70-W612M3A1K8SC02-L300FP70 datasheet flow MNPC 12w 1200 V / 1800 A Features 3x flow SCREW 4w 12mm housing ● Mixed voltage NPC ● Low inductive ● High power screw interface ● Integrated DC-snubber capacitors ● High accuracy NTC Target Applications ● Solar inverter Schematic ● UPS ● High Speed Motor Drive Types ● 70-W612M3A1K8SC02-L300FP70 Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 1383 1618 A 5400 A 3600 A 3123 4004 W Half Bridge IGBT( T1 ,T4 ) Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Maximum Junction Temperature T j = T jmax T s = 80°C T c = 80°C T j = T jmax T j ≤ 150°C V GE = 15V T jmax 1 T s = 80°C T c = 80°C ±20 V 10 800 µs V 175 °C 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Neutral Point Diode( D5 ,D6 ) Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j = T jmax 650 V T s = 80°C T c = 80°C 1005 1220 A 3600 A T s = 80°C T c = 80°C 1321 1693 W 175 °C t p = 10ms, sin 180° T j = T jmax T jmax Neutral Point IGBT( T2 ,T3 ) Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j = T jmax T s = 80°C T c = 80°C T j = T jmax T s = 80°C T c = 80°C T j ≤ 150°C V GE = 15V T jmax 650 V 1063 1447 A 5400 A 3600 A 1985 2544 W ±20 V 6 360 µs V 175 °C Half Bridge Diode( D2 ,D3 ) Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature copyright Vincotech V RRM IF I FRM P tot T j = T jmax 1200 V T s = 80°C T c = 80°C 1021 1218 A 5400 A T s = 80°C T c = 80°C 2075 2660 W 175 °C t p limited by T jmax T j = T jmax T jmax 2 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 630 V -40...+105 °C 39 A DC link Capacitor Max.DC voltage Operation Temperature RMS Current V MAX TOP IRMS f = 10KHz ΔT = 10°C Ta ≤ 85°C Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Stage copyright Vincotech V is t = 2s DC voltage CTI >200 3 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Half Bridge IGBT( T1 ,T4 ) Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE = V GE V CEsat 0,0684 15 1800 25 125 25 125 5,3 5,8 6,3 2,16 2,42 2,5 V V Collector-emitter cut-off current incl. Diode I CES 0 1200 25 0,6 mA Gate-emitter leakage current I GES 20 0 25 9000 nA 350 25 125 25 125 25 125 25 125 25 125 25 125 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time All gates paralleling tr t d(off) tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG R goff = 0,5 Ω R gon = 0,5 Ω Ω 0,42 +15/-10 1800 288 284 103 105 447 373 63 96 40,95 48,01 73,51 107,89 ns mWs 112200 f = 1MHz 25 0 25 pF 6960 4200 600 ±15 Thermal resistance chip to heatsink R th(j-s) phase-change material λ = 3,4 W/mK Thermal resistance chip to case R th(j-c) Rth(j-c)= 0,75*Rth(j-s) 1800 25 nC 14400 0,03 0,02 K/W Neutral Point Diode( D5 ,D6 ) Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy 25 125 IR 650 25 350 1800 25 125 25 125 25 125 25 125 25 125 I RRM t rr Q rr R gon = 0,5 Ω +15/-10 ( di rf/dt )max E rec Thermal resistance chip to heatsink R th(j-s) phase-change material λ = 3,4 W/mK Thermal resistance chip to case R th(j-c) Rth(j-c)= 0,75*Rth(j-s) copyright Vincotech 1800 VF 1,64 1,61 2,4 21,6 588 883 223 302 60,94 124,39 10380 9556 12,36 24,83 0,07 0,06 V µA A ns µC A/µs mWs K/W 4 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Neutral Point IGBT( T2 ,T3 ) Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off incl diode V GE(th) V CEsat I GES Integrated Gate resistor R gint Turn-on delay time t d(on) Turn-off delay time Fall time 0,0288 15 I