NGTG30N60FLW D

NGTG30N60FLWG
IGBT
This Insulated Gate Bipolar Transistor (IGBT) features a robust and
cost effective Trench construction, and provides superior performance
in demanding switching applications, offering both low on state
voltage and minimal switching loss.
http://onsemi.com
Features
•
•
•
•
•
Low Saturation Voltage using Trench with Field Stop Technology
Low Switching Loss Reduces System Power Dissipation
Optimized for High Speed Switching
5 ms Short−Circuit Capability
These are Pb−Free Devices
30 A, 600 V
VCEsat = 1.65 V
C
Typical Applications
• Power Factor Correction
• Solar Inverters
• Uninterruptable Power Supply (UPS)
G
ABSOLUTE MAXIMUM RATINGS
Rating
E
Symbol
Value
Unit
Collector−emitter voltage
VCES
600
V
Collector current
@ TC = 25°C
@ TC = 100°C
IC
Pulsed collector current, Tpulse
limited by TJmax
Diode Forward Current
@ TC = 25°C
@ TC = 100°C
ICM
IF
A
60
30
120
A
G
C
TO−247
CASE 340L
STYLE 4
E
A
60
30
Diode Pulsed Current
Tpulse Limited by TJmax
IFM
120
A
Short−circuit withstand time
VGE = 15 V, VCE = 300 V,
TJ ≤ +150°C
tSC
5
ms
Gate−emitter voltage
Transient Gate Emitter Voltage
(tp = 5 ms, D < 0.010)
VGE
$20
$30
V
Power Dissipation
@ TC = 25°C
@ TC = 100°C
PD
Operating junction temperature
range
TJ
−55 to +150
°C
Storage temperature range
Tstg
−55 to +150
°C
Lead temperature for soldering, 1/8”
from case for 5 seconds
TSLD
260
°C
MARKING DIAGRAM
G30N60FL
AYWWG
W
250
67
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
A
Y
WW
G
= Assembly Location
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Device
NGTG30N60FLWG
© Semiconductor Components Industries, LLC, 2013
June, 2013 − Rev. 2
1
Package
Shipping
TO−247 30 Units / Rail
(Pb−Free)
Publication Order Number:
NGTG30N60FLW/D
NGTG30N60FLWG
THERMAL CHARACTERISTICS
Symbol
Value
Unit
Thermal resistance junction−to−case, for IGBT
Rating
RqJC
0.486
°C/W
Thermal resistance junction−to−ambient
RqJA
40
°C/W
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified)
Parameter
Test Conditions
Symbol
Min
Typ
Max
Unit
VGE = 0 V, IC = 500 mA
V(BR)CES
600
−
−
V
VGE = 15 V, IC = 30 A
VGE = 15 V, IC = 30 A, TJ = 150°C
VCEsat
1.4
−
1.65
2.0
1.9
−
V
VGE = VCE, IC = 200 mA
VGE(th)
4.5
5.5
6.5
V
Collector−emitter cut−off current, gate−
emitter short−circuited
VGE = 0 V, VCE = 600 V
VGE = 0 V, VCE = 600 V, TJ = 150°C
ICES
−
−
−
−
0.2
2
mA
Gate leakage current, collector−emitter
short−circuited
VGE = 20 V , VCE = 0 V
IGES
−
−
100
nA
Cies
−
4200
−
pF
Coes
−
130
−
Cres
−
110
−
Gate charge total
Qg
−
170
−
Gate to emitter charge
Qge
−
34
−
Qgc
−
83
−
td(on)
−
83
−
tr
−
31
−
td(off)
−
170
−
tf
−
80
−
Eon
−
0.7
−
Eoff
−
0.28
−
Total switching loss
Ets
−
0.98
−
Turn−on delay time
td(on)
−
81
−
tr
−
32
−
td(off)
−
180
−
tf
−
110
−
Eon
−
0.82
−
Turn−off switching loss
Eoff
−
0.63
