Infineon® LITIX™ Power Multitopology LITIXTM Power DC/DC Controller IC TLD5098EL Infineon® LITIX™ Power Multitopology LITIXTM Power DC/DC Controller IC Data Sheet Revision 1.2 2015-03-12 Automotive Power Infineon® LITIX™ Power TLD5098EL Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 5.1 5.2 Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 6.1 6.2 6.3 Oscillator and Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Typical Performance Characteristics of Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 7.1 Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 8.1 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9 9.1 9.2 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 10 10.1 10.2 10.3 Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Purpose of Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 11 11.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Data Sheet 2 Revision 1.2 2015-03-12 Not for Customers TLD5098EL 1 Infineon® LITIX™ Power Overview • Wide Input Voltage Range from 4.5 V to 45 V • Constant Current or Constant Voltage Regulation • Drives LEDs in Boost, Buck, Buck-Boost, SEPIC and Flyback Topology • Very Low Shutdown Current: Iq_OFF < 10 µA • Flexible Switching Frequency Range, 100 kHz to 500 kHz • Synchronization with external clock source • PWM Dimming • Analog Dimming feature to adjust average LED current • Internal 5 V Low Drop Out Voltage Regulator • Open Circuit Detection • Short to GND Protection • Output Overvoltage Protection • Internal Soft Start • Over Temperature Shutdown • Wide LED current range via simple adaptation of external components • 300mV High Side Current Sense to ensure highest flexibility and LED current accuracy • Available in a small thermally enhanced PG-SSOP-14 package • Automotive AEC Qualified • Green Product (RoHS) Compliant PG-SSOP-14 Description The TLD5098EL is a LED boost controller with built in protection features. The main function of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime. The controller concept of the TLD5098EL allows multiple configurations such as Boost, Buck, Buck-Boost, SEPIC and Flyback by simply adjusting the external components. The TLD5098EL offers the most flexible dimming options. Dimming can be achieved with analog or PWM input.The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5098EL features an enable function reducing the shut-down current consumption to Iq_OFF < 10 µA. The current mode regulation scheme of this device provides a stable regulation loop maintained by small external compensation components. The integrated soft start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides output overvoltage protection, device overtemperature shutdown and short circuit to GND protection. Application • Automotive Exterior and Interior Lighting Type Package Marking TLD5098EL PG-SSOP-14 TLD5098 Data Sheet 3 Revision 1.2, 2015-03-12 Infineon® LITIX™ Power TLD5098EL Block Diagram 2 Block Diagram IN 14 LDO 13 IVCC 2 SWO 4 SWCS 3 SGND 9 OVFB 6 FBH 7 FBL 5 PWMO Power On Reset Internal Supply EN / PWMI 1 EN_INT/ PWM_INT On/Off Logic Power Switch Gate Driver Soft Start Oscillator FREQ / SYNC 11 Slope Comp. PWM Generator Switch Current Error Amplifier Thermal Protection Leading Edge Blanking Open Load + Short to GND detection Over Volage Protection SET COMP 10 Reference Current Generation Feedback Voltage Error Amplifier 8 EN_INT/ PWM_INT Dimming Switch Gate Driver 12 GND Figure 2-1 Data Sheet Block Diagram TLD5098EL 4 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment IVCC 1 14 IN SWO 2 13 EN/PWMI SGND 3 12 GND SWCS 4 11 FREQ/SYNC PWMO 5 10 SET FBH 6 9 OVFB FBL 7 8 COMP exposed Pad PINCONFIG_SSOP-14_5098.SVG Figure 3-1 3.2 Table 3-1 Pin Configuration TLD5098EL Pin Definitions and Functions Pin Definition and Function # Symbol 1 IVCC Internal LDO Output; Used for internal biasing and gate drive. Bypass with external capacitor. Pin must not be left open. 2 SWO Switch Output; Connect to gate of external switching MOSFET 3 SGND Current Sense Ground; Ground return for current sense switch 4 SWCS Current Sense Input; Detects the peak current through switch 5 PWMO PWM Dimming Output; Connect to gate of external MOSFET 6 FBH Voltage Feedback Positive; Non inverting Input (+) 7 FBL Voltage Feedback Negative; Inverting Input (-) Data Sheet Direction Type Function 5 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Pin Configuration Table 3-1 Pin Definition and Function # Symbol Direction Type Function 8 COMP Compensation Input; Connect R and C network to pin for stability 9 OVFB Output Overvoltage Protection Feedback; Connect to resistive voltage divider to set overvoltage threshold. 10 SET Analog Dimming Input; Load current adjustment Pin. Pin must not be left open. If analog dimming feature is not used connect to IVCC pin. 11 FREQ / SYNC Frequency Select or Synchronization Input; Connect external resistor to GND to set frequency. Or apply external clock signal for synchronization within frequency capture range. 12 GND Ground; Connect to system ground. 