CES Gate-emitter leakage current Rise time V CE = V GE 1800 0 1200 25 20 0 25 tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG 5,1 All gates paralleling R goff = 0,5 Ω R gon = 0,5 Ω 5,80 6,4 1,57 1,80 2,0 +15/-8 350 1800 25 125 25 125 25 125 25 125 25 125 25 125 V V 0,14 mA 9000 nA Ω 0,16 tr t d(off) 25 125 25 125 197 201 89 94 246 268 44 65 26,5 33,5 50,1 71,7 ns mWs 110880 f = 1MHz 0 25 1800 6912 25 pF 3288 15 Thermal resistance chip to heatsink R th(j-s) phase-change material λ = 3,4 W/mK Thermal resistance chip to case R th(j-c) Rth(j-c)= 0,75*Rth(j-s) 960 1800 19200 25 0,05 0,04 nC K/W Half Bridge Diode( D2 ,D3 ) Diode forward voltage Reverse leakage current Peak reverse recovery current Ir Reverse recovery time Reverse recovered charge Q rr Reverse recovery energy 25 125 1200 25 350 1800 25 125 25 125 25 125 25 125 125 125 I RRM t rr Peak rate of fall of recovery current 1800 VF R gon = 0,5 Ω +15/-8 ( di rf/dt )max E rec Thermal resistance chip to heatsink R th(j-s) phase-change material λ = 3,4 W/mK Thermal resistance chip to case R th(j-c) Rth(j-c)= 0,75*Rth(j-s) 2,51 2,54 2,9 2160 910 1244 111 117 62 165 20865 20295 11,52 35,92 0,05 0,04 V µA A ns µC A/µs mWs K/W DC link Capacitor C value Equivalent series resistance C ESR 25 f = 10KHz 25 f = 1KHz 4800 1,58 µF mΩ +10 20 Climatic category copyright Vincotech 4080 -10 Tolerance Dissipation factor 3450 % 0,0004 40/105/56 5 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Thermistor Rated resistance R Deviation of R25 Δ R/R Power dissipation P 22000 25 R 100 = 1484 Ω 100 -5 25 Power dissipation constant Ω +5 % 5 mW mW/K 25 1,5 B-value B (25/50) Tol. ±1% 25 3962 K B-value B (25/100) Tol. ±1% 25 4000 K I Vincotech NTC Reference Module Properties Module inductance (from chips to PCB) LsCE Mounting torque for screws to heatsink MS Mounting torque for terminal screws Mt Mounting torque for Interconn PCB screws M Weight m copyright Vincotech 2 Screw M5 –according to the valid handling instructions FSWB-M-*-HI Screw M6 –according to the valid handling instructions FSWB-M-*-HI Screw M4 –according to the valid handling instructions FSWB-M-*-HI 6 nH 6 Nm 2,5 5 Nm 2 2,2 Nm 1930 g 4 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Half Bridge T1, T4 / D5, D6 Half Bridge IGBT and Neutral Point FWD Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 IGBT Typical output characteristics I C = f(V CE) 3200 IC (A) IC (A) 3200 2800 2800 2400 2400 2000 2000 1600 1600 1200 1200 800 800 400 400 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 350 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) 1500 5 V CE (V) FWD IC (A) IF (A) 3200 2800 1200 2400 2000 900 1600 600 1200 Tj = 125°C 800 300 Tj = 125°C Tj = 25°C Tj = 25°C 400 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 7 0,5 350 1 1,5 2 2,5 V F (V) 3 µs 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Half Bridge T1, T4 / D5, D6 Half Bridge IGBT and Neutral Point FWD Figure 5 IGBT Figure 6 FWD Typical switching energy losses Typical reverse recovery energy loss as a function of collector current E = f(I C) as a function of collector current E rec = f(I c) E (mWs) E (mWs) 150 Eoff High T 30 Erec High T 25 120 Eoff Low T 20 90 15 Erec Low T Eon High T 60 10 Eon Low T 30 5 0 0 0 500 1000 1500 2000 I C (A) 2500 0 With an inductive load at Tj = °C 25/125 25/125 V CE = 350 V V GE = -8 / +15 V R gon = 0,5 Ω R