70-W212NMA600NB02-M200P62 Maximum Ratings

70-W212NMA600NB02-M200P62
flow MNPC 4w
1200V/600A
Features
flow SCREW 4w housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
Target Applications
● Solar inverter
● UPS
Schematic
● High speed motor drive
Types
● 70-W212NMA600NB02-M200P62
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
517
A
1200
A
1051
W
±20
V
10
850
µs
V
Tjmax
175
°C
VRRM
650
V
half bridge IGBT (T1, T4) ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tj≤150°C
VGE=15V
neutral point FWD (D2, D3) ( D2 , D3 )
Peak Repetitive Reverse Voltage
IF
Tj=Tjmax
Th=80°C
254
A
Repetitive peak forward current
IFRM
tP = 1 ms
Tvj < 150°C
800
A
Power dissipation per FWD
Ptot
Tj=Tjmax
Th=80°C
354
W
175
°C
DC forward current
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Revision: 1.2
70-W212NMA600NB02-M200P62
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
344
A
1200
A
629
W
±20
V
10
360
µs
800
A
Tjmax
175
°C
VRRM
1200
V
272
A
1100
A
3026
A 2s
1200
A
596
W
175
°C
neutral point IGBT (T2, T3) ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Pulsed collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Turn off safe operating area (RBSOA)
Maximum Junction Temperature
tSC
Tj≤150°C
VCC
VGE=15V
VCE max = 1200V
Icmax
Th=80°C
Th=80°C
Tvj max= 150°C
V
half bridge FWD (D1, D4) ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
I2t-value
IF
Tj=Tjmax
Th=80°C
tp=10ms , sin 180°
Tj=150°C
IFSM
I2t
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per FWD
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
2
Th=80°C
Revision: 1.2
70-W212NMA600NB02-M200P62
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
General Module Properties
Cu
Material of module baseplate
Al2O3
Material of internal isulation
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
DC voltage
t=2s
CTI
>200
3
Revision: 1.2
70-W212NMA600NB02-M200P62
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,4
Unit
Typ
Max
6
6,6
half bridge IGBT (T1, T4) ( T1 , T4 )
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Collector-emitter cut-off current incl. FWD
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,03
600
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
1500
Rgoff=0,5 Ω
Rgon=0,5 Ω
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,1
mA
nA
Ω
3,25
tr
td(off)
1,86
2,11
323
340
73
91
234
274
48
66
23
34
18
26
ns
mWs
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
0,09
K/W
Thermal resistance chip to heatsink per chip
RthJH
100um grease
1W/mK
0,11
K/W
60000
0
f=1MHz
Tj=25°C
10
12000
pF
1000
neutral point FWD (D2, D3) ( D2 , D3 )
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
400
IRRM
trr
Qrr
Rgon=0,5 Ω
±15
350
600
di(rec)max
/dt
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,66
1,60
158
192
281
417
18
35
2050
827
3
7
V
A
ns
µC
A/µs
mWs
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
0,27
K/W
Thermal resistance chip to heatsink per chip
RthJH
100um grease
1W/mK
0,31
K/W
VGE(th)
VCE=VGE
neutral point IGBT (T2, T3) ( T2 , T3 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off incl FWD
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0032
20
650
0
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
5,1
5,8
Rgoff=1 Ω
Rgon=1 Ω
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
6,4
1,60
1,86
0,1
209
213
44
49
250
265
79
106
6
9
21
28
V
V
1500
1
tr
td(off)
Turn-on energy loss per pulse
mA
nA
Ω
ns
mWs
24640
f=1MHz
0
25
Tj=25°C
1536
pF
732
15
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
Thermal resistance chip to heatsink per chip
RthJH
100um grease
1W/mK
copyright by Vincotech
