70-W212NMA600NB02-M200P62 flow MNPC 4w 1200V/600A Features flow SCREW 4w housing ● Mixed voltage NPC ● Low inductive ● High power screw interface Target Applications ● Solar inverter ● UPS Schematic ● High speed motor drive Types ● 70-W212NMA600NB02-M200P62 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 517 A 1200 A 1051 W ±20 V 10 850 µs V Tjmax 175 °C VRRM 650 V half bridge IGBT (T1, T4) ( T1 , T4 ) Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tj≤150°C VGE=15V neutral point FWD (D2, D3) ( D2 , D3 ) Peak Repetitive Reverse Voltage IF Tj=Tjmax Th=80°C 254 A Repetitive peak forward current IFRM tP = 1 ms Tvj < 150°C 800 A Power dissipation per FWD Ptot Tj=Tjmax Th=80°C 354 W 175 °C DC forward current Maximum Junction Temperature copyright by Vincotech Tjmax 1 Revision: 1.2 70-W212NMA600NB02-M200P62 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 344 A 1200 A 629 W ±20 V 10 360 µs 800 A Tjmax 175 °C VRRM 1200 V 272 A 1100 A 3026 A 2s 1200 A 596 W 175 °C neutral point IGBT (T2, T3) ( T2 , T3 ) Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Turn off safe operating area (RBSOA) Maximum Junction Temperature tSC Tj≤150°C VCC VGE=15V VCE max = 1200V Icmax Th=80°C Th=80°C Tvj max= 150°C V half bridge FWD (D1, D4) ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current I2t-value IF Tj=Tjmax Th=80°C tp=10ms , sin 180° Tj=150°C IFSM I2t Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per FWD Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 2 Th=80°C Revision: 1.2 70-W212NMA600NB02-M200P62 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit General Module Properties Cu Material of module baseplate Al2O3 Material of internal isulation Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis DC voltage t=2s CTI >200 3 Revision: 1.2 70-W212NMA600NB02-M200P62 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,4 Unit Typ Max 6 6,6 half bridge IGBT (T1, T4) ( T1 , T4 ) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Collector-emitter cut-off current incl. FWD Rise time Turn-off delay time Fall time VCE=VGE 0,03 600 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff 1500 Rgoff=0,5 Ω Rgon=0,5 Ω ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,1 mA nA Ω 3,25 tr td(off) 1,86 2,11 323 340 73 91 234 274 48 66 23 34 18 26 ns mWs Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM 0,09 K/W Thermal resistance chip to heatsink per chip RthJH 100um grease 1W/mK 0,11 K/W 60000 0 f=1MHz Tj=25°C 10 12000 pF 1000 neutral point FWD (D2, D3) ( D2 , D3 ) FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 400 IRRM trr Qrr Rgon=0,5 Ω ±15 350 600 di(rec)max /dt Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,66 1,60 158 192 281 417 18 35 2050 827 3 7 V A ns µC A/µs mWs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM 0,27 K/W Thermal resistance chip to heatsink per chip RthJH 100um grease 1W/mK 0,31 K/W VGE(th) VCE=VGE neutral point IGBT (T2, T3) ( T2 , T3 ) Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off incl FWD VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0032 20 650 0 tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate 5,1 5,8 Rgoff=1 Ω Rgon=1 Ω ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 6,4 1,60 1,86 0,1 209 213 44 49 250 265 79 106 6 9 21 28 V V 1500 1 tr td(off) Turn-on energy loss per pulse mA nA Ω ns mWs 24640 f=1MHz 0 25 Tj=25°C 1536 pF 732 15 Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM Thermal resistance chip to heatsink per chip RthJH 100um grease 1W/mK copyright by Vincotech 400 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 4 480 400 Tj=25°C 2507 nC 0,15 K/W 0,17 K/W