−
Total switching loss
Ets
−
1.45
−
STATIC CHARACTERISTIC
Collector−emitter breakdown voltage,
gate−emitter short−circuited
Collector−emitter saturation voltage
Gate−emitter threshold voltage
DYNAMIC CHARACTERISTIC
Input capacitance
Output capacitance
VCE = 20 V, VGE = 0 V, f = 1 MHz
Reverse transfer capacitance
VCE = 480 V, IC = 30 A, VGE = 15 V
Gate to collector charge
nC
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD
Turn−on delay time
Rise time
Turn−off delay time
Fall time
Turn−on switching loss
TJ = 25°C
VCC = 400 V, IC = 30 A
Rg = 10 W
VGE = 0 V/ 15 V
Turn−off switching loss
Rise time
Turn−off delay time
Fall time
Turn−on switching loss
TJ = 150°C
VCC = 400 V, IC = 30 A
Rg = 10 W
VGE = 0 V/ 15 V
http://onsemi.com
2
ns
mJ
ns
mJ
NGTG30N60FLWG
TYPICAL CHARACTERISTICS
180
TJ = 25°C
160
140
120
100
11 V
80
10 V
60
40
9V
20
7V
0
1
3
4
6
5
7
100
11 V
80
60
10 V
40
9V
20
8V
7V
0
1
2
3
4
5
6
7
Figure 1. Output Characteristics
Figure 2. Output Characteristics
TJ = −55°C
140
120
11 V
100
80
60
10 V
40
9V
20
7 V to 8 V
1
2
3
4
8
160
VGE = 17 V to 13 V
0
120
VCE, COLLECTOR−EMITTER VOLTAGE (V)
160
0
140
0
8
VGE = 17 V to 13 V
TJ = 150°C
160
VCE, COLLECTOR−EMITTER VOLTAGE (V)
180
IC, COLLECTOR CURRENT (A)
2
8V
IC, COLLECTOR CURRENT (A)
0
VCE, COLLECTOR−EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
VGE = 17 V to 13 V
5
6
7
140
TJ = 25°C
120
TJ = 150°C
100
80
60
40
20
0
8
0
4
8
16
12
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VGE, GATE−EMITTER VOLTAGE (V)
Figure 3. Output Characteristics
Figure 4. Typical Transfer Characteristics
3.0
10,000
Cies
IC = 60 A
2.5
IC = 30 A
2.0
IC = 15 A
1.5
IC = 5 A
1.0
CAPACITANCE (pF)
IC, COLLECTOR CURRENT (A)
200
180
1000
100
Coes
Cres
0.5
0
−75
−25
25
75
125
175
10
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 5. VCE(sat) vs. TJ
Figure 6. Typical Capacitance
http://onsemi.com
3
100
NGTG30N60FLWG
TYPICAL CHARACTERISTICS
VGE, GATE−EMITTER VOLTAGE (V)
20
VCE = 480 V
15
10
5
0
25
0
50
75
100
125
150
175
200
QG, GATE CHARGE (nC)
Figure 7. Typical Gate Charge
0.9
1000
Eoff
0.6
Eon
0.5
0.4
0.3
VCE = 400 V
VGE = 15 V
IC = 30 A
Rg = 10 W
0.2
0.1
0
0
2
20
40
60
80
100
1.6
1.4
120
140
td(off)
10
VCE = 400 V
VGE = 15 V
IC = 30 A
Rg = 10 W
0
40
60
80
100
120
140 160
Figure 8. Switching Loss vs. Temperature
Figure 9. Switching Time vs. Temperature
1000
Eon
1
0.8
Eoff
0.6
0.4
td(off)
tf
100
td(on)
tr
10
VCE = 400 V
VGE = 15 V
TJ = 150°C
Rg = 10 W
0.2
8
20
TJ, JUNCTION TEMPERATURE (°C)
1.2
0
td(on)
tr
1
160
tf
100
TJ, JUNCTION TEMPERATURE (°C)
VCE = 400 V
VGE = 15 V
TJ = 150°C
Rg = 10 W
1.8
SWITCHING LOSS (mJ)
SWITCHING TIME (ns)
0.7
SWITCHING TIME (ns)
SWITCHING LOSS (mJ)
0.8
16
24
32
40
48
56
1
64
8
16
24
32
40
48
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
Figure 10. Switching Loss vs. IC