400
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
4
480
400
Tj=25°C
2507
nC
0,15
K/W
0,17
K/W
Revision: 1.2
70-W212NMA600NB02-M200P62
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
half bridge FWD (D1, D4) ( D1 , D4 )
FWD forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
400
1200
IRRM
trr
Qrr
Rgon=1 Ω
±15
350
600
di(rec)max
/dt
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,19
2,47
V
48
448
568
70
138
19
53
20142
14965
4
13
µA
A
ns
µC
A/µs
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
0,16
K/W
Thermal resistance chip to case per chip
RthJH
100um grease
1W/mK
0,18
K/W
mWs
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Power dissipation constant
Tj=100°C
Ω
22000
-12
+14
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
K
B
Module Properties
Module inductance (from chips to PCB)
Module inductance (from PCB to PCB using Intercon board)
Resistance of Intercon boards (from PCB to PCB using Intercon board)
LsCE C-PCB
5
LsCE PCB-PCB
3
nH
1,5
mΩ
Rcc'1+EE' Tc=25°C, per switch
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
copyright by Vincotech
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
5
nH
2
2,2
4
6
Nm
Nm
2,5
5
Nm
710
g
Revision: 1.2
70-W212NMA600NB02-M200P62
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)
flow SCREW 4w housing
IGBT
Figure 1
Typical output characteristics Vge=15V
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
800
IC (A)
IC (A)
800
700
700
600
600
500
500
400
400
300
300
200
200
100
100
0
0
0,0
At
tp =
Tj =
VGE=
0,5
1,0
1,5
2,0
2,5
V CE (V)
3,0
0
At
tp =
Tj =
VGE from
µs
350
25/125/150 °C
15
V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
V CE (V)
350
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
1400
IC (A)
IF (A)
600
1200
500
1000
400
800
300
600
200
400
100
200
0
0
0
At
tp =
VCE =
Tj=
2
4
6
8
10
V GE (V)
0
12
µs
350
350
V
25/125/150 °C
copyright by Vincotech
6
0,5
1
At
tp =
350
Tj=
25/125/150 °C
1,5
2
2,5
V F (V)
3
µs
Revision: 1.2
70-W212NMA600NB02-M200P62
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
125
Eon
Eon
100
Eon
E (mWs)
E (mWs)
80
Eon
60
Eon
Eon
75
40
Eoff
50
Eoff
Eoff
Eoff
Eoff
20
Eoff
25
0
0
0
200
400
600
800
1000
I C (A)
1200
0
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
Ω
0,5
Rgoff =
0,5
Ω
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
601
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
8
8
E (mWs)
E (mWs)
2
7
7
Erec
Erec
6
6
Erec
Erec
5
5
4
4
Erec
3
3
Erec
2
2
1
1
0
0
0
200
400
600
800
1000
I C (A)
1200
0
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
0,5
Ω
copyright by Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
601
A
7
Revision: 1.2
70-W212NMA600NB02-M200P62
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10,00
1,00
t (ms)
t (ms)
tdon
tdoff
tr
1,00
tdon
0,10
tdoff
tf
tr
0,10
tf
0,01
0,01
0,00
0,00
0
200
400
600
800
1000
I C (A)
0
1200
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
Ω
0,5
Rgoff =
0,5
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
601
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,7
t rr(ms)
0,6
trr
trr
0,6
0,5
trr
0,5
trr
0,4
0,4
trr
0,3
0,3
trr
0,2
0,2
0,1
0,1
0,0
0,0
0
200
400
600
800
1000
1200
0
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
At
Tj =
VR =
IF =
VGE =
25/125/150 °C
350
V
±15
V
0,5
Ω
copyright by Vincotech
8
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
601
A
±15
V
Revision: 1.2
70-W212NMA600NB02-M200P62
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
50
Qrr (mC)
Qrr (mC)
50
Qrr
40
40
Qrr
Qrr
30
Qrr
30
20
20
Qrr
Qrr
10
10
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