13 EN / PWMI Enable or PWM Input; Apply logic HIGH signal to enable device or PWM signal for dimming LED. 14 IN Supply Input; Supply for internal biasing. EP Data Sheet Exposed Pad; Connect to external heat spreading GND Cu area (e.g. inner GND layer of multilayer PCB with thermal vias) 6 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Table 4-1 Absolute Maximum Ratings1) Parameter Symbol Values Min. Typ. Unit Max. Note or Number Test Condition Voltages IN Supply Input VIN -0.3 45 V P_4.1.1 EN / PWMI Enable or PWM Input VEN -40 45 V P_4.1.2 FBH-FBL; Feedback Error Amplifier Differential VFBH-VFBL -40 61 V The maximum delta must not exceed 61V FBH; Feedback Error Amplifier Positive Input VFBH -40 61 V The difference P_4.1.4 between VFBH and VFBL must not exceed 61V, refer to Parameter 4.1.3 FBL Feedback Error Amplifier Negative Input VFBL -40 61 V The difference P_4.1.5 between VFBH and VFBL must not exceed 61V, refer to Parameter 4.1.3 FBH and FBL Current IFBL,FBH mA P_4.1.6 t < 100ms, VFBH-VFBL =0.3V OVFB Over Voltage Feedback Input VOVP -0.3 5.5 V OVFB Over Voltage Feedback Input VOVP -0.3 6.2 V SWCS Switch Current Sense Input VSWCS -0.3 5.5 V SWCS Switch Current Sense Input VSWCS -0.3 6.2 V SWO Switch Gate Drive Output VSWO -0.3 5.5 V Data Sheet 1 7 P_4.1.3 P_4.1.7 t < 10s P_4.1.8 P_4.1.9 t < 10s P_4.1.10 P_4.1.11 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL General Product Characteristics Table 4-1 Absolute Maximum Ratings1) Parameter Symbol Values Min. Typ. Unit Note or Number Test Condition t < 10s Max. SWO Switch Gate Drive Output VSWO -0.3 6.2 V SGND Current Sense Switch GND VSGND -0.3 0.3 V P_4.1.13 COMP Compensation Input VCOMP -0.3 5.5 V P_4.1.14 COMP Compensation Input VCOMP -0.3 6.2 V FREQ / SYNC; Frequency and Synchronization Input VFREQ / SYNC -0.3 5.5 V FREQ / SYNC; Frequency and Synchronization Input VFREQ / SYNC -0.3 6.2 V PWMO PWM Dimming Output VPWMO -0.3 5.5 V PWMO PWM Dimming Output VPWMO -0.3 6.2 V SET VSET -0.3 45 V P_4.1.20 IVCC Internal Linear Voltage Regulator Output VIVCC -0.3 5.5 V P_4.1.21 IVCC Internal Linear Voltage Regulator Output VIVCC -0.3 6.2 V Junction Temperature Tj -40 150 °C P_4.1.23 Storage Temperature Tstg -55 150 °C P_4.1.24 VESD,HBM -2 2 kV HBM2) P_4.1.25 ESD Resistivity of IN, EN/PWMI, VESD,HBM FBH, FBL and SET pin to GND -4 4 kV HBM2) P_4.1.26 t < 10s P_4.1.12 P_4.1.15 P_4.1.16 t < 10s P_4.1.17 P_4.1.18 t < 10s t < 10s P_4.1.19 P_4.1.22 Temperatures ESD Susceptibility ESD Resistivity of all pins 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5kΩ, 100pF) Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 8 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL General Product Characteristics 4.2 Functional Range Table 4-2 Functional Range Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number V VIVCC > VIVCC,RTH,d; P_4.2.1 Max. Extended Supply Voltage Range VIN Nominal Supply Voltage Range VIN 8 34 V P_4.2.2 Feedback Voltage Input VFBH; VFBL 3 60 V P_4.2.3 Junction Temperature Tj -40 150 °C P_4.2.4 4.5 451) Parameter deviations possible 1) Not subject to production test, specified by design Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4-3 Thermal Resistance Parameter Symbol Values Min. Typ. Unit Max. Note or Test Condition Number Junction to Case1)2) RthJC 10 K/W Junction to Ambient3) RthJA 47 K/W 2s2p Junction to Ambient RthJA 54 K/W 1s0p + 600mm2 P_4.3.3 K/W 2 P_4.3.4 Junction to Ambient RthJA 64 P_4.3.1 P_4.3.2 1s0p + 300mm 1) Not subject to production test, specified by design. 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to ambient temperature). Ta=25°C is dissipating 1W. 3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board;The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and 25µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W Data Sheet 9 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Switching Regulator 5 Switching Regulator 5.1 Description The TLD5098EL regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The constant output current is especially useful for light emitting diode (LED) applications. The switching regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller provides a PWM signal to an internal gate driver which then outputs to an external nchannel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over tSS (Parameter 5.2.9) to minimize potential overvoltage at the output. OV FB H when OVFB >1.25 V OVFB 9 VRef = 1.25V High when IVCC < 4.0V COMP 8 FBH 6 x1 EA Current Comp gmEA FBL 7 High when l EA - I SLOPE - I CS > 0 OFF when H I EA SET 10 VRef L ow when T j > 175 °C 1 V = VRef Figure 5-1 Data Sheet Output Stage OFF when L ow I Slope Comp Gate Driver Supply R & Q INV 1 & Q S & t Clock & Q Error-FF 2 SWO Q Current Sense PWM-FF S 1 IVCC Gate Driver R 0.3V Oscillator FREQ/ 11 SYNC Soft start > 1 I SLOPE ( SET − 0.1V ) 5 = VRef 4.0 V NOR 0 if SET < 1.6V 0 UV IVCC NAND 2 & I CS 4 SWCS 3 SGND Switching Regulator Block Diagram 10 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Switching Regulator 5.2 Electrical Characteristics VIN = 8 V to 34 V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 5-1 Electrical Characteristics: Switching