10-**06PPA006SB-M682B* application sheet Output Inverter Application flow PIM0+PFC 600 V / 6 A General conditions 3phase SPWM VGEon = 15 V VGEoff = -15 V Rgon = 64 Ω Rgoff = 64 Ω Figure 1 IGBT Figure 2 FWD Typical average static loss as a function of output current Typical average static loss as a function of output current Ploss = f(Iout) Ploss = f(Iout) Ploss (W) 16 Ploss (W) 25 Mi*cosfi = 1 14 Mi*cosf i= -1 20 12 10 15 8 10 6 4 5 2 Mi*cosfi = 1 Mi*cosfi = -1 0 0 0 At Tj = 2 4 125 6 8 10 12 0 14 16 Iout (A) At Tj = °C Mi*cosφ from -1 to 1 in steps of 0,2 2 4 125 6 8 10 12 14 Iout (A) 16 °C Mi*cosφ from -1 to 1 in steps of 0,2 Figure 3 IGBT Typical average switching loss as a function of output current Figure 4 Ploss = f(Iout) Ploss (W) 10 Ploss (W) FWD Typical average switching loss as a function of output current fsw = 16kHz Ploss = f(Iout) 3,0 2,5 fsw = 16kHz 8 2,0 6 1,5 4 1,0 2 0,5 fsw = 2kHz fsw = 2kHz 0 0,0 0 2 4 6 8 10 12 14 16 0 Iout (A) At Tj = 125 At Tj = °C DC link = 400 V fsw from 2 kHz to 16 kHz in steps of factor 2 copyright Vincotech 2 125 4 6 8 10 12 14 Iout (A) 16 °C DC link = 400 V fsw from 2 kHz to 16 kHz in steps of factor 2 1 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* application sheet Output Inverter Application flow PIM0+PFC Figure 5 Phase Figure 6 Typical available 50Hz output current as a function Mi*cosφ Iout = f(Mi*cos φ) Phase Typical available 50Hz output current as a function of switching frequency Iout = f(fsw) Iout (A) 10 Iout (A) 600 V / 6 A Th = 60°C 8 10 Th = 60°C 8 Th = 100°C Th = 100°C 6 6 4 4 2 2 0 -1,0 -0,8 At Tj = 125 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0 0,8 1,0 Mi*cos φ 1 At Tj = °C DC link = 400 V fsw = 4 kHz Th from 60 °C to 100 °C in steps of 5 °C 125 fsw (kHz) 100 °C DC link = 400 V Mi*cos φ =0,8 Th from 60 °C to 100 °C in steps of 5 °C Figure 7 Phase Figure 8 -0,8 -0,6 8,1-8,2 Mi*cosfi -1,0 Iout (A) Phase Typical available 0Hz output current as a function of switching frequency Ioutpeak = f(fsw) Iout (Apeak) Typical available 50Hz output current as a function of Mi*cos φ and switching frequency Iout = f(fsw, Mi*cos φ) 7,9-8,1 10 10 Th = 60°C 8 -0,4 -0,2 6 Th = 100°C 0,0 0,2 0,4 8,2-8,4 4 0,6 8,4-8,5 0,8 1 2 4 8 16 32 2 1,0 64 0 fsw (kHz) At Tj = 1 10 fsw (kHz) 125 °C At Tj = DC link = 400 Th = 80 V °C DC link = 400 V Th from 60 °C to 100 °C in steps of 5 °C Mi = copyright Vincotech 2 125 100 °C 0 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* application sheet Output Inverter Application flow PIM0+PFC Figure 9 Inverter Figure 10 Inverter Typical efficiency as a function of output power efficiency=f(Pout) efficiency (%) Typical available peak output power as a function of heatsink temperature Pout=f(Th) Pout (kW) 600 V / 6 A 3,0 2kHz 2,5 100 