25/125/150 °C
350
V
V
±15
0,5
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
4
6
8
R gon ( Ω)
25/125/150 °C
350
V
601
A
±15
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
250
IrrM (A)
250
10
200
200
IRRM
150
150
IRRM
IRRM
IRRM
100
100
IRRM
IRRM
50
50
0
0
0
200
400
600
800
1000
1200
0
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
At
Tj =
VR =
IF =
VGE =
25/125/150 °C
350
V
±15
V
0,5
Ω
copyright by Vincotech
9
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
601
A
±15
V
Revision: 1.2
70-W212NMA600NB02-M200P62
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)
FWD
7000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
10000
dIrec/dt T
dIo/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
6000
dIrec/dt T
dI0/dt T
8000
5000
6000
4000
3000
4000
2000
2000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
800
1000
I C (A) 1200
0
At
Tj =
VR =
IF =
VGE =
25/125/150 °C
350
V
V
±15
1,0
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
601
A
±15
V
FWD
ZthJH (K/W)
ZthJH (K/W)
100
-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
2
-3
10-5
At
D=
10-4
10-3
10-2
10-1
100
101
10
t p (s)
At
D=
Thermal grease
RthJH =
0,11
Tau (s)
1,916
0,234
0,035
0,006
copyright by Vincotech
R (C/W)
0,051
0,030
0,028
0,002
10-4
10-3
10-2
10-1
100
101
t p (s)
tp / T
Preapplied PCM
RthJH =
0,27
Thermal grease
RthJH =
K/W
0,31
K/W
FWD thermal model values
100um preapplied PCM
100um grease 1W/mK (P12)
K/W
K/W
IGBT thermal model values
100um preapplied PCM
100um grease 1W/mK (P12)
R (C/W)
0,042
0,024
0,023
0,002
-3
10-5
tp / T
Preapplied PCM
RthJH =
0,09
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
Tau (s)
1,916
0,234
0,035
0,006
R (C/W)
0,040
0,044
0,044
0,087
0,038
10
Tau (s)
5,632
1,073
0,202
0,041
0,012
R (C/W)
0,047
0,051
0,051
0,100
0,044
Tau (s)
5,632
1,073
0,202
0,041
0,012
Revision: 1.2
70-W212NMA600NB02-M200P62
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
800
Ptot (W)
IC (A)
2000
700
1500
600
500
remove
remove
1000
400
300
500
200
100
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
500
IF (A)
Ptot (W)
700
200
600
400
500
remove
400
remove
300
300
200
200
100
100
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
T h ( o C)
200
°C
Revision: 1.2
70-W212NMA600NB02-M200P62
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)
IGBT
Figure 21
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1400
ICMAX
1200
Ic CHIP = Ic MODULE
1000
800
remove
600
400
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
25,150
Uccminus=Uccplus=Ucc/2
VGE =
±15
Rgon =
1
Switching mode:
copyright by Vincotech
ºC
V
Ω
3 level
2 level
cont
dashed
12
Revision: 1.2
70-W212NMA600NB02-M200P62
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D4)
IGBT
Figure 1
Typical output characteristics Vge=15V
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1200
IC (A)
IC (A)
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE=
1
2
3
4
V CE (V)
0
At
tp =
Tj =
VGE from
µs
350
25/125/150 °C
15
V
IGBT
2
3
4
V CE (V)
500
1200
IF (A)
5
350
µs
151
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
1000
400
800
300
600
200
400
100
200
0
0
0
At
tp =
VCE =
Tj =
2
4
6
8
10
V GE (V)
0
12
At
tp =
Tj =
µs
350
350
V
25/125/150 °C
copyright by Vincotech
13
1
2
3
4
V F (V)
5
350
µs
25/125/150 °C
Revision: 1.2
70-W212NMA600NB02-M200P62
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D4)
IGBT
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
60
100
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
50
Eon
Eon
Eoff
Eoff
80
Eoff
60
Eon
40
30
Eoff
Eoff
40
Eoff
20
Eon
Eon
10
20
Eon
0
0
0
200
400
600
800
1000