Revision: 1.2 70-W212NMA600NB02-M200P62 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max half bridge FWD (D1, D4) ( D1 , D4 ) FWD forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current 400 1200 IRRM trr Qrr Rgon=1 Ω ±15 350 600 di(rec)max /dt Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,19 2,47 V 48 448 568 70 138 19 53 20142 14965 4 13 µA A ns µC A/µs Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM 0,16 K/W Thermal resistance chip to case per chip RthJH 100um grease 1W/mK 0,18 K/W mWs Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Power dissipation constant Tj=100°C Ω 22000 -12 +14 % Tj=25°C 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference K B Module Properties Module inductance (from chips to PCB) Module inductance (from PCB to PCB using Intercon board) Resistance of Intercon boards (from PCB to PCB using Intercon board) LsCE C-PCB 5 LsCE PCB-PCB 3 nH 1,5 mΩ Rcc'1+EE' Tc=25°C, per switch Mounting torque M Mounting torque M Terminal connection torque M Weight G copyright by Vincotech Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 5 nH 2 2,2 4 6 Nm Nm 2,5 5 Nm 710 g Revision: 1.2 70-W212NMA600NB02-M200P62 Buck operation Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3) flow SCREW 4w housing IGBT Figure 1 Typical output characteristics Vge=15V IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 800 IC (A) IC (A) 800 700 700 600 600 500 500 400 400 300 300 200 200 100 100 0 0 0,0 At tp = Tj = VGE= 0,5 1,0 1,5 2,0 2,5 V CE (V) 3,0 0 At tp = Tj = VGE from µs 350 25/125/150 °C 15 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 V CE (V) 350 µs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 1400 IC (A) IF (A) 600 1200 500 1000 400 800 300 600 200 400 100 200 0 0 0 At tp = VCE = Tj= 2 4 6 8 10 V GE (V) 0 12 µs 350 350 V 25/125/150 °C copyright by Vincotech 6 0,5 1 At tp = 350 Tj= 25/125/150 °C 1,5 2 2,5 V F (V) 3 µs Revision: 1.2 70-W212NMA600NB02-M200P62 Buck operation Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3) IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 125 Eon Eon 100 Eon E (mWs) E (mWs) 80 Eon 60 Eon Eon 75 40 Eoff 50 Eoff Eoff Eoff Eoff 20 Eoff 25 0 0 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = Ω 0,5 Rgoff = 0,5 Ω 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = 601 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 8 8 E (mWs) E (mWs) 2 7 7 Erec Erec 6 6 Erec Erec 5 5 4 4 Erec 3 3 Erec 2 2 1 1 0 0 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = 0,5 Ω copyright by Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = 601 A 7 Revision: 1.2 70-W212NMA600NB02-M200P62 Buck operation Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3) IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10,00 1,00 t (ms) t (ms) tdon tdoff tr 1,00 tdon 0,10 tdoff tf tr 0,10 tf 0,01 0,01 0,00 0,00 0 200 400 600 800 1000 I C (A) 0 1200 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = Ω 0,5 Rgoff = 0,5 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 601 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,7 t rr(ms) 0,6 trr trr 0,6 0,5 trr 0,5 trr 0,4 0,4 trr 0,3 0,3 trr 0,2 0,2 0,1 0,1 0,0 0,0 0 200 400 600 800 1000 1200 0 I C (A) At Tj = VCE = VGE = Rgon = At Tj = VR = IF = VGE = 25/125/150 °C 350 V ±15 V 0,5 Ω copyright by Vincotech 8 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 601 A ±15 V Revision: 1.2 70-W212NMA600NB02-M200P62 Buck operation Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3) FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 50 Qrr (mC) Qrr (mC) 50 Qrr 40 40 Qrr Qrr 30 Qrr 30 20 20 Qrr Qrr 10 10 0 0 0 At At Tj = VCE = VGE = Rgon = 200 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = 25/125/150 °C 350 V V ±15 0,5 Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 4 6 8 R gon ( Ω) 25/125/150 °C 350 V 601 A ±15 V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 250 IrrM (A) 250 10 200 200 IRRM 150 150 IRRM IRRM IRRM 100 100 IRRM IRRM 50 50 0 0 0 200 400 600 800 1000 1200 0 I C (A) At Tj = VCE = VGE = Rgon = At Tj = VR = IF = VGE = 25/125/150 °C 350 V ±15 V 0,5 Ω copyright by Vincotech 9 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 601 A ±15 V Revision: 1.2 70-W212NMA600NB02-M200P62 Buck operation Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3) FWD 7000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 10000 dIrec/dt T dIo/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 6000 dIrec/dt T dI0/dt T 8000 5000 6000 4000 3000 4000 2000 2000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = 25/125/150 °C 350 V V ±15 1,0 Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 601 A ±15 V FWD ZthJH (K/W) ZthJH (K/W) 100 -1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 2 -3 10-5 At D= 10-4 10-3 10-2 10-1 100 101 10 t p (s) At D= Thermal grease RthJH = 0,11 Tau (s) 1,916 0,234 0,035 0,006 copyright by Vincotech R (C/W) 0,051 0,030 0,028 0,002 10-4 10-3 10-2 10-1 100 101 t p (s) tp / T Preapplied PCM RthJH = 0,27 Thermal grease RthJH = K/W 0,31 K/W FWD thermal model values 100um preapplied PCM 100um grease 1W/mK (P12) K/W K/W IGBT thermal model values 100um preapplied PCM 100um grease 1W/mK (P12) R (C/W) 0,042 0,024 0,023 0,002 -3 10-5 tp / T Preapplied PCM RthJH = 0,09 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 Tau (s) 1,916 0,234 0,035 0,006 R (C/W) 0,040 0,044 0,044 0,087 0,038 10 Tau (s) 5,632 1,073 0,202 0,041 0,012 R (C/W) 0,047 0,051 0,051 0,100 0,044 Tau (s) 5,632 1,073 0,202 0,041 0,012 Revision: 1.2 70-W212NMA600NB02-M200P62 Buck operation Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3) IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 800 Ptot (W) IC (A) 2000 700 1500 600 500 remove remove 1000 400 300 500 200 100 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 500 IF (A) Ptot (W) 700 200 600 400 500 remove 400 remove 300 300 200 200 100 100 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 11 50 175 100 150 T h ( o C) 200 °C Revision: 1.2 70-W212NMA600NB02-M200P62 Buck operation Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3) IGBT Figure 21 Reverse bias safe operating area IC = f(VCE) IC (A) 1400 ICMAX 1200 Ic CHIP = Ic MODULE 1000 800 remove 600 400 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = 25,150 Uccminus=Uccplus=Ucc/2 VGE = ±15 Rgon = 1 Switching mode: copyright by Vincotech ºC V Ω 3 level 2 level cont dashed 12 Revision: 1.2 70-W212NMA600NB02-M200P62 Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D4) IGBT Figure 1 Typical output characteristics Vge=15V IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 1200 IC (A) IC (A) 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE= 1 2 3 4 V CE (V) 0 At tp = Tj = VGE from µs 350 25/125/150 °C 15 V IGBT 2 3 4 V CE (V) 500 1200 IF (A) 5 350 µs 151 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 1 1000 400 800 300 600 200 400 100 200 0 0 0 At tp = VCE = Tj = 2 4 6 8 10 V GE (V) 0 12 At tp = Tj = µs 350 350 V 25/125/150 °C copyright by Vincotech 13 1 2 3 4 V F (V) 5 350 µs 25/125/150 °C Revision: 1.2 70-W212NMA600NB02-M200P62 Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D4) IGBT IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 60 100 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 50 Eon Eon Eoff Eoff 80 