TLD5098EL DataSheet

Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
TLD5098EL
Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
Data Sheet
Revision 1.2
2015-03-12
Automotive Power
Infineon® LITIX™ Power
TLD5098EL
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
5.1
5.2
Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
6.3
Oscillator and Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Typical Performance Characteristics of Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
7.1
Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8
8.1
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9
9.1
9.2
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10
10.1
10.2
10.3
Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Purpose of Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11
11.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Data Sheet
2
Revision 1.2 2015-03-12
Not for Customers
TLD5098EL
1
Infineon® LITIX™ Power
Overview
•
Wide Input Voltage Range from 4.5 V to 45 V
•
Constant Current or Constant Voltage Regulation
•
Drives LEDs in Boost, Buck, Buck-Boost, SEPIC and Flyback
Topology
•
Very Low Shutdown Current: Iq_OFF < 10 µA
•
Flexible Switching Frequency Range, 100 kHz to 500 kHz
•
Synchronization with external clock source
•
PWM Dimming
•
Analog Dimming feature to adjust average LED current
•
Internal 5 V Low Drop Out Voltage Regulator
•
Open Circuit Detection
•
Short to GND Protection
•
Output Overvoltage Protection
•
Internal Soft Start
•
Over Temperature Shutdown
•
Wide LED current range via simple adaptation of external components
•
300mV High Side Current Sense to ensure highest flexibility and LED current accuracy
•
Available in a small thermally enhanced PG-SSOP-14 package
•
Automotive AEC Qualified
•
Green Product (RoHS) Compliant
PG-SSOP-14
Description
The TLD5098EL is a LED boost controller with built in protection features. The main function of this device is to regulate
a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime.
The controller concept of the TLD5098EL allows multiple configurations such as Boost, Buck, Buck-Boost, SEPIC and
Flyback by simply adjusting the external components. The TLD5098EL offers the most flexible dimming options. Dimming
can be achieved with analog or PWM input.The switching frequency is adjustable in the range of 100 kHz to 500 kHz and
can be synchronized to an external clock source. The TLD5098EL features an enable function reducing the shut-down
current consumption to Iq_OFF < 10 µA. The current mode regulation scheme of this device provides a stable regulation
loop maintained by small external compensation components. The integrated soft start feature limits the current peak as
well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides output
overvoltage protection, device overtemperature shutdown and short circuit to GND protection.
Application
•
Automotive Exterior and Interior Lighting
Type
Package
Marking
TLD5098EL
PG-SSOP-14
TLD5098
Data Sheet
3
Revision 1.2, 2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Block Diagram
2
Block Diagram
IN
14
LDO
13
IVCC
2
SWO
4
SWCS
3
SGND
9
OVFB
6
FBH
7
FBL
5
PWMO
Power On
Reset
Internal
Supply
EN / PWMI
1
EN_INT/
PWM_INT
On/Off
Logic
Power Switch
Gate Driver
Soft
Start
Oscillator
FREQ / SYNC
11
Slope
Comp.
PWM
Generator
Switch Current
Error Amplifier
Thermal
Protection
Leading Edge
Blanking
Open Load
+ Short to GND detection
Over Volage
Protection
SET
COMP
10
Reference
Current
Generation
Feedback Voltage
Error Amplifier
8
EN_INT/
PWM_INT
Dimming Switch
Gate Driver
12
GND
Figure 2-1
Data Sheet
Block Diagram TLD5098EL
4
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
IVCC
1
14
IN
SWO
2
13
EN/PWMI
SGND
3
12
GND
SWCS
4
11
FREQ/SYNC
PWMO
5
10
SET
FBH
6
9
OVFB
FBL
7
8
COMP
exposed
Pad
PINCONFIG_SSOP-14_5098.SVG
Figure 3-1
3.2
Table 3-1
Pin Configuration TLD5098EL
Pin Definitions and Functions
Pin Definition and Function
#
Symbol
1
IVCC
Internal LDO Output;
Used for internal biasing and gate drive. Bypass with
external capacitor. Pin must not be left open.
2
SWO
Switch Output;
Connect to gate of external switching MOSFET
3
SGND
Current Sense Ground;
Ground return for current sense switch
4
SWCS
Current Sense Input;
Detects the peak current through switch
5
PWMO
PWM Dimming Output;
Connect to gate of external MOSFET
6
FBH
Voltage Feedback Positive;
Non inverting Input (+)
7
FBL
Voltage Feedback Negative;
Inverting Input (-)
Data Sheet
Direction
Type
Function
5
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Pin Configuration
Table 3-1
Pin Definition and Function
#
Symbol
Direction
Type
Function
8
COMP
Compensation Input;
Connect R and C network to pin for stability
9
OVFB
Output Overvoltage Protection Feedback;
Connect to resistive voltage divider to set overvoltage
threshold.
10 SET
Analog Dimming Input;
Load current adjustment Pin. Pin must not be left open. If
analog dimming feature is not used connect to IVCC pin.
11 FREQ / SYNC
Frequency Select or Synchronization Input;
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within
frequency capture range.
12 GND
Ground;
Connect to system ground.
13 EN / PWMI
Enable or PWM Input;
Apply logic HIGH signal to enable device or PWM signal for
dimming LED.
14 IN
Supply Input;
Supply for internal biasing.