1200
0
I C (A)
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
Ω
1,0
Rgoff =
1
Ω
2
4
6
8
R G( Ω )
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
600
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
E (mWs)
18
Erec
15
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
18
15
Erec
Erec
Erec
12
12
9
9
6
6
Erec
Erec
3
3
0
0
0
200
400
600
800
1000
1200
0
2
I C (A)
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
copyright by Vincotech
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
600
A
14
Revision: 1.2
70-W212NMA600NB02-M200P62
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D4)
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
1
t ( µs)
tdoff
tdoff
tdon
tdon
tf
0,1
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
200
400
600
800
1000
I C (A) 1200
0
With an inductive load at
Tj =
°C
126
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
R G( Ω )
8
10
With an inductive load at
Tj =
126
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,20
t rr(ms)
t rr(ms)
1,4
trr
1,2
trr
0,15
trr
trr
1
0,8
0,10
0,6
trr
trr
0,4
0,05
0,2
0,00
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125/150
350
±15
1
copyright by Vincotech
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
2
25/125/150
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W212NMA600NB02-M200P62
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D4)
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
80
80
Qrr (mC)
Qrr (mC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
70
Qrr
70
Qrr
60
Qrr
60
Qrr
50
50
40
40
30
30
Qrr
Qrr
20
20
10
10
0
0
0
200
At
At
Tj =
VCE =
VGE =
Rgon =
25/125/150
350
±15
1
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125/150
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
700
IrrM (A)
700
IrrM (A)
2
600
600
IRRM
IRRM
500
500
IRRM
400
400
300
300
200
200
100
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
IRRM
IRRM
IRRM
200
25/125/150
350
±15
1
copyright by Vincotech
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
2
25/125/150
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W212NMA600NB02-M200P62
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D4)
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
21000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dt T
dIrec/dt T
18000
30000
dI0/dt T
dIrec/dt T
25000
15000
20000
12000
15000
9000
10000
6000
5000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
25/125/150
350
±15
1
600
800
1000 I (A)
C
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125/150
350
600
±15
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
100
-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t p (s)
10
10
10-5
At
D=
Thermal grease
RthJH =
0,17
K/W
IGBT thermal model values
100um preapplied PCM
R (C/W)
Tau (s)
0,029
2,074
0,027
0,416
0,030
0,086
0,048
0,018
0,011
0,005
copyright by Vincotech
-3
2
tp / T
Preapplied PCM
RthJH =
0,15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
At
D=
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
2
10-4
100um grease 1W/mK (P12)
R (C/W)
Tau (s)
0,033
2,074
0,030
0,416
0,034
0,086
0,054
0,018
0,012
0,005
10-1
100
Thermal grease
RthJH =
K/W
0,18
FWD thermal model values
100um preapplied PCM
R (C/W)
Tau (s)
0,015
5,007
0,026
1,172
0,033
0,251
0,052
0,054
0,022
0,015
17
10-2
101
t p (s)
102
tp / T
Preapplied PCM
RthJH =
0,16
K/W
10-3
K/W
100um grease 1W/mK (P12)
R (C/W)
Tau (s)
0,0165
0,0296
0,0377
0,0590
0,0252
5,007
1,172
0,251
0,054
0,015
Revision: 1.2
70-W212NMA600NB02-M200P62
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D4)
IGBT