Regulator Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Regulator Feedback Reference Voltage VREF 0.29 0.30 0.31 V refer to Figure 11-11 VREF= VFBH -VFBL VSET= 5V ILED= 350 mA P_5.2.1 Feedback Reference Voltage VREF 0.057 0.06 0.063 V refer to Figure 11-11 VREF= VFBH -VFBL VSET= 0.4V ILED= 70mA P_5.2.2 Feedback Reference Voltage Offset VREF_offset – – 5 mV refer to Figure 10-2 and Figure 11-11 VREF= VFBH -VFBL VSET= 0.1V VOUT>VIN P_5.2.3 Voltage Line Regulation (ΔVREF / VREF) – / ΔVIN – 0.15 %/V refer to Figure 11-11 VIN = 8V to 19V; VSET = 5V; ILED = 350mA P_5.2.4 Voltage Load Regulation (ΔVREF/VREF) – / ΔIBO – 5 %/A refer to P_5.2.5 Figure 11-11 VSET = 5V; ILED = 100 to 500mA Switch Peak Over Current Threshold VSWCS 130 150 170 mV VFBH = VFBL = 5 V VCOMP = 3.5V P_5.2.6 Maximum Duty Cycle DMAX,fixed 91 93 95 % Fixed frequency mode P_5.2.7 Maximum Duty Cycle DMAX,sync 88 – – % Synchronization mode P_5.2.8 Soft Start Ramp 350 1000 1500 µs VFB rising from 5% to 95% of VFB, typ. P_5.2.9 38 46 54 µA VFBH - VFBL = 0.3 V P_5.2.10 tSS IFBH IFBH Feedback High Input Current Data Sheet 11 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Switching Regulator Table 5-1 Electrical Characteristics: Switching Regulator Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. 15 21 27 µA VFBH - VFBL = 0.3 V P_5.2.11 Switch Current Sense ISWCS Input Current 10 50 100 µA VSWCS = 150 mV P_5.2.12 Input Undervoltage Shutdown 3.5 – 4.5 V VIN decreasing P_5.2.13 – – 4.85 V VIN increasing P_5.2.14 IFBL Feedback Low Input Current IFBL VIN,off Input Voltage Startup VIN,on Gate Driver for External Switch Gate Driver Peak Sourcing Current ISWO,SRC – 380 – mA 1) P_5.2.15 Gate Driver Peak Sinking Current ISWO,SNK – 550 – mA 1) P_5.2.16 Gate Driver Output Rise Time tR,SWO – 30 60 ns 1) CL,SWO = 3.3 nF; VSWO = 1 V to 4 V P_5.2.17 Gate Driver Output Fall Time tF,SWO – 20 40 ns 1) CL,SWO = 3.3 nF; VSWO = 4 V to 1 V P_5.2.18 Gate Driver Output Voltage VSWO 4.5 – 5.5 V 1) P_5.2.19 VSWO = 1 V to 4 V VSWO = 4 V to 1 V CL,SWO = 3.3 nF 1) Not subject to production test, specified by design Data Sheet 12 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Oscillator and Synchronisation 6 Oscillator and Synchronisation 6.1 Description R_OSC vs. switching frequency The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied. (6.1) ( R FREQ = (141 ⋅ 10 − 12 1 − 3 . 5 ⋅ 10 ⎡ s ⎤ ⎛ ⎡1 ⎤ ⎞ ⋅ ) f ⎜ ⎟ FREQ ⎢⎣ Ω ⎥⎦ ⎢⎣ s ⎥⎦ ⎝ ⎠ 3 [Ω ])[Ω ] In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz. Oscillator FREQ / SYNC Multiplexer 11 Clock Frequency Detector PWM Logic Gate Driver SWO 2 RFREQ VCLK Figure 6-1 Oscillator and Synchronization Block Diagram and Simplified Application Circuit TSYNC = 1 / fSYNC VSYNC tSYNC,PWH VSYNC,H VSYNC,L t Figure 6-2 Data Sheet Synchronization Timing Diagram 13 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Oscillator and Synchronisation 6.2 Electrical Characteristics VIN = 8 V to 34 V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 6-1 Electrical Characteristics: Oscillator and Synchronisation Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number RFREQ = 20kΩ P_6.2.1 Oscillator Oscillator Frequency fFREQ 250 300 350 kHz Oscillator Frequency Adjustment Range fFREQ 100 – 500 kHz FREQ / SYNC Supply Current IFREQ – – -700 µA VFREQ = 0 V P_6.2.3 Frequency Voltage VFREQ 1.16 1.24 1.32 V fFREQ = 100 kHz P_6.2.4 Synchronization Frequency Capture Range fSYNC 250 – 500 kHz Synchronization Signal High Logic Level Valid VSYNC,H 3.0 – – V 1)2) P_6.2.6 Synchronization Signal Low Logic Level Valid VSYNC,L – – 0.8 V 1)2) P_6.2.7 Synchronization Signal Logic High Pulse Width tSYNC,PWH 200 – – ns 1)2) P_6.2.8 P_6.2.2 Synchronisation P_6.2.5 1) Synchronization of external PWM ON signal to falling edge 2) Not subject to production test, specified by design Data Sheet 14 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Oscillator and Synchronisation 6.3 Typical Performance Characteristics of Oscillator 600 500 fFREQ [kHz] 400 T j = 25 °C 300 200 100 0 0 10 20 30 40 50 60 70 80 RFREQ/SYNC [kohm] Oscillator _fFreq_vs_Rfreq.vsd Figure 6-3 Data Sheet Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC 15 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Enable and Dimming Function 7 Enable and Dimming Function Description The enable function powers ON or OFF the device. A valid logic LOW signal on enable pin EN/PWMI powers OFF the device and current consumption is less than Iq_OFF (Parameter 7.2.14). A valid logic HIGH enable signal on enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is shut down and the power switch is OFF in case the enable pin EN is left open. In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input signal that is fed through to the internal gate driver. The EN/PWMI enables and disables the gate driver for the main switch during PWM operation. PWM dimming an LED is a commonly practiced dimming method and can prevent color shift in an LED light source. The enable and PWM input function share the same pin. Therefore a valid logic LOW signal at the EN/PWMI pin needs to differentiate between an enable power OFF or an PWM dimming LOW