EP
Data Sheet
Exposed Pad;
Connect to external heat spreading GND Cu area (e.g.
inner GND layer of multilayer PCB with thermal vias)
6
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise
specified)
Table 4-1
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Number
Test Condition
Voltages
IN
Supply Input
VIN
-0.3
45
V
P_4.1.1
EN / PWMI
Enable or PWM Input
VEN
-40
45
V
P_4.1.2
FBH-FBL;
Feedback Error Amplifier
Differential
VFBH-VFBL -40
61
V
The maximum
delta must not
exceed 61V
FBH;
Feedback Error Amplifier
Positive Input
VFBH
-40
61
V
The difference P_4.1.4
between VFBH
and VFBL must
not exceed 61V,
refer to
Parameter 4.1.3
FBL
Feedback Error Amplifier
Negative Input
VFBL
-40
61
V
The difference P_4.1.5
between VFBH
and VFBL must
not exceed 61V,
refer to
Parameter 4.1.3
FBH and FBL Current
IFBL,FBH
mA
P_4.1.6
t < 100ms,
VFBH-VFBL =0.3V
OVFB
Over Voltage Feedback Input
VOVP
-0.3
5.5
V
OVFB
Over Voltage Feedback Input
VOVP
-0.3
6.2
V
SWCS
Switch Current Sense Input
VSWCS
-0.3
5.5
V
SWCS
Switch Current Sense Input
VSWCS
-0.3
6.2
V
SWO
Switch Gate Drive Output
VSWO
-0.3
5.5
V
Data Sheet
1
7
P_4.1.3
P_4.1.7
t < 10s
P_4.1.8
P_4.1.9
t < 10s
P_4.1.10
P_4.1.11
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
General Product Characteristics
Table 4-1
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or
Number
Test Condition
t < 10s
Max.
SWO
Switch Gate Drive Output
VSWO
-0.3
6.2
V
SGND
Current Sense Switch GND
VSGND
-0.3
0.3
V
P_4.1.13
COMP
Compensation Input
VCOMP
-0.3
5.5
V
P_4.1.14
COMP
Compensation Input
VCOMP
-0.3
6.2
V
FREQ / SYNC; Frequency and
Synchronization Input
VFREQ / SYNC -0.3
5.5
V
FREQ / SYNC; Frequency and
Synchronization Input
VFREQ / SYNC -0.3
6.2
V
PWMO
PWM Dimming Output
VPWMO
-0.3
5.5
V
PWMO
PWM Dimming Output
VPWMO
-0.3
6.2
V
SET
VSET
-0.3
45
V
P_4.1.20
IVCC
Internal Linear Voltage
Regulator Output
VIVCC
-0.3
5.5
V
P_4.1.21
IVCC
Internal Linear Voltage
Regulator Output
VIVCC
-0.3
6.2
V
Junction Temperature
Tj
-40
150
°C
P_4.1.23
Storage Temperature
Tstg
-55
150
°C
P_4.1.24
VESD,HBM
-2
2
kV
HBM2)
P_4.1.25
ESD Resistivity of IN, EN/PWMI, VESD,HBM
FBH, FBL and SET pin to GND
-4
4
kV
HBM2)
P_4.1.26
t < 10s
P_4.1.12
P_4.1.15
P_4.1.16
t < 10s
P_4.1.17
P_4.1.18
t < 10s
t < 10s
P_4.1.19
P_4.1.22
Temperatures
ESD Susceptibility
ESD Resistivity of all pins
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5kΩ, 100pF)
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
8
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
General Product Characteristics
4.2
Functional Range
Table 4-2
Functional Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or
Test Condition
Number
V
VIVCC > VIVCC,RTH,d;
P_4.2.1
Max.
Extended Supply
Voltage Range
VIN
Nominal Supply
Voltage Range
VIN
8
34
V
P_4.2.2
Feedback Voltage
Input
VFBH;
VFBL
3
60
V
P_4.2.3
Junction
Temperature
Tj
-40
150
°C
P_4.2.4
4.5
451)
Parameter
deviations possible
1) Not subject to production test, specified by design
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards.
For more information, go to www.jedec.org.
Table 4-3
Thermal Resistance
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Test Condition
Number
Junction to Case1)2)
RthJC
10
K/W
Junction to
Ambient3)
RthJA
47
K/W
2s2p
Junction to Ambient RthJA
54
K/W
1s0p + 600mm2
P_4.3.3
K/W
2
P_4.3.4
Junction to Ambient RthJA
64
P_4.3.1
P_4.3.2
1s0p + 300mm
1) Not subject to production test, specified by design.
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to
ambient temperature). Ta=25°C is dissipating 1W.
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board;The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board has
2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and 25µm
plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second
outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W
Data Sheet
9
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Switching Regulator
5
Switching Regulator
5.1
Description
The TLD5098EL regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The
constant output current is especially useful for light emitting diode (LED) applications. The switching
regulator function is implemented by a pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the
output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The
current mode controller provides a PWM signal to an internal gate driver which then outputs to an external nchannel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which
is a characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and
external power switch during initialization. The soft start function gradually increases the inductor and switch
current over tSS (Parameter 5.2.9) to minimize potential overvoltage at the output.
