,290 0,063 0,020 0,002 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 500 IC (A) Ptot (W) 1800 400 1200 300 200 600 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 500 IF (A) Ptot (W) 1200 1000 400 800 300 600 200 400 100 200 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 12 50 175 100 150 T h ( o C) 200 °C 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 10 VGE (V) IC (A) 17,5 3 15 10uS 240V 12,5 102 100uS 960V 10 10 1mS 1 7,5 10mS 100 100mS 5 DC 10 2,5 -1 0 10 At D= Th = 0 103 102 101 0 400 600 800 1000 1200 1400 1600 1800 2000 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC VGE = Tj = 200 V CE (V) 400 A IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 1000 IC MAX Ic CHIP 800 600 VCE Ic MODULE MAX 400 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 13 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT IGBT 1000 1000 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = 350 µs 25 °C 7 V to 17 V in steps of 1 V VGE from IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 400 5 IF (A) IC (A) 1000 350 800 300 250 600 200 400 150 Tj = 125°C 100 200 Tj = 25°C 50 Tj = 125°C 0 0 At tp = VCE = Tj = 25°C 0 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 14 1 350 2 3 V F (V) 4 µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 100 E (mWs) E (mWs) 100 Eon High T 80 80 Eon Low T Eoff High T 60 60 Eoff Low T Eon High T 40 40 Eoff High T Eon Low T Eoff Low T 20 20 0 0 0 200 400 600 800 I C (A) 0 1000 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 1,0 Ω Rgoff = 1,0 Ω 2 4 6 8 R G( Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 398 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 40 E (mWs) 40 Erec High T 30 30 20 20 Erec Low T Erec High T 10 10 Erec Low T 0 0 0 200 400 600 800 I C (A) 0 1000 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 1,0 Ω copyright Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 398 A 15 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff tdon t ( µs) t ( µs) 1 tdoff tdon tf 0,1 tr 0,1 tr tf 0,01 0,01 0,001 0,001 0 200 400 600 800 I C (A) 0 1000 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 1,0 Ω Rgoff = 1,0 Ω 2 4 6 8 10 R G( Ω ) With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 398 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr(ms) t rr(ms) 0,8 trr High T 0,6 0,6 trr High T trr Low T 0,4 0,4 trr Low T 0,2 0,2 0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 copyright Vincotech 400 600 800 I C (A) 0 1000 At Tj = VR = IF = VGE = °C V V Ω 16 2 25/125 600 398 ±15 4 6 8 R gon ( Ω) 10 °C V A V 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) 100 Qrr (mC) 100 Qrr High T 80 80 60 60 Qrr High T Qrr Low T 40 40 Qrr Low T 20 20 0 0 At At Tj = VCE = VGE = Rgon = 0 200 25/125 600 ±15 1,0 400 600 800 I C (A) 0 1000 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 600 398 ±15 4 6 8 R gon ( Ω) 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 500 IrrM (A) 500 IrrM (A) IRRM High T IRRM Low T 400 400 300 300 200 200 100 100 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 copyright Vincotech 400 600 800 I C (A) 0 1000 At Tj = VR = IF = VGE = °C V V Ω 17 2 25/125 600 398 ±15 4 6 8 R gon ( Ω) 10 °C V A V 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 15000 direc / dt (A/ms) direc / dt (A/ms) 15000 dIrec/dt T di0/dt T 12000 dI0/dt T dIrec/dt T 12000 9000 9000 6000 6000 3000 3000 0 0 0 At Tj = VCE = VGE = Rgon = FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(R