Figure 11. Switching Time vs. IC
http://onsemi.com
4
56
64
NGTG30N60FLWG
TYPICAL CHARACTERISTICS
2.5
SWITCHING LOSS (mJ)
1000
VCE = 400 V
VGE = 15 V
IC = 30 A
TJ = 150°C
2
td(off)
Eon
SWITCHING TIME (ns)
3
1.5
Eoff
1
0.5
5
SWITCHING LOSS (mJ)
1.8
15
25
35
45
55
65
15
25
35
45
55
65
75
85
1000
Eon
275
325
375
425
475
525
td(off)
tf
100
td(on)
10
tr
VGE = 15 V
IC = 30 A
Rg = 10 W
TJ = 150°C
1
175
575
225
275
325
375
425
475
525
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 14. Switching Loss vs. VCE
Figure 15. Switching Time vs. VCE
575
1000
100 ms
100
1 ms
10
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
5
Figure 13. Switching Time vs. Rg
1000
50 ms
dc operation
1
Single Nonrepetitive
Pulse TC = 25°C
Curves must be derated
linearly with increase
in temperature
0.1
0.01
VCE = 400 V
VGE = 15 V
IC = 30 A
TJ = 150°C
Figure 12. Switching Loss vs. Rg
0.6
225
10
Rg, GATE RESISTOR (W)
Eoff
0
175
tr
1
85
td(on)
Rg, GATE RESISTOR (W)
VGE = 15 V
IC = 30 A
Rg = 10 W
TJ = 150°C
1.2
75
SWITCHING TIME (ns)
0
tf
100
1
10
100
1000
100
10
1
VGE = 15 V, TC = 125°C
1
10
100
1000
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 16. Safe Operating Area
Figure 17. Reverse Bias Safe Operating Area
http://onsemi.com
5
NGTG30N60FLWG
TYPICAL CHARACTERISTICS
0.6
RqJC = 0.486
0.5
R(t) (°C/W)
0.4
0.3
50% Duty Cycle
0.2
0.1
Duty Factor = t1/t2
Peak TJ = PDM x ZqJC + TC
Junction R1
5%
20%
0
0.00001
C1
2%
0.0001
Rn Case
Ci = ti/Ri
Single Pulse
10%
R2
0.001
0.01
C2
Cn
0.1
PULSE TIME (sec)
Figure 18. IGBT Transient Thermal Impedance
Figure 19. Test Circuit for Switching Characteristics
http://onsemi.com
6
1
Ri (°C/W)
ti (sec)
0.001111
0.001000
0.033663
0.078587
0.001016
0.009004
0.031623
0.002971
0.004024
0.984432
0.050668
0.083685
0.062412
0.119496
0.168644
0.187512
0.062579
1.597970
10
NGTG30N60FLWG
Figure 20. Definition of Turn On Waveform
http://onsemi.com
7
NGTG30N60FLWG
Figure 21. Definition of Turn Off Waveform
http://onsemi.com
8
NGTG30N60FLWG
PACKAGE DIMENSIONS
TO−247
CASE 340L−02
ISSUE F
−T−
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
C
−B−
E
U
N
L
4
A
−Q−
1
2
0.63 (0.025)
3
M
T B
M
P
−Y−
K
F 2 PL
W
J
D 3 PL
0.25 (0.010)
M
Y Q
MILLIMETERS
MIN
MAX
20.32
21.08
15.75
16.26
4.70
5.30
1.00
1.40
1.90
2.60
1.65
2.13
5.45 BSC
1.50
2.49
0.40
0.80
19.81
20.83
5.40
6.20
4.32
5.49
--4.50
3.55
3.65
6.15 BSC
2.87
3.12
STYLE 4:
PIN 1.
2.
3.
4.
H
G
DIM
A
B
C
D
E
F
G
H
J
K
L
N
P
Q
U
W
INCHES
MIN
MAX
0.800
8.30
0.620
0.640
0.185
0.209
0.040
0.055
0.075
0.102
0.065
0.084
0.215 BSC
0.059
0.098
0.016
0.031
0.780
0.820
0.212
0.244
0.170
0.216
--0.177
0.140
0.144
0.242 BSC
0.113
0.123
GATE
COLLECTOR
EMITTER
COLLECTOR
S
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
9
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NGTG30N60FLW/D