OV FB
H when
OVFB >1.25 V
OVFB 9
VRef
=
1.25V
High when
IVCC < 4.0V
COMP 8
FBH 6
x1
EA
Current
Comp
gmEA
FBL 7
High when
l EA - I SLOPE - I CS > 0
OFF
when H
I EA
SET 10
VRef
L ow when
T j > 175 °C
1
V
= VRef
Figure 5-1
Data Sheet
Output Stage
OFF when
L ow
I
Slope Comp
Gate Driver
Supply
R
&
Q
INV
1
&
Q
S
&
t
Clock
&
Q
Error-FF
2 SWO
Q
Current
Sense
PWM-FF
S
1 IVCC
Gate
Driver
R
0.3V
Oscillator
FREQ/
11
SYNC
Soft start
>
1
I SLOPE
( SET − 0.1V )
5
= VRef
4.0 V
NOR
0 if SET < 1.6V
0
UV IVCC
NAND 2
&
I CS
4 SWCS
3 SGND
Switching Regulator Block Diagram
10
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Switching Regulator
5.2
Electrical Characteristics
VIN = 8 V to 34 V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 5-1
Electrical Characteristics: Switching Regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Regulator
Feedback Reference
Voltage
VREF
0.29
0.30
0.31
V
refer to
Figure 11-11
VREF= VFBH -VFBL
VSET= 5V
ILED= 350 mA
P_5.2.1
Feedback Reference
Voltage
VREF
0.057
0.06
0.063
V
refer to
Figure 11-11
VREF= VFBH -VFBL
VSET= 0.4V
ILED= 70mA
P_5.2.2
Feedback Reference
Voltage Offset
VREF_offset
–
–
5
mV
refer to
Figure 10-2 and
Figure 11-11
VREF= VFBH -VFBL
VSET= 0.1V
VOUT>VIN
P_5.2.3
Voltage Line
Regulation
(ΔVREF / VREF) –
/ ΔVIN
–
0.15
%/V
refer to
Figure 11-11
VIN = 8V to 19V;
VSET = 5V;
ILED = 350mA
P_5.2.4
Voltage Load
Regulation
(ΔVREF/VREF) –
/ ΔIBO
–
5
%/A
refer to
P_5.2.5
Figure 11-11
VSET = 5V;
ILED = 100 to 500mA
Switch Peak Over
Current Threshold
VSWCS
130
150
170
mV
VFBH = VFBL = 5 V
VCOMP = 3.5V
P_5.2.6
Maximum Duty Cycle DMAX,fixed
91
93
95
%
Fixed frequency
mode
P_5.2.7
Maximum Duty Cycle DMAX,sync
88
–
–
%
Synchronization
mode
P_5.2.8
Soft Start Ramp
350
1000
1500
µs
VFB rising from 5%
to 95% of VFB, typ.
P_5.2.9
38
46
54
µA
VFBH - VFBL = 0.3 V
P_5.2.10
tSS
IFBH
IFBH
Feedback High Input
Current
Data Sheet
11
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Switching Regulator
Table 5-1
Electrical Characteristics: Switching Regulator
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
15
21
27
µA
VFBH - VFBL = 0.3 V
P_5.2.11
Switch Current Sense ISWCS
Input Current
10
50
100
µA
VSWCS = 150 mV
P_5.2.12
Input Undervoltage
Shutdown
3.5
–
4.5
V
VIN decreasing
P_5.2.13
–
–
4.85
V
VIN increasing
P_5.2.14
IFBL
Feedback Low Input
Current
IFBL
VIN,off
Input Voltage Startup VIN,on
Gate Driver for External Switch
Gate Driver Peak
Sourcing Current
ISWO,SRC
–
380
–
mA
1)
P_5.2.15
Gate Driver Peak
Sinking Current
ISWO,SNK
–
550
–
mA
1)
P_5.2.16
Gate Driver Output
Rise Time
tR,SWO
–
30
60
ns
1)
CL,SWO = 3.3 nF;
VSWO = 1 V to 4 V
P_5.2.17
Gate Driver Output
Fall Time
tF,SWO
–
20
40
ns
1)
CL,SWO = 3.3 nF;
VSWO = 4 V to 1 V
P_5.2.18
Gate Driver Output
Voltage
VSWO
4.5
–
5.5
V
1)
P_5.2.19
VSWO = 1 V to 4 V
VSWO = 4 V to 1 V
CL,SWO = 3.3 nF
1) Not subject to production test, specified by design
Data Sheet
12
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Oscillator and Synchronisation
6
Oscillator and Synchronisation
6.1
Description
R_OSC vs. switching frequency
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching
frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching
frequency with an external resistor the following formula can be applied.
(6.1)
(
R FREQ =
(141 ⋅ 10
− 12
1
− 3 . 5 ⋅ 10
⎡ s ⎤ ⎛
⎡1 ⎤ ⎞
⋅
)
f
⎜
⎟
FREQ
⎢⎣ Ω ⎥⎦
⎢⎣ s ⎥⎦
⎝
⎠
3
[Ω ])[Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a
synchronized frequency from an external clock source. If an external clock source is provided on the pin
FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator
switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
Oscillator
FREQ / SYNC
Multiplexer
11
Clock Frequency
Detector
PWM
Logic
Gate
Driver
SWO
2
RFREQ
VCLK
Figure 6-1
Oscillator and Synchronization Block Diagram and Simplified Application Circuit
TSYNC = 1 / fSYNC
VSYNC
tSYNC,PWH
VSYNC,H
VSYNC,L
t
Figure 6-2
Data Sheet
Synchronization Timing Diagram
13
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Oscillator and Synchronisation
6.2
Electrical Characteristics
VIN = 8 V to 34 V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 6-1
Electrical Characteristics: Oscillator and Synchronisation
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
RFREQ = 20kΩ
P_6.2.1
Oscillator
Oscillator Frequency
fFREQ
250
300
350
kHz
Oscillator Frequency
Adjustment Range
fFREQ
100
–
500
kHz
FREQ / SYNC Supply
Current
IFREQ
–
–
-700
µA
VFREQ = 0 V
P_6.2.3
Frequency Voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
P_6.2.4
Synchronization
Frequency Capture
Range
fSYNC
250
–
500
kHz
Synchronization
Signal High Logic
Level Valid
VSYNC,H
3.0
–
–
V
1)2)
P_6.2.6
Synchronization
Signal Low Logic
Level Valid
VSYNC,L
–
–
0.8
V
1)2)
P_6.2.7
Synchronization
Signal Logic High
Pulse Width
tSYNC,PWH
200
–
–
ns
1)2)
P_6.2.8
P_6.2.2
Synchronisation
P_6.2.5
1) Synchronization of external PWM ON signal to falling edge
2) Not subject to production test, specified by design
Data Sheet
14
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Oscillator and Synchronisation
6.3
Typical Performance Characteristics of Oscillator
600
500
fFREQ [kHz]
400
T j = 25 °C
300
200
100
0
0
10 20
30
40 50
60 70
80
RFREQ/SYNC [kohm]
Oscillator _fFreq_vs_Rfreq.vsd
Figure 6-3
Data Sheet
Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC
15
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Enable and Dimming Function
7
Enable and Dimming Function
Description
The enable function powers ON or OFF the device. A valid logic LOW signal on enable pin EN/PWMI powers OFF
the device and current consumption is less than Iq_OFF (Parameter 7.2.14). A valid logic HIGH enable signal on
enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor
which ensures that the IC is shut down and the power switch is OFF in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM)
input signal that is fed through to the internal gate driver. The EN/PWMI enables and disables the gate driver
for the main switch during PWM operation. PWM dimming an LED is a commonly practiced dimming method
and can prevent color shift in an LED light source.