Eoff 60 Eon 40 30 Eoff Eoff 40 Eoff 20 Eon Eon 10 20 Eon 0 0 0 200 400 600 800 1000 1200 0 I C (A) With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = Ω 1,0 Rgoff = 1 Ω 2 4 6 8 R G( Ω ) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = 600 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) E (mWs) 18 Erec 15 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 18 15 Erec Erec Erec 12 12 9 9 6 6 Erec Erec 3 3 0 0 0 200 400 600 800 1000 1200 0 2 I C (A) With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω copyright by Vincotech 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = 600 A 14 Revision: 1.2 70-W212NMA600NB02-M200P62 Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D4) IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) 1 t ( µs) tdoff tdoff tdon tdon tf 0,1 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = °C 126 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 R G( Ω ) 8 10 With an inductive load at Tj = 126 °C VCE = 350 V VGE = ±15 V IC = 600 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,20 t rr(ms) t rr(ms) 1,4 trr 1,2 trr 0,15 trr trr 1 0,8 0,10 0,6 trr trr 0,4 0,05 0,2 0,00 0 0 At Tj = VCE = VGE = Rgon = 200 25/125/150 350 ±15 1 copyright by Vincotech 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω 15 2 25/125/150 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.2 70-W212NMA600NB02-M200P62 Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D4) FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 80 80 Qrr (mC) Qrr (mC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 70 Qrr 70 Qrr 60 Qrr 60 Qrr 50 50 40 40 30 30 Qrr Qrr 20 20 10 10 0 0 0 200 At At Tj = VCE = VGE = Rgon = 25/125/150 350 ±15 1 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125/150 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 700 IrrM (A) 700 IrrM (A) 2 600 600 IRRM IRRM 500 500 IRRM 400 400 300 300 200 200 100 100 0 0 0 At Tj = VCE = VGE = Rgon = IRRM IRRM IRRM 200 25/125/150 350 ±15 1 copyright by Vincotech 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω 16 2 25/125/150 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.2 70-W212NMA600NB02-M200P62 Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D4) FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) 21000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIo/dt T dIrec/dt T 18000 30000 dI0/dt T dIrec/dt T 25000 15000 20000 12000 15000 9000 10000 6000 5000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 25/125/150 350 ±15 1 600 800 1000 I (A) C 1200 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125/150 350 600 ±15 6 8 R gon ( Ω) 10 °C V A V FWD ZthJH (K/W) ZthJH (K/W) 100 -1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t p (s) 10 10 10-5 At D= Thermal grease RthJH = 0,17 K/W IGBT thermal model values 100um preapplied PCM R (C/W) Tau (s) 0,029 2,074 0,027 0,416 0,030 0,086 0,048 0,018 0,011 0,005 copyright by Vincotech -3 2 tp / T Preapplied PCM RthJH = 0,15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 At D= 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 2 10-4 100um grease 1W/mK (P12) R (C/W) Tau (s) 0,033 2,074 0,030 0,416 0,034 0,086 0,054 0,018 0,012 0,005 10-1 100 Thermal grease RthJH = K/W 0,18 FWD thermal model values 100um preapplied PCM R (C/W) Tau (s) 0,015 5,007 0,026 1,172 0,033 0,251 0,052 0,054 0,022 0,015 17 10-2 101 t p (s) 102 tp / T Preapplied PCM RthJH = 0,16 K/W 10-3 K/W 100um grease 1W/mK (P12) R (C/W) Tau (s) 0,0165 0,0296 0,0377 0,0590 0,0252 5,007 1,172 0,251 0,054 0,015 Revision: 1.2 70-W212NMA600NB02-M200P62 Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D4) IGBT IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 1200 600 IC (A) Ptot (W) Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) 1000 500 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 500 IF (A) Ptot (W) 1200 200 1000 400 800 300 600 200 400 100 200 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC Revision: 1.2 70-W212NMA600NB02-M200P62 Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D4) IGBT Figure 25 Reverse bias safe operating area IGBT Figure 22 Gate voltage vs Gate charge IC = f(VCE) VGE = f(Qg) 15 VGE (V) IC (A) 1000 IC MAX 12 800 Vcc=130V Vcc=520V 9 Ic CHIP 600 400 6 200 3 0 0 0 100 200 300 400 500 600 0 700 200 400 At Tj = 25\150 Uccminus=Uccplus=Ucc/2 ºC VGE = Rgon = V Ω ±15 1 copyright by Vincotech 600 800 1000 Q g (nC) V CE (V) At IC = 19 400 A Revision: 1.2 70-W212NMA600NB02-M200P62 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 copyright by Vincotech 75 100 T (°C) 125 20 Revision: 1.2 70-W212NMA600NB02-M200P62 Switching Definitions Half Bridge General conditions = 125 °C Tj = 0,5 Ω Rgon Rgoff = 0,5 Ω Half Bridge IGBT Figure 1 Half Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 150 % VCE % IC 125 125 tdoff VCE 100 100 VGE 90% VCE 90% VGE 75 75 IC tdon VGE 50 50 tEoff 25 25 VGE10% IC 1% VCE3% IC 10% 0 0 tEon -25 -0,2 -25 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 -15 15 350 599 0,27 0,97 V V V A µs µs 0,6 0,8 time (us) 4,8 1 5 5,2 5,6 5,8 6 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Half Bridge IGBT Figure 3 5,4 -15 15 350 599 0,34 0,80 V V V A µs µs Half Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 150 150 % % VCE 125 Ic 125 fitted IC 100 VCE 100 IC 90% IC90% 75 75 tr IC 60% 50 50 IC 40% 25 25 IC10% IC10% 0 0 tf -25 -25 0,1 0,2 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,3 350 599 0,07 0,4 time (us) 0,5 5,2 5,3 5,4 5,5 5,6 time(us) VC (100%) = IC (100%) = tr = V A µs 21 350 599 0,09 V A µs Revision: 1.2 70-W212NMA600NB02-M200P62 Switching Definitions Half Bridge Half Bridge IGBT Figure 5 Half Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Poff Eon 100 100 Eoff Pon 75 75 50 50 25 25 VGE VGE10% 90% 0 VCE3% 0 tEoff -25 -0,2 tEon -25 0 0,2 0,4 0,6 0,8 1 4,8 5 5,2 5,4 5,6 5,8 time (us) Poff (100%) = Eoff (100%) = tEoff = 209,70 26,34 0,97 Pon (100%) = Eon (100%) = tEon = kW mJ µs Half Bridge IGBT Figure 7 Gate voltage vs Gate charge (measured) 6 time(us) 209,70 33,64 0,80 kW mJ µs Neutral Point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % 15 Id 100 10 trr 5 50 fitted 0 Vd 0 -5 IRRM 10% IRRM 90% IRRM 100% -10 -50 -15 -20 -500 -100 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech 500 1000 -15 15 350 599 2710,20 1500 2000 2500 3000 Qg (nC) 5,2 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 22 5,4 5,6 350 599 -192 0,42 5,8 time(us) 6 V A A µs Revision: 1.2 70-W212NMA600NB02-M200P62 Switching Definitions Half Bridge Neutral Point FWD Figure 9 Neutral Point FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 Erec % % Qrr Id 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -25 -100 5,2 5,4 5,6 5,8 6 6,2 5,4 6,4 5,6 5,8 6 Id (100%) = Qrr (100%) = tQrr = copyright by Vincotech 599 34,86 0,85 6,2 6,4 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 23 209,70 6,58 0,85 kW mJ µs Revision: 1.2 70-W212NMA600NB02-M200P62 Half Bridge switching measurement circuit Figure 11 copyright by Vincotech 24 Revision: 1.2 70-W212NMA600NB02-M200P62 Switching Definitions Neutral Point General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω Neutral Point IGBT Figure 1 Neutral Point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 % IC % VCE 125 tdoff 150 100 VGE 90% VCE