goff = 0,5 Ω 500 1000 1500 2000 2500 I C (A) With an inductive load at Tj = 25/125 °C 25/125 V CE = 350 V V GE = -8 / +15 V R gon = 0,5 Ω Figure 7 Typical switching times as a function of collector current t = f(I C) IGBT Figure 8 Typical reverse recovery time as a function of collector current t rr = f(I c) 1,00 FWD t rr(ms) 0,30 t (ms) tdoff trr High T 0,25 tdon trr Low T tf 0,10 0,20 tr 0,15 0,01 0,10 0,05 0,00 0,00 0 500 1000 1500 2000 I C (A) 2500 0 With an inductive load at Tj = 125 °C V CE = 350 V V GE = -8 / +15 V R gon = 0,5 Ω R goff = 0,5 copyright Vincotech 500 1000 At Tj = V CE = 25/125 25/125 350 °C V V GE = R gon = -8 / +15 0,5 V Ω 1500 2000 I C (A) 2500 Ω 8 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Half Bridge T1, T4 / D5, D6 Half Bridge IGBT and Neutral Point FWD Figure 9 FWD Figure 10 FWD Typical reverse recovery charge as a Typical reverse recovery current as a function of collector current Q rr = f(I C) function of collector current I RRM = f(I C) 150 Qrr (mC) 1000 IRRM High T IrrM (A) Qrr High T 120 800 90 600 IRRM Low T Qrr Low T 60 400 30 200 0 0 0 500 1000 At Tj = V CE = V GE = 25/125 350 -8 / +15 °C V V R gon = 0,50 Ω 1500 Tj = 2000 #REF! 25/125 I C (A) 2500 0 °C Figure 11 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) 500 1000 At Tj = V CE = V GE = 25/125 25/125 350 -8 / +15 °C V V R gon = 0,50 Ω 1500 2000 I C (A) 2500 FWD direc / dt (A/ms) 20000 dIrec/dt T dIo/dt T 15000 10000 5000 0 0 500 1000 At Tj = V CE = V GE = 25/125 25/125 350 -8 / +15 V V R gon = 0,5 Ω copyright Vincotech 1500 2000 I C (A) 2500 °C 9 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Half Bridge T1, T4 / D5, D6 Half Bridge IGBT and Neutral Point FWD Figure 12 IGBT Figure 13 FWD IGBT transient thermal impedance FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) as a function of pulse width Z th(j-s) = f(t p) 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-3 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-4 10-5 10-4 At D = 10-3 10-2 10-1 100 t p (s) 10-5 101 10-4 At D = tp/T 10-3 10-2 10-1 100 t p (s) 101 tp/T FWD thermal model values with phase-change material R th(j-s) = R thJC = 0,072 K/W 0,056 K/W IGBT thermal model values with phase-change material R thJC = R th(j-s) = 0,030 K/W 0,024 K/W IGBT thermal model values FWD thermal model values With phase change material R (K/W) Tau (s) With phase change material R (K/W) Tau (s) 0,0127 0,007 0,008 0,001 1,195 0,185 0,036 0,008 0,013 0,015 0,011 0,020 5,38 1,123 0,259 0,050 0,002 0,001 0,007 0,002 0,017 0,003 0,003 0,0004 Figure 14 Power dissipation as a IGBT Figure 15 Collector current as a function of heatsink temperature P tot = f(T h) IGBT function of heatsink temperature I C = f(T h) 2000 Ptot (W) IC (A) 6000 1800 5000 1600 1400 4000 1200 3000 1000 800 2000 600 400 1000 200 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = V GE = °C 10 50 175 15 100 150 T h ( o C) 200 °C V 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Half Bridge T1, T4 / D5, D6 Half Bridge IGBT and Neutral Point FWD Figure 16 FWD Figure 17 FWD Power dissipation as a Forward current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I F = f(T h) 1800 Ptot (W) IF (A) 2500 2000 1600 1400 1200 1500 1000 800 1000 600 400 500 200 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Figure 18 Safe operating area as a function of collector-emitter voltage I C = f(V CE) IGBT 50 175 100 150 200 T h ( o C) °C Figure 19 Reverse bias safe operating area IGBT IC (A) IC (A) I C = f(V CE) 10uS 4000 IC MAX 3600 103 3200 100uS Ic CHIP 2800 102 1mS 101 MAX 2400 2000 VCE 10mS 100mS 1600 DC 10 0 1200 800 10 -1 400 0 0 101 100 At D = Th = single pulse 80 ºC 103 102 V GE = Tj = 15 T jmax 200 600 800 1000 1200 1400 V CE (V) At Uccminus=Uccplus V ºC Switching mode : copyright Vincotech 400 V CE (V) 11 3 level switching 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Neutral Point T2, T3 / D2, D3 Neutral Point IGBT and Half Bridge FWD Figure 1 IGBT Figure 2 Typical output characteristics I C = f(V CE) IGBT Typical output characteristics I C = f(V CE) IC (A) 3200 IC (A) 3200 2800 2800 2400 2400 2000 2000 1600 1600 1200 1200 800 800 400 400 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 350 µs 0 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) 1500 5 FWD IC (A) IF (A) 3200 2800 1200 2400 2000 900 1600 600 1200 Tj = 125°C Tj = 125°C Tj = 25°C 800 Tj = 25°C 300 400 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 12 1 350 2 3 V F (V) 4 µs 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Neutral Point T2, T3 / D2, D3 Neutral Point IGBT and Half Bridge FWD Figure 5 IGBT Figure 6 FWD Typical switching energy losses Typical reverse recovery energy loss as a function of collector current E = f(I C) as a function of collector current E rec = f(I c) E (mWs) 80 E (mWs) Eoff High T 30 Erec High T 25 Eoff Low T 60 20 15 40 Erec Low T Eon High T 10 Eon Low T 20 5 0 0 0 500 1000 1500 2000 I C (A) 0 2500 With an inductive load at Tj = 25/0 °C V CE = 350 V V GE = +15/-8 V R gon = 0,5 Ω R goff = 0,5 Ω 500 1000 1500 2000 I C (A) 2500 With an inductive load at Tj = 25/0 °C V CE = 350 V V GE = +15/-8 V R gon = 0,5 Ω Figure 7 Typical switching times as a function of collector current t = f(I C) IGBT Figure 8 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD 0,25 t rr(ms) t ( µs) 1 tdoff 0,20 tdon trr High T 0,1 0,15 tf tr trr Low T 0,10 0,01 0,05 0,001 0,00 0 500 With an inductive load at Tj = 0 °C V CE = 350 V V GE = +15/-8 V copyright Vincotech 1000 1500 R gon = R goff = 2000 0,5 0,5 I C (A) 2500 0 Ω Ω 13 500 1000 At Tj = V CE = 25/0 350 °C V V GE = R gon = +15/-8 0,5 V Ω 1500 2000 I C (A) 2500 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Neutral Point T2, T3 / D2, D3 Neutral Point IGBT and Half Bridge FWD Figure 9 FWD Figure 10 FWD Typical reverse recovery charge as a Typical reverse recovery current as a function of collector current Q rr = f(I C) function of collector current I RRM = f(I C) 150 1500 IrrM (A) Qrr (mC) Qrr High T IRRM High T 120 1200 90 900 IRRM Low T Qrr Low T 60 600 300 30 0 0 0 500 1000 1500 2000 I C (A) 0 2500 500 1000 At Tj = V CE = V GE = 25/0 350 +15/-8 °C V V At Tj = V CE = V GE = 25/0 350 +15/-8 °C V V R gon = 0,5 Ω R gon = 0,5 Ω direc / dt (A/ms) Figure 11 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) 30000 1500 2000 I C (A) 2500 FWD dIrec/dt T di0/dt T 25000 20000 15000 10000 5000 0 0 500 1000 At Tj = V CE = V GE = 25/125 350 +15/-8 °C R gon = 0,5 Ω copyright Vincotech 1500 2000 I C (A) 2500 V V 14 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Neutral Point T2, T3 / D2, D3 Neutral Point IGBT and Half Bridge FWD Figure 12 IGBT Figure 13 FWD as a function of pulse width Z th(j-s) = f(t p) as a function of pulse width Z th(j-s) = f(t p) 