The enable and PWM input function share the same pin. Therefore a valid logic LOW signal at the EN/PWMI pin
needs to differentiate between an enable power OFF or an PWM dimming LOW signal. The device
differentiates between enable OFF and PWM dimming signal by requiring the enable OFF at the EN/PWMI pin
to stay LOW for the Enable Turn OFF Delay Time (tEN,OFF,DEL Parameter 7.2.6).
IN
14
Enable
Microcontroller
EN / PWMI
13
Enable / PWMI
Logic
LDO
Enable
Gate
Driver
PWMI
Figure 7-1
Data Sheet
1
2
Gate
Driver
5
IVCC
SWO
PWMO
Block Diagram and Simplified Application Circuit Enable and LED Dimming
16
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Enable and Dimming Function
tEN,START
TPWMI
tPWMI,H
tEN,OFF,DEL
VEN/PWMI
VEN/PWMI,ON
VEN/PWMI,OFF
t
VIVCC
VIVCC,ON
VIVCC,RTH
t
VPWMO
TFREQ =
VSWO
t
1
fFREQ
t
Power ON
Figure 7-2
7.1
Normal
Dim
Normal
Dim
Normal
SWO ON
PWMO OFF
SWO ON
PWMO OFF
SWO ON
PWMO ON
SWO OFF
PWMO ON
SWO OFF
PWMO ON
Power OFF Delay Time
Power OFF
Iq_OFF
Timing Diagram Enable and LED Dimming
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 7-1
Electrical Characteristics: Enable and Dimming
Parameter
Symbol
Values
Min.
Typ.
3.0
–
Unit
Max.
Note or
Test Condition
Number
Enable / PWM Input
Enable/PWMI
Turn On Threshold
VEN/PWMI,ON
Enable/PWMI
Turn Off Threshold
VEN/PWMI,OFF –
–
Enable/PWMI
Hysteresis
VEN/PWMI,HYS 50
Enable/PWMI
High Input Current
IEN/PWMI,H
Enable/PWMI
Low Input Current
IEN/PWMI,L
Data Sheet
V
P_7.1.1
0.8
V
P_7.1.2
200
400
mV
1)
P_7.1.3
–
–
30
µA
VEN/PWMI = 16.0 V
P_7.1.4
–
0.1
1
µA
VEN/PWMI = 0.5 V
P_7.1.5
17
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Enable and Dimming Function
Table 7-1
Electrical Characteristics: Enable and Dimming
Parameter
Enable Turn Off
Delay Time
Symbol
tEN,OFF,DEL
PWMI Min Duty Time tPWMI,H
Values
Unit
Min.
Typ.
Max.
8
10
12
ms
4
–
–
µs
Note or
Test Condition
Number
P_7.1.6
P_7.1.7
100
–
–
µs
1)
IPWMO,SRC
–
230
–
mA
1)
PWMO Gate Driver
IPWMO,SNK
Peak Sinking Current
–
370
–
mA
1)
PWMO Gate Driver
Output Rise Time
tR,PWMO
–
50
100
ns
1)
CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
P_7.1.11
PWMO Gate Driver
Output Fall Time
tF,PWMO
–
30
60
ns
1)
CL,PWMO = 3.3nF;
VPWMO = 4V to 1V
P_7.1.12
PWMO Gate Driver
Output Voltage
VPWMO
4.5
–
5.5
V
1)
P_7.1.13
Iq_OFF
–
–
10
µA
VEN/PWMI = 0.8 V;
Tj ≤ 105°C;
VIN = 16V
P_7.1.14
Iq_ON
–
–
7
mA
VEN/PWMI ≥ 4.75 V;
IBO = 0 mA;
VSWO = 0% Duty
P_7.1.15
Enable Startup Time tEN,START
P_7.1.8
Gate Driver for dimming Switch
PWMO Gate Driver
Peak Sourcing
Current
VPWMO = 1V to 4V P_7.1.9
VPWMO = 4V to 1V P_7.1.10
CL,PWMO = 3.3nF
Current Consumption
Current
Consumption,
Shutdown Mode
Current
Consumption,
Active Mode2)
Cycle
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of external switches.
Data Sheet
18
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Linear Regulator
8
Linear Regulator
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current
up to ILIM,min (parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (parameter 8.2.5) is
required on pin IVCC for stability and buffering transient load currents. During normal operation the external
MOSFET switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing
of the output capacitor must be considered to supply sufficient peak current to the gate of the external
MOSFET switches.
Integrated Undervoltage Protection for the External Switching MOSFET
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and
resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold
(VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external
logic level n-channel MOSFET.
IN
14
1
IVCC
Linear Regulator
EN / PWMI
Figure 8-1
Data Sheet
13
Gate
Drivers
Voltage Regulator Block Diagram and Simplified Application Circuit
19
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Linear Regulator
8.1
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Table 8-1
Electrical Characteristics:Line Regulator
Parameter
Symbol
Values
Note or
Test Condition
Number
Min.
Typ.
Max.