gon) 200 25/125 25/125 600 ±15 1,0 400 600 800 1000 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/125 25/125 600 398 ±15 4 6 8 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 100 ZthJH (K/W) 100 10 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 102 100 t p (s) 101 10-5 At D= RthJH = tp / T 0,112 K/W RthJC = 0,074 IGBT thermal model values 10-4 10-3 10-2 10-1 100 t p (s) tp / T 0,204 K/W RthJC = 0,135 FWD thermal model values With thermal grease R (K/W) Tau (s) With phase change material R (K/W) Tau (s) With thermal grease R (K/W) Tau (s) With phase change material R (K/W) Tau (s) 0,012 0,048 0,021 0,013 0,020 0,002 0,012 0,046 0,020 0,013 0,019 0,002 0,021 0,067 0,048 0,055 0,012 0,007 0,020 0,065 0,047 0,053 0,012 0,006 6,352 1,766 0,394 0,087 0,019 0,002 copyright Vincotech 101 10 6,352 1,766 0,394 0,087 0,019 0,002 18 5,238 1,193 0,295 0,030 0,008 0,001 5,238 1,193 0,295 0,030 0,008 0,001 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 500 IC (A) Ptot (W) 1800 1500 400 1200 300 900 200 600 100 300 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 900 200 IF (A) Ptot (W) 400 750 300 600 450 200 300 100 150 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 175 100 150 Th ( o C) 200 ºC 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost T2,T3 / D2,D3 Boost IGBT IGBT Figure 25 Reverse bias safe operating area IC = f(VCE) IC (A) 1000 IC MAX Ic CHIP 800 Ic MODULE 600 400 VCE MAX 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Uccminus=Uccplus 12 Ls= Switching mode : copyright Vincotech nH 3 level switching 20 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Boost Inverse Diode D1,D4 Figure 25 Boost Inverse Diode D1,D4 Typical FWD forward current as a function of forward voltage IF = f(VF) Figure 26 Boost Inverse Diode D1,D4 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 1000 0 ZthJC (K/W) IF (A) 10 800 10-1 600 400 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 200 Tj = Tjmax-25°C Tj = 25°C 0 10-3 0 At tp = 1 250 2 3 V F (V) 4 10-5 10-4 At D= RthJH = µs Figure 27 Boost Inverse Diode D1,D4 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 tp / T 0,108 10-2 10-1 100 t p (s) 10110 K/W Figure 28 Boost Inverse Diode D1,D4 Forward current as a function of heatsink temperature IF = f(Th) 450 Ptot (W) IF (A) 2000 400 1600 350 300 1200 250 200 800 150 100 400 50 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 21 50 175 100 150 Th ( o C) 200 ºC 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Snubber Diode D7, D8 Snubber Diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Snubber Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 600 0 ZthJC (K/W) IF (A) 10 500 400 10-1 Tj = 25°C 300 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = Tjmax-25°C 200 10-2 100 0 0 At tp = 1 2 250 3 4 V F (V) 10-3 5 10-5 10-4 At D= RthJH = µs Snubber Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 101 10 tp / T 0,588 K/W Snubber Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 150 IF (A) Ptot (W) 300 t p (s) 250 120 200 90 150 60 100 30 50 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 22 50 175 100 150 T h ( o C) 200 ºC 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R(Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 23 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Switching Definitions Buck General Tj Rgon Rgoff conditions = 125 °C = 1Ω = 1Ω Test setup inductance: 9nH Figure 1 