10-1 10-1 ZthJH (K/W) FWD transient thermal impedance ZthJH (K/W) IGBT transient thermal impedance 10-2 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-3 10-3 10-5 10-4 At D = 10-3 10-2 10-1 100 t p (s) 101 10-5 10-4 At D = tp/T 10-3 10-2 10-1 100 t p (s) tp/T IGBT thermal model values with phase-change material R thJC = R th(j-s) = 0,048 K/W 0,037 K/W FWD thermal model values with phase-change material R th(j-s) = R thJC = 0,046 K/W 0,036 K/W IGBT thermal model values With phase-change material FWD thermal model values With phase-change material R (K/W) 0,014 0,008 0,008 0,011 0,004 0,001 0,001 R (K/W) 0,007 0,011 0,009 0,014 0,003 0,002 Tau (s) 4,40 1,10 0,24 0,050 0,017 0,003 0,0005 Figure 14 IGBT IGBT Collector current as a function of heatsink temperature I C = f(T h) 4000 2000 IC (A) Ptot (W) Tau (s) 5,78 1,38 0,26 0,05 0,02 0,002 Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) 101 3500 1800 1600 3000 1400 2500 1200 2000 1000 800 1500 600 1000 400 500 200 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 ºC 15 50 100 At Tj = 175 ºC V GE = 15 V 150 T h ( o C) 200 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Neutral Point T2, T3 / D2, D3 Neutral Point IGBT and Half Bridge FWD Figure 16 FWD Figure 17 FWD Power dissipation as a Forward current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I F = f(T h) 4000 IF (A) Ptot (W) 1800 1600 3500 1400 3000 1200 2500 1000 2000 800 1500 600 1000 400 500 200 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Figure 18 Reverse bias safe operating area I C = f(V CE) 50 175 100 150 Th ( o C) 200 ºC IGBT IC (A) 4000 IC MAX 3600 Ic CHIP 3200 Ic MODULE 2800 2400 VCE MAX 2000 1600 1200 800 400 0 0 200 400 600 V CE (V) 800 At Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 16 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 17 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Switching Definitions Half Bridge General conditions Tj = 125 °C = 0,5 Ω R gon R goff = 0,5 Ω Figure 1 Half Bridge IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Half Bridge IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 150 VCE % % IC 125 125 tdoff VGE VGE VCE 100 100 VGE 90% VCE 90% 75 75 IC tdon 50 50 tEoff 25 25 VGE 10% IC 1% VCE 3% IC 10% 0 0 tEon -25 -0,3 -25 -0,1 0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,3 -10 15 350 1816 0,37 1,00 0,5 0,7 0,9 2,8 1,1 time (us) V V V A µs µs 3 3,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Half Bridge IGBT Turn-off Switching Waveforms & definition of t f 3,4 -10 15 350 1816 0,28 0,69 3,6 time(us) 3,8 V V V A µs µs Figure 4 Half Bridge IGBT Turn-on Switching Waveforms & definition of t r 150 150 VCE % % 125 Ic 125 fitted IC 100 VCE 100 IC 90% IC 90% 75 75 tr IC 60% 50 50 IC 40% 25 25 IC 10% 0 IC 10% 0 tf -25 -25 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 time(us) 3,1 3,2 3,3 3,4 V C (100%) = I C (100%) = 350 1816 V A V C (100%) = I C (100%) = 350 1816 V A tf = 0,10 µs tr = 0,11 µs copyright Vincotech 18 3,5 time(us) 3,6 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Switching Definitions Half Bridge Figure 5 Half Bridge IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % IC 1% Poff 100 Eoff Eon 100 75 75 50 50 25 25 Pon VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -25 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 635,53 107,89 1,00 0,4 0,6 0,8 time (us) 2,8 1 kW