5
5.15
V
6 V ≤ VIN ≤ 45 V
P_8.1.1
0.1 mA≤IIVCC≤40mA
90
mA
VIN = 13.5 V
VIVCC = 4.5V
P_8.1.2
0.5
V
VIN = 4.5V
IIVCC = 25mA
P_8.1.3
100
µF
1)2)
P_8.1.4
P_8.1.5
Output Voltage
VIVCC
4.85
Output Current
Limitation
ILIM
51
Drop out Voltage
VDR
IVCC Buffer Capacitor CIVCC
Unit
0.47
1
IVCC Buffer Capacitor RIVCC,ESR
ESR
–
–
0.5
Ω
1)
Undervoltage Reset
Headroom
VIVCC,HDRM
100
–
–
mV
VIVCC decreasing
VIVCC - VIVCC,RTH,d
P_8.1.6
IVCC Undervoltage
Reset switch OFF
Threshold
VIVCC,RTH,d
3.6
–
4.0
V
3)
P_8.1.7
IVCC Undervoltage
Reset switch ON
Threshold
VIVCC,RTH,i
–
–
4.5
V
VIVCC increasing
VIVCC decreasing
P_8.1.8
1) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case VGS must be considered.
Data Sheet
20
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Protection and Diagnostic Functions
9
Protection and Diagnostic Functions
9.1
Description
The TLD5098EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. Additionally the FBH and FBL potential is monitored and in case the
LED load short circuits to GND (see description Figure 9-7) the regulator stops the operation and protects the
system. In case any of the six fault conditions occur the PWMO and IVCC signal will change to an active logic
LOW signal to communicate that a fault has occurred (detailed overview in Figure 9-1 and Figure 9-2below).
Figure 9-3 illustrates the various open load and open feedback conditions. In case of an overtemperature
condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage
regulator. The typical junction shutdown temperature is 175°C (Tj,SD Parameter 9.2.2). After cooling down the
IC will automatically restart. Thermal shutdown is an integrated protection function designed to prevent IC
destruction and is not intended for continuous use in normal operation (Figure 9-5). To calculate the proper
overvoltage protection resistor values an example is given in Figure 9-6.
Input
Protection and
Diagnostic Circuit
Output
Output
Overvoltage
Open Load
OR
SWO and PWMO
Gate Driver Off
Short to GND
Open Feedback
Overtemperature
Linear Regualtor
Off
OR
Input
Undervoltage
Figure 9-1
Data Sheet
Protection and Diagnostic Function Block Diagram
21
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Protection and Diagnostic Functions
Input
Condition
Overvoltage @
Output
Level*
False
True
False
True
False
True
False
True
False
True
False
True
Open Load
Short to GND @ LED
chain
Open Feedback
Overtemperature
Undervoltage @
Input
SWO
Sw*
L
Sw*
L
Sw*
L
Sw*
L
Sw*
L
Sw*
L
Output
PWMO
IVCC
H or Sw *
Active
L
Active
H or Sw *
Active
L
Active
H or Sw *
Active
L
Active
H or Sw *
Active
L
Active
H or Sw *
Active
L
Shutdown
H or Sw *
Active
L
Shutdown
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
Diagnosis Truth Table
VBO
Open Circuit 3
Open Circuit 1
ROVH
OVFB
Fault Condition
Fault Threshold Voltage
VREF
1
Open FBH
-20 to -100 mV
2
Open FBL
0.5 to 1.0 V
3
Open VBO
-20 to -100 mV
4
Open PWMO
Detected by overvoltage
Open Circuit 2
9
D1
VOVFB,TH
Open Circuit
Condition
ROVL
D2
D3
Feedback Voltage
Error Amplifier
FBH
FBL
VREF
D4
6
7
+
VREF
-
D5
D6
Max Threshold = 1.0 V
D7
D8
Min Threshold = 0.5 V
D9
D10
Typical V REF = 0.3 V
Open Circuit 4
TDIM
Max Threshold = -20 mV
Min Threshold = -100 mV
PWMO
5
Figure 9-3
Data Sheet
Open FBL
Overvoltage
Compartor
RFB
Output Open Circuit Conditions
Open FBH
Open VBO
Figure 9-2
Open Load and Open Feedback Conditions
22
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Protection and Diagnostic Functions
Startup
Normal
VIVCC
Thermal
Shutdown
Overvoltage
Open Load /
Feedback
1
2
3
Shutdown
VIVCC,RTH,i
VIVCC,RTH,d
Tj
t
Tj,SD,HYST
1
Tj,SD
VBO
VOVFB,HYS
t
2
VOVFB ≥ VOVFB,TH
VIN
3
VFBH-VFBL
t
VREF,2
tSS
tSS
0.3 V Typ
t
VREF,1
VPWMO
t
Figure 9-4
Data Sheet
Open load, Overvoltage and Overtemperature Timing Diagram
23
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Protection and Diagnostic Functions
VEN/PWMI
H
L
t
Tj
TjSD
ΔΤ
TjSO
t
Ta
VSWO
t
ILED
Ipeak
t
VPWMO
t
VIVCC
5V
t
Device
OFF
Figure 9-5
Normal Operation
Overtemp
Fault
ON
Overtemp
ON
Fault
Overtemp
ON
Fault
Overtemp
Fault
Device Overtemperature Protection Behavior
VOVFB
example: VOUT,max=40V
VOVP,max
1.25mA
ROVH
TLD5098
OVFB
Overvoltage Protection
ACTIVE
40V
≅ 33.2kΩ
1.25mA
VOVFB,TH
9
ROVL
1kΩ 1.25V
1.25V
Overvoltage Protection is
disabled
GND
12
t
Figure 9-6
Data Sheet
Overvoltage Protection Description
24
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Protection and Diagnostic Functions
Short to GND protection for Highside Return Applications (B2B) from Figure 11-7
The FBH and FBL pins features a Short to GND detection threshold (VFBL,FBH_S2G). If the potential on those
pins is below this threshold the Device stops his operation. This means that the PWMO signal changes to
inactive state (LOW potential) and the corresponding p-channel (TDIM2) is switched OFF accordingly and
protects the LED chain. For the B2B application some external components are needed to ensure a LOW
potential during a short circuit event. D1 and D2 are low power diodes (BAS16-03W) and the resistor Rlim
(10kOhm) is needed to limit the current through this path. The diode D3 should be a high power diode and is
needed to protect the RFB and the FBH and FBL pins in case of an short circuit to GND event. This short circuit
detection and protection concept considers potential faults for LED chains (LED Modules) which are
separated from the ECU via two wires (at the beginning and at the end of the LED chain). If the short circuit
condition disappears, the device will re-start with an soft start.