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
1200
600
IC (A)
Ptot (W)
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
1000
500
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
500
IF (A)
Ptot (W)
1200
200
1000
400
800
300
600
200
400
100
200
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
Revision: 1.2
70-W212NMA600NB02-M200P62
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D4)
IGBT
Figure 25
Reverse bias safe operating area
IGBT
Figure 22
Gate voltage vs Gate charge
IC = f(VCE)
VGE = f(Qg)
15
VGE (V)
IC (A)
1000
IC MAX
12
800
Vcc=130V
Vcc=520V
9
Ic CHIP
600
400
6
200
3
0
0
0
100
200
300
400
500
600
0
700
200
400
At
Tj =
25\150
Uccminus=Uccplus=Ucc/2
ºC
VGE =
Rgon =
V
Ω
±15
1
copyright by Vincotech
600
800
1000
Q g (nC)
V CE (V)
At
IC =
19
400
A
Revision: 1.2
70-W212NMA600NB02-M200P62
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
20
Revision: 1.2
70-W212NMA600NB02-M200P62
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
= 0,5 Ω
Rgon
Rgoff
= 0,5 Ω
Half Bridge IGBT
Figure 1
Half Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
150
%
VCE
%
IC
125
125
tdoff
VCE
100
100
VGE 90%
VCE 90%
VGE
75
75
IC
tdon
VGE
50
50
tEoff
25
25
VGE10%
IC 1%
VCE3%
IC 10%
0
0
tEon
-25
-0,2
-25
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
-15
15
350
599
0,27
0,97
V
V
V
A
µs
µs
0,6
0,8
time (us)
4,8
1
5
5,2
5,6
5,8
6
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Half Bridge IGBT
Figure 3
5,4
-15
15
350
599
0,34
0,80
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
150
150
%
%
VCE
125
Ic
125
fitted
IC
100
VCE
100
IC 90%
IC90%
75
75
tr
IC 60%
50
50
IC 40%
25
25
IC10%
IC10%
0
0
tf
-25
-25
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,3
350
599
0,07
0,4
time (us)
0,5
5,2
5,3
5,4
5,5
5,6
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
21
350
599
0,09
V
A
µs
Revision: 1.2
70-W212NMA600NB02-M200P62
Switching Definitions Half Bridge
Half Bridge IGBT
Figure 5
Half Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Poff
Eon
100
100
Eoff
Pon
75
75
50
50
25
25
VGE
VGE10%
90%
0
VCE3%
0
tEoff
-25
-0,2
tEon
-25
0
0,2
0,4
0,6
0,8
1
4,8
5
5,2
5,4
5,6
5,8
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
209,70
26,34
0,97
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Half Bridge IGBT
Figure 7
Gate voltage vs Gate charge (measured)
6
time(us)
209,70
33,64
0,80
kW
mJ
µs
Neutral Point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
15
Id
100
10
trr
5
50
fitted
0
Vd
0
-5
IRRM 10%
IRRM 90%
IRRM 100%
-10
-50
-15
-20
-500
-100
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
500
1000
-15
15
350
599
2710,20
1500
2000
2500
3000
Qg (nC)
5,2
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
22
5,4
5,6
350
599
-192
0,42
5,8
time(us)
6
V
A
A
µs
Revision: 1.2
70-W212NMA600NB02-M200P62
Switching Definitions Half Bridge
Neutral Point FWD
Figure 9
Neutral Point FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
Erec
%
%
Qrr
Id
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-25
-100
5,2
5,4
5,6
5,8
6
6,2
5,4
6,4
5,6
5,8
6
Id (100%) =
Qrr (100%) =
tQrr =
copyright by Vincotech
599
34,86
0,85
6,2
6,4
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
23
209,70
6,58
0,85
kW
mJ
µs
Revision: 1.2
70-W212NMA600NB02-M200P62
Half Bridge switching measurement circuit
Figure 11
copyright by Vincotech
24
Revision: 1.2
70-W212NMA600NB02-M200P62
Switching Definitions Neutral Point
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
Neutral Point IGBT
Figure 1
Neutral Point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
%
IC
%
VCE
125
tdoff
150
100
VGE 90%
VCE
VGE
VCE
90%
100
75
VGE
IC
tdon