signal. The device differentiates between enable OFF and PWM dimming signal by requiring the enable OFF at the EN/PWMI pin to stay LOW for the Enable Turn OFF Delay Time (tEN,OFF,DEL Parameter 7.2.6). IN 14 Enable Microcontroller EN / PWMI 13 Enable / PWMI Logic LDO Enable Gate Driver PWMI Figure 7-1 Data Sheet 1 2 Gate Driver 5 IVCC SWO PWMO Block Diagram and Simplified Application Circuit Enable and LED Dimming 16 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Enable and Dimming Function tEN,START TPWMI tPWMI,H tEN,OFF,DEL VEN/PWMI VEN/PWMI,ON VEN/PWMI,OFF t VIVCC VIVCC,ON VIVCC,RTH t VPWMO TFREQ = VSWO t 1 fFREQ t Power ON Figure 7-2 7.1 Normal Dim Normal Dim Normal SWO ON PWMO OFF SWO ON PWMO OFF SWO ON PWMO ON SWO OFF PWMO ON SWO OFF PWMO ON Power OFF Delay Time Power OFF Iq_OFF Timing Diagram Enable and LED Dimming Electrical Characteristics VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 7-1 Electrical Characteristics: Enable and Dimming Parameter Symbol Values Min. Typ. 3.0 – Unit Max. Note or Test Condition Number Enable / PWM Input Enable/PWMI Turn On Threshold VEN/PWMI,ON Enable/PWMI Turn Off Threshold VEN/PWMI,OFF – – Enable/PWMI Hysteresis VEN/PWMI,HYS 50 Enable/PWMI High Input Current IEN/PWMI,H Enable/PWMI Low Input Current IEN/PWMI,L Data Sheet V P_7.1.1 0.8 V P_7.1.2 200 400 mV 1) P_7.1.3 – – 30 µA VEN/PWMI = 16.0 V P_7.1.4 – 0.1 1 µA VEN/PWMI = 0.5 V P_7.1.5 17 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Enable and Dimming Function Table 7-1 Electrical Characteristics: Enable and Dimming Parameter Enable Turn Off Delay Time Symbol tEN,OFF,DEL PWMI Min Duty Time tPWMI,H Values Unit Min. Typ. Max. 8 10 12 ms 4 – – µs Note or Test Condition Number P_7.1.6 P_7.1.7 100 – – µs 1) IPWMO,SRC – 230 – mA 1) PWMO Gate Driver IPWMO,SNK Peak Sinking Current – 370 – mA 1) PWMO Gate Driver Output Rise Time tR,PWMO – 50 100 ns 1) CL,PWMO = 3.3nF; VPWMO = 1V to 4V P_7.1.11 PWMO Gate Driver Output Fall Time tF,PWMO – 30 60 ns 1) CL,PWMO = 3.3nF; VPWMO = 4V to 1V P_7.1.12 PWMO Gate Driver Output Voltage VPWMO 4.5 – 5.5 V 1) P_7.1.13 Iq_OFF – – 10 µA VEN/PWMI = 0.8 V; Tj ≤ 105°C; VIN = 16V P_7.1.14 Iq_ON – – 7 mA VEN/PWMI ≥ 4.75 V; IBO = 0 mA; VSWO = 0% Duty P_7.1.15 Enable Startup Time tEN,START P_7.1.8 Gate Driver for dimming Switch PWMO Gate Driver Peak Sourcing Current VPWMO = 1V to 4V P_7.1.9 VPWMO = 4V to 1V P_7.1.10 CL,PWMO = 3.3nF Current Consumption Current Consumption, Shutdown Mode Current Consumption, Active Mode2) Cycle 1) Not subject to production test, specified by design 2) Dependency on switching frequency and gate charge of external switches. Data Sheet 18 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Linear Regulator 8 Linear Regulator Description The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up to ILIM,min (parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (parameter 8.2.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation the external MOSFET switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switches. Integrated Undervoltage Protection for the External Switching MOSFET An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET. IN 14 1 IVCC Linear Regulator EN / PWMI Figure 8-1 Data Sheet 13 Gate Drivers Voltage Regulator Block Diagram and Simplified Application Circuit 19 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Linear Regulator 8.1 Electrical Characteristics VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 8-1 Electrical Characteristics:Line Regulator Parameter Symbol Values Note or Test Condition Number Min. Typ. Max. 5 5.15 V 6 V ≤ VIN ≤ 45 V P_8.1.1 0.1 mA≤IIVCC≤40mA 90 mA VIN = 13.5 V VIVCC = 4.5V P_8.1.2 0.5 V VIN = 4.5V IIVCC = 25mA P_8.1.3 100 µF 1)2) P_8.1.4 P_8.1.5 Output Voltage VIVCC 4.85 Output Current Limitation ILIM 51 Drop out Voltage VDR IVCC Buffer Capacitor CIVCC Unit 0.47 1 IVCC Buffer Capacitor RIVCC,ESR ESR – – 0.5 Ω 1) Undervoltage Reset Headroom VIVCC,HDRM 100 – – mV VIVCC decreasing VIVCC - VIVCC,RTH,d P_8.1.6 IVCC Undervoltage Reset switch OFF Threshold VIVCC,RTH,d 3.6 – 4.0 V 3) P_8.1.7 IVCC Undervoltage Reset switch ON Threshold VIVCC,RTH,i – – 4.5 V VIVCC increasing VIVCC decreasing P_8.1.8 1) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. 3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case VGS must be considered. Data Sheet 20 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Protection and Diagnostic Functions 9 Protection and Diagnostic Functions 9.1 Description The TLD5098EL has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. Additionally the FBH and FBL potential is monitored and in case the LED load short circuits to GND (see description Figure 9-7) the regulator stops the operation and protects the system. In case any of the six fault conditions occur the PWMO and IVCC signal will change to an active logic LOW signal to communicate that a fault has occurred (detailed overview in Figure 9-1 and Figure 9-2below). Figure 9-3 illustrates the various open load and open feedback conditions. In case of an overtemperature condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C (Tj,SD Parameter 9.2.2). After cooling down the IC will automatically restart. Thermal shutdown is an integrated protection function designed to prevent IC destruction and is not intended for continuous use in normal operation (Figure 9-5). To calculate the proper overvoltage protection resistor values an example is given in Figure 9-6. Input Protection and Diagnostic Circuit Output Output Overvoltage Open Load OR SWO and PWMO Gate Driver Off Short to GND Open Feedback Overtemperature Linear Regualtor Off OR Input Undervoltage Figure 9-1 Data Sheet Protection and Diagnostic Function Block Diagram 21 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Protection and Diagnostic Functions Input Condition Overvoltage @ Output Level* False True False True False True False True False True False True Open Load Short to GND @ LED chain Open Feedback Overtemperature Undervoltage @ Input SWO Sw* L Sw* L Sw* L Sw* L Sw* L Sw* L Output PWMO IVCC H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Shutdown H or Sw * Active L Shutdown *Note: Sw = Switching False = Condition does not exist True = Condition does exist Diagnosis Truth Table VBO Open Circuit 3 Open Circuit 1 ROVH OVFB Fault Condition Fault Threshold Voltage VREF 1 Open FBH -20 to -100 mV 2 Open FBL 0.5 to 1.0 V 3 Open VBO -20 to -100 mV 4 Open PWMO Detected by overvoltage Open Circuit 2 9 D1 VOVFB,TH Open Circuit Condition ROVL D2 D3 Feedback Voltage Error Amplifier FBH FBL VREF D4 6 7 + VREF - D5 D6 Max Threshold = 1.0 V D7 D8 Min Threshold = 0.5 V D9 D10 Typical V REF = 0.3 V Open Circuit 4 TDIM Max Threshold = -20 mV Min Threshold = -100 mV PWMO 5 Figure 9-3 Data Sheet Open FBL Overvoltage Compartor RFB Output Open Circuit Conditions Open FBH Open VBO Figure 9-2 Open Load and Open Feedback Conditions 22 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Protection and Diagnostic Functions Startup Normal VIVCC Thermal Shutdown Overvoltage Open Load / Feedback 1 2 3 Shutdown VIVCC,RTH,i VIVCC,RTH,d Tj t Tj,SD,HYST 1 Tj,SD VBO VOVFB,HYS t 2 VOVFB ≥ VOVFB,TH VIN 3 VFBH-VFBL t VREF,2 tSS tSS 0.3 V Typ t VREF,1 VPWMO t Figure 9-4 Data Sheet Open load, Overvoltage and Overtemperature Timing Diagram 23 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Protection and Diagnostic Functions VEN/PWMI H L t Tj TjSD ΔΤ TjSO t Ta VSWO t ILED Ipeak t VPWMO t VIVCC 5V t Device OFF Figure 9-5 Normal Operation Overtemp Fault ON Overtemp ON Fault Overtemp ON Fault Overtemp Fault Device Overtemperature Protection Behavior VOVFB example: VOUT,max=40V VOVP,max 1.25mA ROVH TLD5098 OVFB Overvoltage Protection ACTIVE 40V ≅ 33.2kΩ 1.25mA VOVFB,TH 9 ROVL 1kΩ 1.25V 1.25V Overvoltage Protection is disabled GND 12 t Figure 9-6 Data Sheet Overvoltage Protection Description 24 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Protection and Diagnostic Functions Short to GND protection for Highside Return Applications (B2B) from Figure 11-7 The FBH and FBL pins features a Short to GND detection threshold (VFBL,FBH_S2G). If the potential on those pins is below this threshold the Device stops his operation. This means that the PWMO signal changes to inactive state (LOW potential) and the corresponding p-channel (TDIM2) is switched OFF accordingly and protects the LED chain. For the B2B application some external components are needed to ensure a LOW potential during a short circuit event. D1 and D2 are low power diodes (BAS16-03W) and the resistor Rlim (10kOhm) is needed to limit the current through this path. The diode D3 should be a high power diode and is needed to protect the RFB and the FBH and FBL pins in case of an short circuit to GND event. This short circuit detection and protection concept considers potential faults for LED chains (LED Modules) which are separated from the ECU via two wires (at the beginning and at the end of the LED chain). If the short circuit condition disappears, the device will re-start with an soft start. CBO Vbb wire harness RFB CIN VFBL,FBH D2 D1 Rlim LED Module Dn D3 60V Short to GND wire harness TDIM2 D1 Normal Operation Short to GND LBO TDIM1 DBO ILED ISW PWMO TSW SWO SWCS 4.5V VFBL,FBH_S2G FBH FBL IN VOUT SGND Device working with parameter deviations Short Circuit detected on FBH/FBL t Figure 9-7 Data Sheet Short Circuit to GND Protection 25 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Protection and Diagnostic Functions 9.2 Electrical Characteristics VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 9-1 Electrical Characteristics: Protection and Diagnosis Parameter Symbol Values Min. Unit Note or Test Condition Number Typ. Max. – 2 V refer to Figure 9-7 VFBH=VFBL decreasing P_9.2.1 Short Circuit Protection FBH and FBL ShortCircuit fault sensing common mode range VFBL,FBH_ 1.5 S2G Temperature Protection Overtemperature Shutdown Tj,SD 160 175 190 °C 1) refer to Figure 9-5 P_9.2.2 Overtemperature Shutdown Hystereses Tj,SD,HYST – 15 – °C 1) P_9.2.3 Output Over Voltage VOVFB,TH Feedback Threshold Increasing 1.21 1.25 1.29 V refer to Figure 9-6 P_9.2.4 Output Over Voltage VOVFB,HYS Feedback Hysteresis 50 – 150 mV 1) Output Voltage decreasing P_9.2.5 Over