CBO
Vbb
wire
harness
RFB
CIN
VFBL,FBH
D2
D1 Rlim
LED Module
Dn
D3
60V
Short to GND
wire
harness
TDIM2
D1
Normal Operation
Short to GND
LBO
TDIM1
DBO ILED
ISW
PWMO
TSW
SWO
SWCS
4.5V
VFBL,FBH_S2G
FBH
FBL
IN
VOUT
SGND
Device working with parameter
deviations
Short Circuit detected on
FBH/FBL
t
Figure 9-7
Data Sheet
Short Circuit to GND Protection
25
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Protection and Diagnostic Functions
9.2
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 9-1
Electrical Characteristics: Protection and Diagnosis
Parameter
Symbol
Values
Min.
Unit
Note or
Test Condition
Number
Typ.
Max.
–
2
V
refer to Figure 9-7
VFBH=VFBL
decreasing
P_9.2.1
Short Circuit Protection
FBH and FBL ShortCircuit fault sensing
common mode
range
VFBL,FBH_ 1.5
S2G
Temperature Protection
Overtemperature
Shutdown
Tj,SD
160
175
190
°C
1)
refer to
Figure 9-5
P_9.2.2
Overtemperature
Shutdown
Hystereses
Tj,SD,HYST
–
15
–
°C
1)
P_9.2.3
Output Over Voltage VOVFB,TH
Feedback Threshold
Increasing
1.21
1.25
1.29
V
refer to Figure 9-6 P_9.2.4
Output Over Voltage VOVFB,HYS
Feedback Hysteresis
50
–
150
mV
1)
Output Voltage
decreasing
P_9.2.5
Over Voltage
Reaction Time
tOVPRR
2
–
10
µs
Output Voltage
decreasing
P_9.2.6
Over Voltage
Feedback Input
Current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
P_9.2.7
–
-20
mV
refer to Figure 9-3 P_9.2.8
VREF = VFBH - VFBL
Overvoltage Protection
Open Load and Open Feedback Diagnostics
Open
Load/Feedback
Threshold
VREF,1,3
Open Feedback
Threshold
VREF,2
-100
Open Circuit 1 or 3
0.5
–
1
V
VREF = VFBH - VFBL
P_9.2.9
Open Circuit 2
1) Specified by design; not subject to production test
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in
the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions
are not designed for continuous repetitive operation.
Data Sheet
26
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Analog Dimming
10
Analog Dimming
This pin is influencing the Feedback Voltage Error Amplifier by generating an internal current accordingly to
an external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected
to IVCC or external > 1.6V supply. Different application scenarios are described in Figure 10-3. This pin can
also go outside of the ECU for instance if a thermistor is connected on a separated LED Module and the Analog
Dimming Input is used to thermally protect the LEDs. For reverse battery protection of this pin an external
series resistor should be placed to limit the current.
10.1
Purpose of Analog Dimming
1. It is difficult for LED manufacturers to deliver LEDs which have the same Brightness, Colorpoint and
Forward Voltage Class. Due to this relatively wide spread of the crucial LED parameters automotive
customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must
preselect the LEDs to deliver the requested colorpoint class. Those preselected LEDs are matched in terms
of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog
dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET
at the SET pin.
2. If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one
hardware which should be able to handle different load current conditions (e.g. 80mA to 400mA) to cover
different applications. To achieve this average LED current adjustment the analog dimming is a crucial
feature.
10.2
Description
Application Example
Desired LED current = 400mA. For the calculation of the correct Feedback Resistor RFB the following equation can
be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6V.
(10.1)
I LED =
VREF
V
0.3V
→ RFB = REF → RFB =
= 750mΩ
RFB
I LED
400mA
A decrease of the average LED current can be achieved by controlling the voltage at the SET pin (VSET) between
0V and 1.6V. The mathematical relation is given in the formula below:
(10.2)
I LED =
VSET − 0.1V
5 ⋅ RFB
If VSET is 100mV the LED current is only determined by the internal offset voltages of the comparators. For this
example ILED = 0A if VSET < 100mV. Refer to the concept drawing in Figure 10-2.
Data Sheet
27
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Analog Dimming
VREF
[V]
typ. 300mV
VSET
1.6V
100 mV
[V]
Analog Dimming
Disabled
Analog Dimming Feature Enabled
V − 0.1V
I LED = SET
5 * RFB
I LED =
VREF
RFB
Figure 10-1 Basic relationship between VREF and VSET Voltage
VREF
VOUT
RFB
ILED
FBL
FBH
7
6
IFBL
IFBH
R2
R1
Vint
VBandgap = 1.6V
VREF_offset
+
+
+
-
-
Feedback Voltage
Error Amplifier
ISET
SET
10
VSET
ISET
n*ISET
R3
100mV
COMP
GND
8
12
CCOMP
RCOMP
Figure 10-2 Concept Drawing Analog Dimming
Data Sheet
28
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Analog Dimming
Multi-purpose usage of the Analog dimming feature
1. A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET
pin of the TLD5098EL. The integrated voltage Regulator (VIVCC) can be used to supply the µC or external
components if the current consumption does not exceed 20mA.