50
50
tEoff
25
VGE 10%
IC 1%
VCE 3%
IC 10%
0
tEon
0
-50
-25
-0,2
0
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,4
0,6
time (us)
4,9
0,8
5,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
350
601
0,23
0,58
5
Neutral Point IGBT
Figure 3
5,2
-15
15
350
601
0,21
0,38
5,3
5,4
5,5
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
200
150
%
VCE
125
150
fitted
IC
IC
%
100
Ic 90%
100
75
VCE
IC 90%
Ic 60%
tr
50
50
Ic 40%
25
Ic10%
0
IC 10%
0
tf
-25
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,3
350
601
0,106
0,4
time (us)
-50
5,15
0,5
VC (100%) =
IC (100%) =
tr =
V
A
µs
25
5,2
5,25
350
601
0,049
5,3
5,35
time(us)
5,4
V
A
µs
Revision: 1.2
70-W212NMA600NB02-M200P62
Switching Definitions Neutral Point
Neutral Point IGBT
Figure 5
Neutral Point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
Poff
%
100
%
IC 1%
Eon
100
Eoff
75
75
50
50
25
25
Pon
Uge
90%
Uge
0
Uce 3%
10%
0
tEon
tEoff
-25
-0,2
-25
0
0,2
0,4
0,6
0,8
4,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
210,20
27,94
0,58
5
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Neutral Point IGBT
Figure 7
5,1
5,2
5,3
5,4
210,20405 kW
13,39
mJ
0,38
µs
Half Bridge FWD
Figure 8
Gate voltage vs Gate charge (measured)
time(us)
Turn-off Switching Waveforms & definition of trr
150
Uge (V)
20
%
15
Id
100
10
trr
50
5
0
Ud
0
fitted
IRRM 10%
-5
-50
-10
-15
-20
-1000
IRRM 90%
IRRM 100%
-100
-150
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
1000
-15
15
350
601
3441,54
2000
3000
4000
5000
Qg (nC)
5,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
26
5,2
5,3
350
601
-540
0,14
5,4
5,5
time(us)
5,6
V
A
A
µs
Revision: 1.2
70-W212NMA600NB02-M200P62
Switching Definitions Neutral Point
Half Bridge FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
Half Bridge FWD
125
%
%
Id
100
Qrr
Prec
100
Erec
tErec
75
tQint
50
50
0
25
-50
0
-25
-100
5
5,2
5,4
5,6
5,8
6
6,2
5
6,4
5,2
5,4
5,6
5,8
time(us)
Id (100%) =
Qrr (100%) =
tQint =
copyright by Vincotech
601
51,60
0,33
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
27
210,20
12,97
0,33
6
6,2
6,4
time(us)
kW
mJ
µs
Revision: 1.2
70-W212NMA600NB02-M200P62
Neutral Point switching measurement circuit
Figure 11
copyright by Vincotech
28
Revision: 1.2
70-W212NMA600NB02-M200P62
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without PCM
with PCM
in DataMatrix as
70-W212NMA600NB02-M200P62
70-W212NMA600NB02-M200P62-/3/
M200P62
M200P62
in packaging barcode as
M200P62
M200P62-/3/
Outline
Driver pins
Low current connections
Power connections
Pin
1.1
X1
4,5
Y1
78,65
Function
G1-1
Group
T1
M4
screw
X3
Y3
Function
M6
screw
X2
Y2
Function
1.2
1.3
4,5
39,5
81,55
78,65
E1-1
G1-2
T1
T1
3.1
3.2
-37,4
81,4
89,8
89,8
DC+
DC+
2.1
2.2
0
22
0
0
Phase
Phase
1.4
1.5
39,5
1,95
81,55
68,4
E1-2
E2-1
T1
T2
3.3
3.4
-37,4
81,4
65,2
65,2
CE
CE
2.3
2.4
44
0
0
110,4
Phase
DC+
1.6
1.7
4,85
39,15
68,4
68,4
G2-1
G2-2
T2
T2
3.5
3.6
-37,4
81,4
45,2
45,2
Phase
Phase
2.5
2.6
22
44
110,4
110,4
Neutral
DC-
1.8
1.9
42,05
-2,2
68,4
46
E2-2
G3-1
T2
T3
3.7
3.8
-37,4
81,4
20,6
20,6
DCDC-
1.10
-2,2
48,9
E3-1
T3
1.11
46,2
46
G3-2
T3
1.12
1.13
1.14
46,2
-6,75
-6,75
48,9
29,2
32,1
E3-2
E4-1
G4-1
T3
T4
T4
1.15
50,75
29,2
E4-2
T4
1.16
1.17
1.18
50,75
19,45
24,55
32,1
30,15
30,15
G4-2
Desat-DC+
Desat-DC+
T4
1.19
1.20
1.21
1.22
19,45
24,55
67,65
67,65
44,65 Desat-GND
44,65 Desat-GND
86,7
NTC
89,8
NTC
copyright by Vincotech
29
Revision: 1.2
70-W212NMA600NB02-M200P62
Ordering Code and Marking - Outline - Pinout
Pinout
copyright by Vincotech
30
Revision: 1.2
70-W212NMA600NB02-M200P62
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
31
Revision: 1.2