VGE VCE 90% 100 75 VGE IC tdon 50 50 tEoff 25 VGE 10% IC 1% VCE 3% IC 10% 0 tEon 0 -50 -25 -0,2 0 0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,4 0,6 time (us) 4,9 0,8 5,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 350 601 0,23 0,58 5 Neutral Point IGBT Figure 3 5,2 -15 15 350 601 0,21 0,38 5,3 5,4 5,5 V V V A µs µs Neutral Point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 200 150 % VCE 125 150 fitted IC IC % 100 Ic 90% 100 75 VCE IC 90% Ic 60% tr 50 50 Ic 40% 25 Ic10% 0 IC 10% 0 tf -25 0,1 0,2 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,3 350 601 0,106 0,4 time (us) -50 5,15 0,5 VC (100%) = IC (100%) = tr = V A µs 25 5,2 5,25 350 601 0,049 5,3 5,35 time(us) 5,4 V A µs Revision: 1.2 70-W212NMA600NB02-M200P62 Switching Definitions Neutral Point Neutral Point IGBT Figure 5 Neutral Point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 Poff % 100 % IC 1% Eon 100 Eoff 75 75 50 50 25 25 Pon Uge 90% Uge 0 Uce 3% 10% 0 tEon tEoff -25 -0,2 -25 0 0,2 0,4 0,6 0,8 4,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 210,20 27,94 0,58 5 Pon (100%) = Eon (100%) = tEon = kW mJ µs Neutral Point IGBT Figure 7 5,1 5,2 5,3 5,4 210,20405 kW 13,39 mJ 0,38 µs Half Bridge FWD Figure 8 Gate voltage vs Gate charge (measured) time(us) Turn-off Switching Waveforms & definition of trr 150 Uge (V) 20 % 15 Id 100 10 trr 50 5 0 Ud 0 fitted IRRM 10% -5 -50 -10 -15 -20 -1000 IRRM 90% IRRM 100% -100 -150 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech 1000 -15 15 350 601 3441,54 2000 3000 4000 5000 Qg (nC) 5,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 26 5,2 5,3 350 601 -540 0,14 5,4 5,5 time(us) 5,6 V A A µs Revision: 1.2 70-W212NMA600NB02-M200P62 Switching Definitions Neutral Point Half Bridge FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 Half Bridge FWD 125 % % Id 100 Qrr Prec 100 Erec tErec 75 tQint 50 50 0 25 -50 0 -25 -100 5 5,2 5,4 5,6 5,8 6 6,2 5 6,4 5,2 5,4 5,6 5,8 time(us) Id (100%) = Qrr (100%) = tQint = copyright by Vincotech 601 51,60 0,33 Prec (100%) = Erec (100%) = tErec = A µC µs 27 210,20 12,97 0,33 6 6,2 6,4 time(us) kW mJ µs Revision: 1.2 70-W212NMA600NB02-M200P62 Neutral Point switching measurement circuit Figure 11 copyright by Vincotech 28 Revision: 1.2 70-W212NMA600NB02-M200P62 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without PCM with PCM in DataMatrix as 70-W212NMA600NB02-M200P62 70-W212NMA600NB02-M200P62-/3/ M200P62 M200P62 in packaging barcode as M200P62 M200P62-/3/ Outline Driver pins Low current connections Power connections Pin 1.1 X1 4,5 Y1 78,65 Function G1-1 Group T1 M4 screw X3 Y3 Function M6 screw X2 Y2 Function 1.2 1.3 4,5 39,5 81,55 78,65 E1-1 G1-2 T1 T1 3.1 3.2 -37,4 81,4 89,8 89,8 DC+ DC+ 2.1 2.2 0 22 0 0 Phase Phase 1.4 1.5 39,5 1,95 81,55 68,4 E1-2 E2-1 T1 T2 3.3 3.4 -37,4 81,4 65,2 65,2 CE CE 2.3 2.4 44 0 0 110,4 Phase DC+ 1.6 1.7 4,85 39,15 68,4 68,4 G2-1 G2-2 T2 T2 3.5 3.6 -37,4 81,4 45,2 45,2 Phase Phase 2.5 2.6 22 44 110,4 110,4 Neutral DC- 1.8 1.9 42,05 -2,2 68,4 46 E2-2 G3-1 T2 T3 3.7 3.8 -37,4 81,4 20,6 20,6 DCDC- 1.10 -2,2 48,9 E3-1 T3 1.11 46,2 46 G3-2 T3 1.12 1.13 1.14 46,2 -6,75 -6,75 48,9 29,2 32,1 E3-2 E4-1 G4-1 T3 T4 T4 1.15 50,75 29,2 E4-2 T4 1.16 1.17 1.18 50,75 19,45 24,55 32,1 30,15 30,15 G4-2 Desat-DC+ Desat-DC+ T4 1.19 1.20 1.21 1.22 19,45 24,55 67,65 67,65 44,65 Desat-GND 44,65 Desat-GND 86,7 NTC 89,8 NTC copyright by Vincotech 29 Revision: 1.2 70-W212NMA600NB02-M200P62 Ordering Code and Marking - Outline - Pinout Pinout copyright by Vincotech 30 Revision: 1.2 70-W212NMA600NB02-M200P62 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 31 Revision: 1.2