2. The analog dimming feature is directly connected to the input voltage of the system. In this configuration
the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing
(increasing) the switching duty cycle if VIN drops to a lower potential. This is causing an increase of the
input current consumption. If applications require a decrease of the LED current in respect to VIN
variations this setup can be choosen.
3. The usage of an external resistor divider connected between IVCC (integrated 5V regulator output and gate
buffer pin) SET and GND can be choosen for systems without µC on board. The concept allows to control
the LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor
(Thermistor) to protect the LED loads from thermal destruction can be connected additionally.
4. If the analog dimming feature is not needed the SET pin must be connected directly to >1.6V potential (e.g.
IVCC potential)
5. Instead of an DAC the µC can provide a PWM signal and an external R-C filter is producing a constant
voltage for the analog dimming. The voltage level is depending on the PWM frequency (fPWM) and duty cycle
(DC) which can be controlled by the µc software after reading the coding resistor placed at the LED module.
Data Sheet
29
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Analog Dimming
+5V
1
2
CIVCC
Vbb
1
14
IVCC
D/A-Output
10
IN
RSET2
SET
10
µC
SET
VSET
VSET RSET1
GND
Cfilter
GND
12
12
3
4
VIVCC = +5V
1
RSET2
Rfilter
CIVCC
10
VSET RSET1
VIVCC = +5V
IVCC
GND
VSET ~ VIVCC
12
IVCC
10
SET
CIVCC
SET
Cfilter
1
Cfilter
GND
12
5
+5V
1
IVCC
10
SET
CIVCC
PWM
PWM output
Rfilter
µC
(e.g. XC866)
Cfilter
VSET
GND
12
Figure 10-3 Analog Dimming in various applications
Data Sheet
30
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Analog Dimming
10.3
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 10-1 Electrical Characteristics: Protection and Diagnosis
Parameter
SET programming
range
Symbol
VSET
Values
Min.
Typ.
Max.
0
–
1.6
Unit
Note or
Test Condition
Number
V
1)
P_10.3.1
refer to
Figure 10-1
1) Specified by design; not subject to production test.
Data Sheet
31
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Application Information
11
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
LBO
DBO
VIN
VIN = 4.5V to 45V
CIN
TDIM2
S
CBO
D
DZ
ILED
G
RDIM2
TSW
14
IN
SWO
2
SWCS
4
RFB
VREF
RCS
RDIM1
VCC or VIVCC
PWM
VSET
Analog Dimming
10
Rfilter
IC2
Microcontroller
(e.g. XC866)
SET
SGND
3
OVFB
9
ROVH
IC1
TLD5098
Cfilter
PWMI
Digital Dimming
13
EN / PWMI
Spread
STATUS Spectrum
11
FREQ / SYNC
8
COMP
Short
to
GND
ROVL
D4
6
1
D5
CIVCC
RPOL
DPOL
D6
D7
FBL
7
D8
PWMO
PWMO
RCOMP
D2
D3
FBH
IVCC
CCOMP
RFREQ
D1
TDIM1
5
D9
GND
D10
12
LED load
seperated via wire
harness
Figure 11-1 Boost to Ground Application Circuit - B2G (Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
D1 - 10
White
Osram
DBO
Schottky, 3 A, 100 VR
Vishay
DZ
5V or 10V
DPOL
Type
Quantity
LUW H9GP
LED
10
SS3H10
Diode
1
Vishay
ZENER
Diode
1
80V Diode
Infineon
BAS1603W
Diode
1
CIN, CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML
Inductor
1
RDIM1+2, RCOMP,
RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
4
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
TDIM1, TDIM2
60V Dual N-ch (3.1A) and
P-ch. enh. (2A)
Infineon
BSO615CG
Transistor
1
alternativ: 100V N-ch (0.37A),
Infineon
BSP123
Transistor
1
alternativ: 60V P-ch (1.9A)
Infineon
BSP171P
Transistor
1
Figure 11-2 Bill of Materials for B2G Application Circuit
Data Sheet
32
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Application Information
L1
DBO
CSEPIC
VIN
VIN = 4.5V to 45V
CIN
ISW
RFB
L2
VREF
CBO
TSW
SWO
2
SWCS
4
IN
ILED
D1
RCS
VCC or VIVCC
PWM
3
OVFB
9
10
Rfilter
D2
D3
VSET
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
SGND
ROVH
SET
D4
ROVL
IC1
TLD5098
Cfilter
PWMI
D5
D6
D7
Digital Dimming
13
Spread
STATUS Spectrum
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
CCOMP
DPOL
IVCC
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
14
Dn
RPOL
1
C IVCC
RFREQ
RCOMP
PWMO
PWMO
TDIM
5
GND
12
Figure 11-3 SEPIC Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CSEPIC
3.3 uF, 20V
EPCOS
X7R, Low ESR
Capacitor
1
CIN , CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
47 uH
Coilcraft
MSS1278T-473ML
Inductor
2
alternativ: 22uH coupled
inductor
Coilcraft
MSD1278-223MLD
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 11-4 Bill of Materials for SEPIC Application Circuit
Data Sheet
33
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Application Information
DBO
VIN
VIN = 4.5V to 45V
L1
CIN
ISW
RFB
L2
VREF
CBO
TSW
14
SWO
2
SWCS
4
IN
ILED
RCS
PWM
10
Rfilter
OVFB
9
SET
ROVH
D1
D3
ROVL
IC1
TLD5098
Cfilter
PWMI
D4
D5
D6
Digital Dimming
13
Output
STATUS
3
D2
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
SGND
VSET
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
IVCC
1
D7
CCOMP
DPOL
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
VCC or VIVCC
RPOL
Dn
CIVCC
RFREQ
RCOMP
PWMO
GND
TDIM
5
PWMO
12
Figure 11-5 Flyback Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
3.3 uF, 50V (100V)
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
1 µH / 9 uH
EPCOS
Transformer EHP 16
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80 V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
ROVH
56.2 kΩ, 1%
Panasonic
ERJ3EKF5622V
Resistor
1
ROVL
1.24 kΩ, 1%
Panasonic
ERJ3EKF1241V
Resistor
1
RCS
5 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 11-6 Bill of Materials for Flyback Application Circuit
Data Sheet
34
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Application Information
CBO
DSC1:
Low Power Diode
Rlim:10kΩ
range
DSC2:
Low Power Diode
RFB
TDIM2
VIN = 4.5V to 45V
CIN
D3