Buck IGBT Turn-off Switching Waveforms & definition of t doff, tEoff (tEoff = integrating time for Eoff) Figure 2 Buck IGBT Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 300 % % VCE 125 250 tdoff IC 100 VGE 90% 200 VCE 90% 75 VGE 150 IC 50 tEoff VCE 100 25 VGE tdon 50 IC 1% 0 VGE 10% IC 10% tEon 0 -25 -50 -0,3 VCE 3% -50 -0,15 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 0,15 -15 15 600 402 0,29 0,45 V V V A µs µs 0,3 0,45 time (us) 3,8 0,6 3,95 -15 15 600 402 0,17 0,30 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 3 Buck IGBT Turn-off Switching Waveforms & definition of t f 4,1 4,25 4,4 time(us) 4,55 V V V A µs µs Figure 4 Buck IGBT Turn-on Switching Waveforms & definition of tr 150 300 % % Ic 250 125 VCE fitted IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% tr IC 40% 50 25 IC 10% 0 IC 10% 0 tf -50 -25 0,1 0,15 VC (100%) = IC (100%) = tf = copyright Vincotech 0,2 0,25 600 402 0,04 V A µs 0,3 0,35 time(us) 4,1 0,4 4,15 4,2 4,25 4,3 4,35 time(us) VC (100%) = IC (100%) = tr = 24 600 402 0,03 V A µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Switching Definitions Buck Figure 5 Buck IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Buck IGBT Turn-on Switching Waveforms & definition of tEon 125 125 % Poff % Eoff Eon 100 100 75 75 50 50 Pon 25 25 IC 1% VGE 10% VGE90% 0 -25 -0,2 VCE 3% 0 tEon tEoff -0,05 Poff (100%) = Eoff (100%) = tEoff = 0,1 241,06 21,33 0,45 0,25 -25 3,95 0,4 time (us) 0,55 4,05 4,15 4,25 4,35 time(us) kW mJ µs 241,06 14,33 0,30 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Buck FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd 0 IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 fitted -200 4 4,1 4,2 4,3 4,4 4,5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 25 600 402 -624 0,12 V A A µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Switching Definitions Buck Figure 8 Buck FWD Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Figure 10 Buck FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 200 Qrr Id % Prec % 100 150 tQrr 50 Erec 100 0 tErec -50 50 -100 0 -150 -50 -200 4 4,2 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 4,4 402 57,89 1,00 4,6 4,8 5 4 5,2 5,4 time(us) A µC µs Prec (100%) = Erec (100%) = tErec = 26 4,2 4,4 4,6 241,06 26,14 1,00 4,8 5 5,2 time(us) 5,4 kW mJ µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Switching Definitions Boost General Tj Rgon Rgoff conditions = 125 °C = 1Ω = 1Ω Test setup inductance: 9nH Figure 1 Boost IGBT Turn-off Switching Waveforms & definition of t doff, tEoff (tEoff = integrating time for Eoff) Figure 2 Boost IGBT Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 % % IC 125 tdoff 150 100 VCE VGE 90% 90% VCE 100 75 VGE IC tdon 50 50 tEoff 25 IC VCE VCE 3% IC 10% VGE 10% 1% 0 tEon 0 VGE -25 -0,2 -50 0 0,2 0,4 -15 15 600 398 0,40 0,76 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,6 0,8 1 time (us) 2,7 V V V A µs µs 2,9 3,3 -15 15 600 398 0,24 0,48 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 3 Boost IGBT Turn-off Switching Waveforms & definition of t f 3,1 3,5 3,7 time(us) 3,9 V V V A µs µs Figure 4 Boost IGBT Turn-on Switching Waveforms & definition of tr 125 200 fitted % VCE IC Ic % 100 150 Ic 90% 75 VCE 100 Ic 60% IC 90% 50 tr Ic 40% 50 25 Ic 10% IC 10% 0 0 tf -25 0,1 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,3 600 398 0,099 0,4 0,5 0,6 time (us) -50 0,7 3,1 V A µs VC (100%) = IC (100%) = tr = 27 3,2 3,3 