Voltage Reaction Time tOVPRR 2 – 10 µs Output Voltage decreasing P_9.2.6 Over Voltage Feedback Input Current IOVFB -1 0.1 1 µA VOVFB = 1.25 V P_9.2.7 – -20 mV refer to Figure 9-3 P_9.2.8 VREF = VFBH - VFBL Overvoltage Protection Open Load and Open Feedback Diagnostics Open Load/Feedback Threshold VREF,1,3 Open Feedback Threshold VREF,2 -100 Open Circuit 1 or 3 0.5 – 1 V VREF = VFBH - VFBL P_9.2.9 Open Circuit 2 1) Specified by design; not subject to production test Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 26 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Analog Dimming 10 Analog Dimming This pin is influencing the Feedback Voltage Error Amplifier by generating an internal current accordingly to an external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to IVCC or external > 1.6V supply. Different application scenarios are described in Figure 10-3. This pin can also go outside of the ECU for instance if a thermistor is connected on a separated LED Module and the Analog Dimming Input is used to thermally protect the LEDs. For reverse battery protection of this pin an external series resistor should be placed to limit the current. 10.1 Purpose of Analog Dimming 1. It is difficult for LED manufacturers to deliver LEDs which have the same Brightness, Colorpoint and Forward Voltage Class. Due to this relatively wide spread of the crucial LED parameters automotive customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must preselect the LEDs to deliver the requested colorpoint class. Those preselected LEDs are matched in terms of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET at the SET pin. 2. If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one hardware which should be able to handle different load current conditions (e.g. 80mA to 400mA) to cover different applications. To achieve this average LED current adjustment the analog dimming is a crucial feature. 10.2 Description Application Example Desired LED current = 400mA. For the calculation of the correct Feedback Resistor RFB the following equation can be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6V. (10.1) I LED = VREF V 0.3V → RFB = REF → RFB = = 750mΩ RFB I LED 400mA A decrease of the average LED current can be achieved by controlling the voltage at the SET pin (VSET) between 0V and 1.6V. The mathematical relation is given in the formula below: (10.2) I LED = VSET − 0.1V 5 ⋅ RFB If VSET is 100mV the LED current is only determined by the internal offset voltages of the comparators. For this example ILED = 0A if VSET < 100mV. Refer to the concept drawing in Figure 10-2. Data Sheet 27 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Analog Dimming VREF [V] typ. 300mV VSET 1.6V 100 mV [V] Analog Dimming Disabled Analog Dimming Feature Enabled V − 0.1V I LED = SET 5 * RFB I LED = VREF RFB Figure 10-1 Basic relationship between VREF and VSET Voltage VREF VOUT RFB ILED FBL FBH 7 6 IFBL IFBH R2 R1 Vint VBandgap = 1.6V VREF_offset + + + - - Feedback Voltage Error Amplifier ISET SET 10 VSET ISET n*ISET R3 100mV COMP GND 8 12 CCOMP RCOMP Figure 10-2 Concept Drawing Analog Dimming Data Sheet 28 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Analog Dimming Multi-purpose usage of the Analog dimming feature 1. A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin of the TLD5098EL. The integrated voltage Regulator (VIVCC) can be used to supply the µC or external components if the current consumption does not exceed 20mA. 2. The analog dimming feature is directly connected to the input voltage of the system. In this configuration the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing (increasing) the switching duty cycle if VIN drops to a lower potential. This is causing an increase of the input current consumption. If applications require a decrease of the LED current in respect to VIN variations this setup can be choosen. 3. The usage of an external resistor divider connected between IVCC (integrated 5V regulator output and gate buffer pin) SET and GND can be choosen for systems without µC on board. The concept allows to control the LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor (Thermistor) to protect the LED loads from thermal destruction can be connected additionally. 4. If the analog dimming feature is not needed the SET pin must be connected directly to >1.6V potential (e.g. IVCC potential) 5. Instead of an DAC the µC can provide a PWM signal and an external R-C filter is producing a constant voltage for the analog dimming. The voltage level is depending on the PWM frequency (fPWM) and duty cycle (DC) which can be controlled by the µc software after reading the coding resistor placed at the LED module. Data Sheet 29 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Analog Dimming +5V 1 2 CIVCC Vbb 1 14 IVCC D/A-Output 10 IN RSET2 SET 10 µC SET VSET VSET RSET1 GND Cfilter GND 12 12 3 4 VIVCC = +5V 1 RSET2 Rfilter CIVCC 10 VSET RSET1 VIVCC = +5V IVCC GND VSET ~ VIVCC 12 IVCC 10 SET CIVCC SET Cfilter 1 Cfilter GND 12 5 +5V 1 IVCC 10 SET CIVCC PWM PWM output Rfilter µC (e.g. XC866) Cfilter VSET GND 12 Figure 