mJ µs P on (100%) = E on (100%) = t E on = 3 3,2 635,53 48,01 0,69 3,4 3,6 time(us) 3,8 kW mJ µs Figure 7 Buck FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd 0 fitted IRRM 10% IRRM 90% -50 IRRM 100% -100 3,2 3,3 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,4 3,5 350 1816 -883 0,30 V A A µs 3,6 3,7 time(us) 3,8 19 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Switching Definitions Half Bridge Figure 8 Buck FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) 125 % Figure 9 Buck FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 125 % Qrr Id 100 Erec 100 75 tErec 75 tQrr 50 50 25 25 0 Prec 0 -25 -50 -25 2,9 3,2 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,5 1816 124,39 0,65 3,8 4,1 time(us) 4,4 2,9 A µC µs P rec (100%) = E rec (100%) = t E rec = 20 3,2 3,5 635,53 24,83 0,65 3,8 4,1 time(us) 4,4 kW mJ µs 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Switching Definitions Neutral Point General conditions Tj = 125 °C = 0,5 Ω R gon R goff = 0,5 Ω Figure 1 Neutral Point IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Neutral Point IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 200 % % IC 125 tdoff 150 100 VGE VCE VGE 90% VCE 90% 100 75 VGE tdon IC 50 50 tEoff 25 VGE 10% VCE IC tEon 1% 0 -25 -0,2 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,4 -8 15 350 1797 0,27 0,55 0,6 time (us) -50 2,85 0,8 V V V A µs µs 2,97 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Neutral Point IGBT Turn-off Switching Waveforms & definition of t f VCE 3% IC 10% 0 3,09 3,21 -8 15 350 1797 0,20 0,42 V V V A µs µs 3,33 3,45 3,57 time(us) Figure 4 Neutral Point IGBT Turn-on Switching Waveforms & definition of t r 150 % 200 % VCE Ic 125 fitted 150 IC 100 Ic 90% VCE 100 75 IC Ic 60% 90% tr 50 50 Ic 40% 25 IC 10% Ic 10% 0 tf 0 -50 -25 0,1 0,2 0,3 0,4 time (us) 3 0,5 3,1 3,2 3,3 V C (100%) = I C (100%) = 350 1797 V A V C (100%) = I C (100%) = 350 1797 V A tf = 0,065 µs tr = 0,094 µs copyright Vincotech 21 3,4 time(us) 3,5 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Switching Definitions Neutral Point Figure 5 Neutral Point IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Neutral Point IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % Poff IC 1% Eoff 100 Eon 100 75 75 50 50 Pon 25 25 Uge 90% Uge 10% Uce 3% 0 0 tEon tEoff -25 -25 -0,1 0 0,1 P off (100%) = E off (100%) = t E off = 0,2 629,03 71,68 0,55 0,3 0,4 0,5 2,9 0,6 time (us) kW mJ µs P on (100%) = E on (100%) = t E on = 3 3,1 629,026 33,50 0,42 3,2 3,3 3,4 time(us) 3,5 kW mJ µs Figure 7 Neutral Point FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Ud fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 -150 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,2 3,3 350 1797 -1244 0,18 3,4 time(us) 3,5 V A A µs 22 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Switching Definitions Neutral Point Figure 8 Neutral Point FWD Turn-on Switching Waveforms & definition of t Qrr Figure 9 Neutral Point FWD Turn-on Switching Waveforms & definition of t Erec (t Qrr= integrating time for Q rr) (t Erec= integrating time for E rec) 150 125 % % Qrr Id 100 100 Erec tErec 75 tQint 50 50 0 Prec 25 -50 0 -100 -25 3 3,2 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,4 3,6 1797 165,13 1,00 3,8 4 4,2 4,4 time(us) 3 A µC µs 3,2 P rec (100%) = E rec (100%) = t E rec = 23 3,4 3,6 629,03 35,92 1,00 3,8 4 4,2 4,4 