600 398 0,049 3,4 3,5 time(us) 3,6 V A µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Switching Definitions Boost Figure 5 Boost IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost IGBT Turn-on Switching Waveforms & definition of tEon 125 125 % % Poff Eon Eoff 100 100 Pon 75 75 50 50 IC 1% 25 25 Uge 90% Uce 3% Uge 10% 0 0 tEon tEoff -25 -0,2 -25 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 238,67 37,62 0,76 0,4 0,6 0,8 time (us) 2,9 1 kW mJ µs 3,05 3,2 3,35 3,5 time(us) 3,65 238,6716 kW 13,39 mJ 0,48 µs Pon (100%) = Eon (100%) = tEon = Figure 7 Boost FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Ud fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 -150 2,9 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 28 3,1 3,3 600 398 -403 0,34 3,5 3,7 time(us) 3,9 V A A µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Switching Definitions Boost Figure 8 Boost FWD Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Figure 9 Boost FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Id Qrr Erec 100 100 tErec 75 tQint 50 50 0 25 Prec -50 0 -25 -100 3 3,2 Id (100%) = Qrr (100%) = tQint = copyright Vincotech 3,4 3,6 398 58,83 0,69 A µC µs 3,8 4 time(us) 3 4,2 Prec (100%) = Erec (100%) = tErec = 29 3,2 3,4 238,67 24,53 0,69 3,6 3,8 4 time(us) 4,2 kW mJ µs 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Outline - Pinout Outline Driver pins Pin X1 Y1 Function Group 1.1 1.2 1.3 -2,15 -2,15 46,15 84,85 81,95 84,85 G1-1 E1-1 G1-2 T1 T1 T1 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 46,15 19,45 24,55 -7,65 -7,65 51,65 51,65 16,75 81,95 93,05 93,05 70,05 67,15 70,05 67,15 75,35 E1-2 DC+ desat DC+ desat G2-1 E2-1 G2-2 E2-2 GND desat T1 T1 T1 T2 T2 T2 T2 D5 1.12 1.13 1.14 1.15 1.16 1.17 1.18 27,25 -2,55 -5,45 46,55 49,45 -4,8 -1,6 75,35 28 28 28 28 50,85 49,05 GND desat G3-1 E3-1 G3-2 E3-2 G4-1 E4-1 D5 T3 T3 T3 T3 T4 T4 1.19 48,8 50,85 G4-2 1.20 45,6 49,05 E4-2 1.21 67,65 89,8 NTC1 1.22 67,65 86,7 NTC2 Low current connections M4 screw X3 Y3 3.1 -39,1 89,8 TR+ 3.2 3.3 3.4 -39,1 -39,1 83,1 89,8 89,8 89,8 GND DC+ TR+ 3.5 3.6 3.7 83,1 83,1 -39,1 89,8 89,8 65,2 GND DC+ T2C 3.8 3.9 3.10 3.11 -39,1 -39,1 83,1 83,1 65,2 65,2 65,2 65,2 GND Phase T2C GND 3.12 3.13 3.14 3.15 83,1 -39,1 -39,1 -39,1 65,2 45,2 45,2 45,2 Phase Phase GND DK 3.16 3.17 3.18 3.19 83,1 83,1 83,1 -39,1 45,2 45,2 45,2 20,6 Phase GND DK DC- 3.20 3.21 3.22 3.23 3.24 -39,1 20,6 GND -39,1 20,6 TR83,1 20,6 DC83,1 20,6 GND 83,1 20,6 TRPower connections Function M6 screw X2 Y2 Function 2.1 2.2 0 22 0 0 Phase Phase 2.3 2.4 2.5 2.6 44 0 22 44 0 110,4 110,4 110,4 Phase DC+ GND DC- copyright Vincotech T4 T4 30 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Ordering Code and Marking - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W224NIA400SH-M400P in DataMatrix as M400P in packaging barcode as M400P Pinout copyright Vincotech 31 14 Jul 2015 / Revision 4 70-W224NIA400SH-M400P datasheet Packaging instruction Standard packaging quantity (SPQ) 10 >SPQ Standard <SPQ Sample Handling instruction Handling instructions for flowNPC 4w packages see vincotech.com website. Document No.: Date: Modification: Pages 70-W224NIA400SH-M400P-D4-14 14 Jul. 2015 Gate charge 4,5,13,25,28 Product status definition DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein t LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in la 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 32 14 Jul 2015 / Revision 4