10-3 Analog Dimming in various applications Data Sheet 30 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Analog Dimming 10.3 Electrical Characteristics VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 10-1 Electrical Characteristics: Protection and Diagnosis Parameter SET programming range Symbol VSET Values Min. Typ. Max. 0 – 1.6 Unit Note or Test Condition Number V 1) P_10.3.1 refer to Figure 10-1 1) Specified by design; not subject to production test. Data Sheet 31 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. LBO DBO VIN VIN = 4.5V to 45V CIN TDIM2 S CBO D DZ ILED G RDIM2 TSW 14 IN SWO 2 SWCS 4 RFB VREF RCS RDIM1 VCC or VIVCC PWM VSET Analog Dimming 10 Rfilter IC2 Microcontroller (e.g. XC866) SET SGND 3 OVFB 9 ROVH IC1 TLD5098 Cfilter PWMI Digital Dimming 13 EN / PWMI Spread STATUS Spectrum 11 FREQ / SYNC 8 COMP Short to GND ROVL D4 6 1 D5 CIVCC RPOL DPOL D6 D7 FBL 7 D8 PWMO PWMO RCOMP D2 D3 FBH IVCC CCOMP RFREQ D1 TDIM1 5 D9 GND D10 12 LED load seperated via wire harness Figure 11-1 Boost to Ground Application Circuit - B2G (Boost configuration) Reference Designator Value Manufacturer Part Number D1 - 10 White Osram DBO Schottky, 3 A, 100 VR Vishay DZ 5V or 10V DPOL Type Quantity LUW H9GP LED 10 SS3H10 Diode 1 Vishay ZENER Diode 1 80V Diode Infineon BAS1603W Diode 1 CIN, CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML Inductor 1 RDIM1+2, RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 4 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TSW 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 1 TDIM1, TDIM2 60V Dual N-ch (3.1A) and P-ch. enh. (2A) Infineon BSO615CG Transistor 1 alternativ: 100V N-ch (0.37A), Infineon BSP123 Transistor 1 alternativ: 60V P-ch (1.9A) Infineon BSP171P Transistor 1 Figure 11-2 Bill of Materials for B2G Application Circuit Data Sheet 32 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Application Information L1 DBO CSEPIC VIN VIN = 4.5V to 45V CIN ISW RFB L2 VREF CBO TSW SWO 2 SWCS 4 IN ILED D1 RCS VCC or VIVCC PWM 3 OVFB 9 10 Rfilter D2 D3 VSET Analog Dimming IC2 Microcontroller (e.g. XC866) SGND ROVH SET D4 ROVL IC1 TLD5098 Cfilter PWMI D5 D6 D7 Digital Dimming 13 Spread STATUS Spectrum EN / PWMI 11 FREQ / SYNC 8 COMP FBH 6 FBL 7 CCOMP DPOL IVCC Number of LEDs could be variable independent from VIN: Æ BUCK-BOOST configuration 14 Dn RPOL 1 C IVCC RFREQ RCOMP PWMO PWMO TDIM 5 GND 12 Figure 11-3 SEPIC Application Circuit (Buck-Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LUW H9GP LED variable DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 DPOL 80V Diode Infineon BAS1603W Diode 1 CSEPIC 3.3 uF, 20V EPCOS X7R, Low ESR Capacitor 1 CIN , CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 L1 , L2 47 uH Coilcraft MSS1278T-473ML Inductor 2 alternativ: 22uH coupled inductor Coilcraft MSD1278-223MLD Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPD35N10S3L-26 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 11-4 Bill of Materials for SEPIC Application Circuit Data Sheet 33 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Application Information DBO VIN VIN = 4.5V to 45V L1 CIN ISW RFB L2 VREF CBO TSW 14 SWO 2 SWCS 4 IN ILED RCS PWM 10 Rfilter OVFB 9 SET ROVH D1 D3 ROVL IC1 TLD5098 Cfilter PWMI D4 D5 D6 Digital Dimming 13 Output STATUS 3 D2 Analog Dimming IC2 Microcontroller (e.g. XC866) SGND VSET EN / PWMI 11 FREQ / SYNC 8 COMP FBH 6 FBL 7 IVCC 1 D7 CCOMP DPOL Number of LEDs could be variable independent from VIN: Æ BUCK-BOOST configuration VCC or VIVCC RPOL Dn CIVCC RFREQ RCOMP PWMO GND TDIM 5 PWMO 12 Figure 11-5 Flyback Application Circuit (Buck-Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LUW H9GP LED variable DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 3.3 uF, 50V (100V) EPCOS X7R, Low ESR Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 47 nF EPCOS X7R Capacitor 1 CIVCC 1 uF , 6.3V EPCOS X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 L1 , L2 1 µH / 9 uH EPCOS Transformer EHP 16 Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 DPOL 80 V Diode Infineon BAS1603W Diode 1 RFB 820 mΩ, 1% Isabellenhütte SMS – Power Resistor Resistor 1 RFREQ 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 1 ROVH 56.2 kΩ, 1% Panasonic ERJ3EKF5622V Resistor 1 ROVL 1.24 kΩ, 1% Panasonic ERJ3EKF1241V Resistor 1 RCS 5 mΩ, 1% Isabellenhütte SMS - Power Resistor Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 11-6 Bill of Materials for Flyback Application Circuit Data Sheet 34 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Application Information CBO DSC1: Low Power Diode Rlim:10kΩ range DSC2: Low Power Diode RFB TDIM2 VIN = 4.5V to 45V CIN D3 Power Schottky Diode Dn DZ D1 Number of LEDs could be variable independent from VIN: Æ BUCK-BOOST configuration Short to GND RDIM2 RDIM1 Short to GND LBO I LED DBO TDIM1 I SW PWMO VOUT PWMO 5 VCC or V IVCC PWM Rfilter STATUS FBH 7 FBL 14 IN 10 SET 2 SWCS 4 SGND 3 OVFB 9 TSW RCS ROVH VSET Analog Dimming IC2 Microcontroller (e.g. XC866) 6 SWO Cfilter IC1 TLD5098 PWMI Digital Dimming 13 EN / PWMI Spread Spectrum 11 FREQ / SYNC ROVL COMP 8 IVCC 1 CCOMP CIVCC GND RFREQ RCOMP 12 Figure 11-7 Boost to Battery Application Circuit - B2B (Buck-Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LUW H9GP Diode variable DBO , D3 Schottky , 3 A, 100 VR Vishay SS3H10 Diode 2 DSC1 , DSC2 Low Power Diode Infineon BAS16-03W Diode 2 DZ Zener Diode -- -- Diode 1 CBO 100 uF, 80V Panasonic EEVFK 1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP, RDIM1, RDIM2, Rlim 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 4 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJP06F5102V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM1,TDIM2 60V Dual N-ch (3.1A) and P-ch. enh. (2A) Infineon BSO615CG Transistor 1 alternativ: 100V N-ch (0.37A), Infineon BSP123 Transistor 1 alternativ: 60V P-ch (1.9A) Infineon BSP171P Transistor 1 N-ch, OptiMOS-T2 100V, 35A Infineon IPD35N10S3L-26 _plus _BOM_B2B_T TransistorApplicationdrawing 1 LD5098 _March2012.vsd alternativ: 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 1 TSW Figure 11-8 Bill of Materials for B2B Application Circuit Data Sheet 35 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Application Information D BO D1 C BO TDIM2 VIN = 4.5V to 45V D2 VREF LBO ILED S CIN DZ RDIM2 14 BUCK Setup: VIN > VOUT RFB RDIM1 IN PWMO PWMO 5 FBH 6 FBL 7 IVCC 1 TDIM1 VCC or V IVCC PWM VSET Analog Dimming 10 SET Rfilter IC1 TLD5098 Cfilter IC2 Microcontroller (e.g. XC866) PWMI Digital Dimming 13 Spread Spectrum EN / PWMI 11 FREQ / SYNC 8 COMP C IVCC RPOL R POL TSW SWO SWCS 2 SGND 3 OVFB 9 4 RCS STATUS CCOMP RFREQ PWMO RCOMP GND 12 Figure 11-9 Buck Application Circuit Reference Designator Value Manufacturer Part Number Type Quantity D1 -2 White Osram LE UW Q9WP LED 2 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 DZ 10V Vishay Zener Diode Diode 1 DPOL 80V Diode Infineon BAS1603W Diode 1 CBO 4.7 uF, 50V EPCOS X7R Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK 1H101GP Capacitor 1 CCOMP 47 nF EPCOS X7R Capacitor 1 CIVCC 1 uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 L1 22 µH Coilcraft MSS1278T Inductor 1 RDIM1+2, RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 4 RFB 820 mΩ, 1% Isabellenhütte SMS – Power Resistor Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 RCS 50 mΩ, 1% Isabellenhütte SMS - Power Resistor Resistor 1 TDIM1 60V, 0.28A Infineon BSS138 Transistor 1 TDIM2 -60V, -1.9A Infineon BSP171 Transistor 1 TSW 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 1 alternativ: 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 Figure 11-10 Bill of Materials for Buck Application Circuit Data Sheet 36 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Application Information LBO D BO ILoad VIN = 4.5V to 45V CBO CIN constant VOUT RL SWO 14 1 TSW 2 IN SWCS IVCC 4 CIVCC RCS VCC or VIVCC PWM IC2 Microcontroller (e.g. XC866) SGND 3 OVFB 9 ROVH VSET 10 Rfilter SET Cfilter PWMO IC1 TLD5098 STATUS 5 Enable 13 EN / PWMI Spread Spectrum 11 FREQ / SYNC 8 COMP ROVL RFB1 FBH 6 FBL 7 R FB2 VREF CCOMP RFB3 RFREQ R COMP GND 12 Figure 11-11 Boost Voltage Application Circuit Reference Designator Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LW W5AP Diode 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF, 16V EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V Panasonic X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP 10 kohms, 1% Panasonic ERJ3EKF1002V Resistor 1 RFB1,RFB3 51 kohms, 1% Panasonic ERJ3EKF5102V Resistor 1 RFB2 1 kohms, 1% Panasonic ERJ3EKF1001V Resistor 1 RFREQ, RST 20 kohms, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kohms, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kohms, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mohms, 1% Panasonic ERJB1CFR05U Resistor 1 TSW N-ch, OptiMOS-T2 100V Infineon IPD35N10S3L-26 Transistor 1 Figure 11-12 Bill of Materials for Boost Voltage Application Circuit Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the external components must be done accordingly to specific application requirements. Data Sheet 37 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Application Information 11.1 Further Application Information • For further information you may contact http://www.infineon.com/ • Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice” Data Sheet 38 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Package Outlines 12 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1,-2,-3-PO V02 Figure 12-1 Outline PG-SSOP-14 Dimensions in mm Green Product (RoHS Compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Note: For further package information, please visit our website: http://www.infineon.com/packages. Data Sheet 39 Revision 1.2 2015-03-12 Infineon® LITIX™ Power TLD5098EL Revision History Revision 1.2, 2015-03-12 Page or Item Subjects (major changes since previous revision) Rev1.0 to Rev 1.2 Initial Data Sheet for TLD5098EL and updates Data Sheet 40 Responsible Date 2010-10-13 Revision 1.2 2015-03-12 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Trademarks Update 2014-11-12 www.infineon.com Edition 2015-03-12 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference Doc_Number Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.