99 16kHz 2,0 2kHz 98 1,5 97 1,0 16kHz 96 0,5 95 0,0 60 70 At Tj = 125 DC link = 400 Mi = 1 cos φ= fsw from 80 90 Th ( o C) 0 100 1 3 4 5 6 Pout (kW) At Tj = °C V 125 DC link = 400 Mi = 1 0,80 2 kHz to 16 kHz in steps of factor 2 cos φ= fsw from Figure 11 2 °C V 0,80 2 kHz to 16 kHz in steps of factor 2 Inverter Overload (%) Typical available overload factor as a function of motor power and switching frequency Ppeak / Pnom=f(Pnom,fsw) 400 350 300 250 200 Switching frequency (kHz) 150 Motor nominal power (HP/kW) 100 0,75 / 0,55 1,00 / 0,74 1,50 / 1,10 2,00 / 1,47 3,00 / 2,21 5,00 / 3,68 1 399 300 200 150 0 0 2 399 300 200 150 0 0 4 399 300 200 150 0 0 8 399 300 200 150 0 0 16 399 300 200 150 0 0 At Tj = 125 DC link = 400 °C V Mi = 1 cos φ= fsw from Th = 0,8 1 kHz to 16kHz in steps of factor 2 80 °C Motor eff =0,85 copyright Vincotech 3 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* application sheet Boost PFC Application flow PIM0 + PFC 600 V / 6 A General conditions Boost PFC VGEon = 10 V VGEoff = 0 V Rgon = 4 Ω Rgoff = 4 Ω Vin = Vinpk*sinωt Figure 1 MOSFET Figure 2 Typical average static loss as a function of input current Ploss = f(Iin) FWD Typical average static loss as a function of input current Ploss = f(Iin) 35 Ploss (W) Ploss (W) 90 Vinpk/Vout =0.1 75 30 Vinpk/Vout=1 25 60 20 45 15 30 10 15 5 Vinpk/Vout =0.1 Vinpk/Vout=1 0 0 0 At Tj = 2 4 125 6 8 10 12 14 Iin (A) 16 0 At Tj = °C Vinpk / Vout from 0,1 to 1 in steps of 0,1 125 6 8 10 12 14 Iin (A) 16 °C MOSFET Figure 4 FWD Typical average switching loss as a function of input current Ploss = f(Iin) 30 Ploss = f(Iin) 15 Ploss (W) Ploss (W) 4 Vinpk / Vout from 0,1 to 1 in steps of 0,1 Figure 3 Typical average switching loss as a function of input current 2 fsw=160kHz fsw=160kHz 25 12 20 9 15 6 10 3 5 fsw=20kHz fsw=20kHz 0 0 0 At Tj = 2 125 4 6 8 10 12 14 Iin (A) 0 16 4 6 8 10 12 14 16 Iin (A) At Tj = °C DC link = 400 V fsw from 20 kHz to 160 kHz in steps of factor 2 copyright Vincotech 2 125 °C DC link = 400 V fsw from 20 kHz to 160 kHz in steps of factor 2 4 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* application sheet Boost PFC Application flow PIM0 + PFC Figure 5 PFC Typical available input current as a function of Vinpk / Vout 600 V / 6 A Figure 6 PFC Typical available input current as a function of switching frequency Iin = f(Vinpk/Vout) Iin = f(fsw) 10 Iin (A) Iin(A) 10 Th=60°C 8 Th=60°C 8 Th=100°C 6 6 4 4 Th=100°C 2 2 0 0,1 0,2 At Tj = 125 DC link = 400 fsw = 20 0,3 0,4 0,5 0,6 0,7 0,8 0 0,9 1,0 Vinpk/Vout 10 °C At Tj = V kHz DC link = 400 Vinpk/Vout =0,8 Th from 60 °C to 100 °C in steps of 5 °C PFC PFC Iin = f(fsw) 10 Iin(A) Vinpk/Vout 0,2 0,3 Th=60°C 8 0,4 0,5 6,0-7,0 °C Typical available input current as a function of switching frequency 0,1 