Power
Schottky
Diode
Dn
DZ
D1
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
Short to GND
RDIM2
RDIM1
Short to GND
LBO
I LED
DBO
TDIM1
I SW
PWMO
VOUT
PWMO
5
VCC or V IVCC
PWM
Rfilter
STATUS
FBH
7
FBL
14
IN
10
SET
2
SWCS
4
SGND
3
OVFB
9
TSW
RCS
ROVH
VSET
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
6
SWO
Cfilter
IC1
TLD5098
PWMI
Digital Dimming
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
ROVL
COMP
8
IVCC
1
CCOMP
CIVCC
GND
RFREQ
RCOMP
12
Figure 11-7 Boost to Battery Application Circuit - B2B (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
Diode
variable
DBO , D3
Schottky , 3 A, 100 VR
Vishay
SS3H10
Diode
2
DSC1 , DSC2
Low Power Diode
Infineon
BAS16-03W
Diode
2
DZ
Zener Diode
--
--
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK 1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP, RDIM1, RDIM2, Rlim
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
4
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJP06F5102V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM1,TDIM2
60V Dual N-ch (3.1A) and P-ch. enh. (2A)
Infineon
BSO615CG
Transistor
1
alternativ: 100V N-ch (0.37A),
Infineon
BSP123
Transistor
1
alternativ: 60V P-ch (1.9A)
Infineon
BSP171P
Transistor
1
N-ch, OptiMOS-T2 100V, 35A
Infineon
IPD35N10S3L-26
_plus _BOM_B2B_T
TransistorApplicationdrawing
1
LD5098 _March2012.vsd
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
1
TSW
Figure 11-8 Bill of Materials for B2B Application Circuit
Data Sheet
35
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Application Information
D BO
D1
C BO
TDIM2
VIN = 4.5V to 45V
D2
VREF
LBO
ILED
S
CIN
DZ
RDIM2
14
BUCK Setup:
VIN > VOUT
RFB
RDIM1
IN
PWMO
PWMO
5
FBH
6
FBL
7
IVCC
1
TDIM1
VCC or V IVCC
PWM
VSET
Analog Dimming
10
SET
Rfilter
IC1
TLD5098
Cfilter
IC2
Microcontroller
(e.g. XC866)
PWMI
Digital Dimming
13
Spread Spectrum
EN / PWMI
11
FREQ / SYNC
8
COMP
C IVCC
RPOL
R POL
TSW
SWO
SWCS
2
SGND
3
OVFB
9
4
RCS
STATUS
CCOMP
RFREQ
PWMO
RCOMP
GND
12
Figure 11-9 Buck Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 -2
White
Osram
LE UW Q9WP
LED
2
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DZ
10V
Vishay
Zener Diode
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CBO
4.7 uF, 50V
EPCOS
X7R
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK 1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
L1
22 µH
Coilcraft
MSS1278T
Inductor
1
RDIM1+2, RCOMP,
RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
4
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
RCS
50 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TDIM1
60V, 0.28A
Infineon
BSS138
Transistor
1
TDIM2
-60V, -1.9A
Infineon
BSP171
Transistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 11-10 Bill of Materials for Buck Application Circuit
Data Sheet
36
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Application Information
LBO
D BO
ILoad
VIN = 4.5V to 45V
CBO
CIN
constant
VOUT
RL
SWO
14
1
TSW
2
IN
SWCS
IVCC
4
CIVCC
RCS
VCC or VIVCC
PWM
IC2
Microcontroller
(e.g. XC866)
SGND
3
OVFB
9
ROVH
VSET
10
Rfilter
SET
Cfilter
PWMO
IC1
TLD5098
STATUS
5
Enable
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
8
COMP
ROVL
RFB1
FBH
6
FBL
7
R FB2
VREF
CCOMP
RFB3
RFREQ
R COMP
GND
12
Figure 11-11 Boost Voltage Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LW W5AP
Diode
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF, 16V
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
Panasonic
X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kohms, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB1,RFB3
51 kohms, 1%
Panasonic
ERJ3EKF5102V
Resistor
1
RFB2
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ, RST
20 kohms, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kohms, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mohms, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V
Infineon
IPD35N10S3L-26
Transistor
1
Figure 11-12 Bill of Materials for Boost Voltage Application Circuit
Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the
external components must be done accordingly to specific application requirements.
Data Sheet
37
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Application Information
11.1
Further Application Information
•
For further information you may contact http://www.infineon.com/
•
Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice”
Data Sheet
38
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Package Outlines
12
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
Figure 12-1 Outline PG-SSOP-14 Dimensions in mm
Green Product (RoHS Compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Note: For further package information, please visit our website: http://www.infineon.com/packages.
Data Sheet
39
Revision 1.2
2015-03-12
Infineon® LITIX™ Power
TLD5098EL
Revision History
Revision 1.2, 2015-03-12
Page or Item
Subjects (major changes since previous revision)
Rev1.0 to
Rev 1.2
Initial Data Sheet for TLD5098EL and updates
Data Sheet
40
Responsible Date
2010-10-13
Revision 1.2 2015-03-12
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT
Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale.
IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of
Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc.,
USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies,
Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA,
Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Trademarks Update 2014-11-12
www.infineon.com
Edition 2015-03-12
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
Doc_Number
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of noninfringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.