time(us) kW mJ µs 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Outline Outline Driver pins Low current connections Pin X1 Y1 Function Group 1.1 4,5 78,65 G1-1 T1 M6 screw 1.2 4,5 81,55 E1-1 T1 1.3 39,5 78,65 G1-2 T1 1.4 39,5 81,55 E1-2 1.5 19,45 30,15 1.6 24,55 30,15 1.7 1,95 68,4 E2-1 T2 1.8 4,85 68,4 G2-1 T2 X2 Y2 Function 2.1 0 0 Phase 2.2 22 0 Phase T1 2.3 44 0 Phase DC+ desat T1 2.4 0 110,4 DC+ DC+ desat T1 2.5 22 110,4 Neutral 2.6 44 110,4 DC- 2.7 101 0 Phase 1.9 39,15 68,4 G2-2 T2 2.8 123 0 Phase 1.10 42,05 68,4 E2-2 T2 2.9 145 0 Phase 1.11 19,45 44,65 GND desat T2 2.10 101 110,4 DC+ 1.12 24,55 44,65 GND desat T2 2.11 123 110,4 Neutral 1.13 -2,2 46 G3-1 T3 2.12 145 110,4 DC- 1.14 -2,2 48,9 E3-1 T3 2.13 202 0 Phase 1.15 46,2 46 G3-2 T3 2.14 224 0 Phase 1.16 46,2 48,9 E3-2 T3 2.15 246 0 Phase 1.17 -6,75 29,2 E4-1 T4 2.16 202 110,4 DC+ 1.18 -6,75 32,1 G4-1 T4 2.17 224 110,4 Neutral 1.19 50,75 29,2 E4-2 T4 2.18 246 110,4 DC- 1.20 50,75 32,1 G4-2 T4 1.21 67,65 86,7 Therm12 Rt1 1.22 67,65 89,8 Therm11 Rt1 1.23 105,5 78,65 G1-3 T1 1.24 105,5 81,55 E1-3 T1 1.25 140,5 78,65 G1-4 T1 1.26 140,5 81,55 E1-4 T1 1.27 120,45 30,15 DC+ desat T1 1.28 125,55 30,15 DC+ desat T1 1.29 102,95 68,4 E2-3 T2 1.30 105,85 68,4 G2-3 T2 1.31 140,15 68,4 G2-4 T2 1.32 143,05 68,4 E2-4 T2 1.33 120,45 44,65 GND desat T2 1.34 125,55 44,65 GND desat T2 98,8 46 G3-3 T3 1.36 98,8 48,9 E3-3 T3 1.37 147,2 46 G3-4 T3 1.38 147,2 48,9 E3-4 T3 1.39 94,25 29,2 E4-3 T4 1.40 94,25 32,1 G4-3 T4 1.35 1.41 151,75 29,2 E4-4 T4 1.42 151,75 32,1 G4-4 T4 1.43 168,65 86,7 Therm22 Rt2 1.44 168,65 89,8 Therm21 Rt2 T1 1.45 206,5 78,65 G1-5 1.46 206,5 81,55 E1-5 T1 1.47 241,5 78,65 G1-6 T1 1.48 241,5 81,55 E1-6 T1 1.49 221,45 30,15 DC+ desat T1 1.50 226,55 30,15 DC+ desat T1 1.51 203,95 68,4 E2-5 T2 1.52 206,85 68,4 G2-5 T2 1.53 241,15 68,4 G2-6 T2 1.54 244,05 68,4 E2-6 T2 1.55 221,45 44,65 GND desat T2 1.56 226,55 44,65 GND desat T2 G3-5 T3 1.57 199,8 46 1.58 199,8 48,9 E3-5 T3 1.59 248,2 46 G3-6 T3 1.60 248,2 48,9 E3-6 T3 Pin X1 Y1 Function 1.61 195,25 29,2 E4-5 T4 1.64 252,8 32,1 G4-6 T4 1.62 195,25 32,1 G4-5 T4 1.65 269,7 86,7 Therm32 Rt3 1.63 252,75 29,2 E4-6 T4 1.66 269,7 89,8 Therm31 Rt3 copyright Vincotech Driver pins 24 Group 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Oredering Code 70-W612M3A1K8SC02-L300FP70 Standart Date code Lot Serial VIN Text Name Date code UL & Vinco Lot Serial NN-NNNNNNNNNNNNNN-NNNNNNNN WWYY UL VIN LLLLL SSSS Type&Ver Lot number Serial Date code TTTT-TTT LLLLL SSSS WWYY Datamatrix UL Pinout Identification ID T1, T4 D5, D6 T2, T3 D1, D4 Rt1, Rt2, Rt3 copyright Vincotech Component IGBT FWD IGBT FWD NTC Voltage 1200V 650V 650V 1200V - Current 1800A 1800A 1800A 1800A - 25 Function Half Bridge Switch Neutral Point Diode Neutral Point Switch Half Bridge Diode Thermistor Comment 09 Mar. 2016 / Revision 1 70-W612M3A1K8SC02-L300FP70 datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 5 Standard <SPQ Sample Handling instruction Handling instructions for Widebody 3phase packages see vincotech.com website. Package data Package data for Widebody 3phase packages see vincotech.com website. UL recognition and file number This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. Document No.: Date: 70-W612M3A1K8SC02-L300FP70-D1-14 09 Marc. 2016 Modification: Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 26 09 Mar. 2016 / Revision 1