5,0-6,0 1000 V Figure 8 Typical available input current as a function of of Vinpk / Vout and switching frequencyIin = f(fsw, Vinpk/Vout) Iin (A) 125 fsw (kHz) Th from 60 °C to 100 °C in steps of 5 °C Figure 7 4,0-5,0 100 6 0,6 7,0-8,0 0,7 4 Th=100°C 0,8 8,0-9,0 0,9 10 20 40 80 160 2 1,0 320 0 fsw (kHz) At Tj = 10 100 125 °C At Tj = DC link = 400 Th = 80 V °C DC link = 400 Vinpk/Vout =0,4 125 fsw (kHz) 1000 °C V Th from 60 °C to 100 °C in steps of 5 °C copyright Vincotech 5 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* application sheet Boost PFC Application flow PIM0 + PFC Figure 9 PFC Figure 10 Typical available electric input power as a function of heatsink temperature Pin = f(Th) 2,0 PFC Typical efficiency as a function of input power efficiency = f(Pin) 100 efficiency (%) 20kHz Pin (kW) 600 V / 6 A 20kHz 99 1,5 160kHz 98 1,0 160kHz 97 0,5 96 0,0 95 60 At Tj = 70 125 DC link = 400 Vinpk/Vout =0,8 80 90 Th ( o C) 100 0 1 °C At Tj = V kHz DC link = 400 Vinpk/Vout =0,8 fsw from 20 kHz to 160 kHz in steps of factor 2 125 2 3 Pin (kW) 4 °C V kHz fsw from 20 kHz to 160 kHz in steps of factor 2 Figure 11 PFC Figure 12 Typical available electric input power as a function of heatsink temperature Pin = f(Th) PFC Typical efficiency as a function of input power efficiency = f(Pin) 100 Pin (kW) 1,0 efficiency (%) 20kHz 0,8 98 20kHz 160kHz 0,6 96 0,4 94 0,2 92 160kHz 0,0 90 60 At Tj = 70 125 DC link = 400 Vinpk/Vout =0,4 80 90 Th ( o C) 100 0,0 At Tj = °C V 125 DC link = 400 Vinpk/Vout =0,4 fsw from 20 kHz to 160 kHz in steps of factor 2 copyright Vincotech 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 Pin (kW) 1,8 °C V fsw from 20 kHz to 160 kHz in steps of factor 2 6 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* application sheet Boost PFC Application flow PIM0 + PFC Figure 13 Rectifier 600 V / 6 A Figure 14 Typical average static loss as a function of input current Ploss = f(Iin) Rectifier Bridge Typical efficiency as a function of input power efficiency = f(Pin) 8 efficiency (%) Ploss (W) 100,0 Vinpk/Vout= 0,8 99,5 6 99,0 4 98,5 Vinpk/Vout= 0,4 98,0 2 97,5 0 97,0 0 2 At Tj = 4 6 125 8 10 12 14 Iin (A) 16 0 At Tj = °C Figure 15 Overall 125 2 3 Pin (kW) 4 °C Figure 16 Typical efficiency as a function of input power efficiency = f(Pin) Overall Typical efficiency as a function of input power efficiency = f(Pin) 100 100 efficiency (%) efficiency (%) 1 99 98 96 98 20kHz 20kHz 94 97 92 96 160kHz 160kHz 90 95 88 94 0 At Tj = 1 125 DC link = 400 Vinpk/Vout =0,8 2 3 Pin (kW) 0,0 4 0,4 0,6 °C At Tj = °C V kHz DC link = 400 Vinpk/Vout =0,4 V kHz fsw from 20 kHz to 160 kHz in steps of factor 2 copyright Vincotech 0,2 0,8 1,0 1,2 1,4 1,6 Pin (kW) 1,8 fsw from 20 kHz to 160 kHz in steps of factor 2 7 30 May. 2016 / Revision 2