ONSEMI NGTG30N60FWG

NGTG30N60FWG
IGBT
This Insulated Gate Bipolar Transistor (IGBT) features a robust and
cost effective Trench construction, and provides superior performance
in demanding switching applications, offering both low on state
voltage and minimal switching loss.
http://onsemi.com
Features
•
•
•
•
Optimized for Very Low VCEsat
Low Switching Loss Reduces System Power Dissipation
5 ms Short−Circuit Capability
These are Pb−Free Devices
30 A, 600 V
VCEsat = 1.5 V
Typical Applications
C
• Power Factor Correction
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector−emitter voltage
VCES
600
V
Collector current
@ TC = 25°C
@ TC = 100°C
IC
G
E
A
60
30
Pulsed collector current, Tpulse
limited by TJmax
ICM
120
A
Short−circuit withstand time
VGE = 15 V, VCE = 300 V,
TJ ≤ +150°C
tSC
5
ms
Gate−emitter voltage
Transient Gate Emitter Voltage
(tp = 5 ms, D < 0.010)
VGE
Power Dissipation
@ TC = 25°C
@ TC = 100°C
PD
Operating junction temperature
range
TJ
−55 to +150
°C
Storage temperature range
Tstg
−55 to +150
°C
Lead temperature for soldering, 1/8”
from case for 5 seconds
TSLD
260
°C
G
V
$20
$30
W
167
67
C
TO−247
CASE 340L
STYLE 4
E
MARKING DIAGRAM
G30N60F
AYWWG
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
A
Y
WW
G
= Assembly Location
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Device
NGTG30N60FWG
© Semiconductor Components Industries, LLC, 2012
December, 2012 − Rev. 0
1
Package
Shipping
TO−247 30 Units / Rail
(Pb−Free)
Publication Order Number:
NGTG30N60FW/D
NGTG30N60FWG
THERMAL CHARACTERISTICS
Symbol
Value
Unit
Thermal resistance junction−to−case, for IGBT
Rating
RqJC
0.75
°C/W
Thermal resistance junction−to−ambient
RqJA
40
°C/W
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified)
Parameter
Test Conditions
Symbol
Min
Typ
Max
Unit
VGE = 0 V, IC = 500 mA
V(BR)CES
600
−
−
V
VGE = 15 V, IC = 30 A
VGE = 15 V, IC = 30 A, TJ = 150°C
VCEsat
1.25
−
1.45
1.75
1.70
−
V
VGE = VCE, IC = 200 mA
VGE(th)
4.5
5.5
6.5
V
Collector−emitter cut−off current, gate−
emitter short−circuited
VGE = 0 V, VCE = 600 V
VGE = 0 V, VCE = 600 V, TJ = 150°C
ICES
−
−
−
−
0.2
2
mA
Gate leakage current, collector−emitter
short−circuited
VGE = 20 V , VCE = 0 V
IGES
−
−
100
nA
Cies
−
4100
−
pF
Coes
−
115
−
Cres
−
95
−
STATIC CHARACTERISTIC
Collector−emitter breakdown voltage,
gate−emitter short−circuited
Collector−emitter saturation voltage
Gate−emitter threshold voltage
DYNAMIC CHARACTERISTIC
Input capacitance
Output capacitance
VCE = 20 V, VGE = 0 V, f = 1 MHz
Reverse transfer capacitance
Gate charge total
Qg
170
Qge
34
Qgc
83
td(on)
81
tr
31
td(off)
190
tf
110
Eon
0.65
Eoff
0.65
Total switching loss
Ets
1.30
Turn−on delay time
td(on)
80
tr
32
td(off)
200
tf
230
Eon
0.80
Gate to emitter charge
VCE = 480 V, IC = 30 A, VGE = 15 V
Gate to collector charge
nC
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD
Turn−on delay time
Rise time
Turn−off delay time
Fall time
Turn−on switching loss
TJ = 25°C
VCC = 400 V, IC = 30 A
Rg = 10 W
VGE = 0 V/ 15 V*
Turn−off switching loss
Rise time
Turn−off delay time
Fall time
Turn−on switching loss
TJ = 150°C
VCC = 400 V, IC = 30 A
Rg = 10 W
VGE = 0 V/ 15 V*
Turn−off switching loss
Eoff
1.1
Total switching loss
Ets
1.90
*Includes diode reverse recovery loss using NGTB30N60FWG.
http://onsemi.com
2
ns
mJ
ns
mJ
NGTG30N60FWG
TYPICAL CHARACTERISTICS
200
TJ = 25°C
140
120
11 V
100
80
10 V
60
40
9V
20
7V
8V
0
0
1
3
4
6
5
7
140
120
100
11 V
80
10 V
60
40
9V
20
8V
7V
0
1
2
3
4
5
6
7
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 1. Output Characteristics
Figure 2. Output Characteristics
8
160
TJ = −55°C
VGE = 17 V to 13 V
160
140
11 V
120
100
80
10 V
60
40
9V
20
0
VGE = 17 V to 13 V
160
0
8
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
2
TJ = 150°C
180
VCE, COLLECTOR−EMITTER VOLTAGE (V)
180
VCE, COLLECTOR−EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
160
VGE = 17 V to 13 V
7 V to 8 V
0
1
2
3
4
5
6
7
140
TJ = 25°C
120
TJ = 150°C
100
80
60
40
20
0
8
0
4
8
VGE, GATE−EMITTER VOLTAGE (V)
Figure 3. Output Characteristics
Figure 4. Typical Transfer Characteristics
3.0
10,000
Cies
IC = 60 A
2.5
2.0
IC = 30 A
1.5
IC = 15 A
IC = 5 A
1.0
1000
Coes
100
Cres
0.5
0
−75
16
12
VCE, COLLECTOR−EMITTER VOLTAGE (V)
CAPACITANCE (pF)
IC, COLLECTOR CURRENT (A)
180
−25
25
75
125
175
10
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 5. VCE(sat) vs. TJ
Figure 6. Typical Capacitance
http://onsemi.com
3
100
NGTG30N60FWG
TYPICAL CHARACTERISTICS
VGE, GATE−EMITTER VOLTAGE (V)
20
VCE = 480 V
15
10
5
0
0
25
50
75
100
125
150
175
200
QG, GATE CHARGE (nC)
Figure 7. Typical Gate Charge
0.8
Eoff
SWITCHING TIME (ns)
1
Eon
0.6
0.4
td(off)
tf
100
0
2.1
20
40
60
80
10
VCE = 400 V
VGE = 15 V
IC = 30 A
Rg = 10 W
1.5
120
140
1
160
0
60
80
100
120
140 160
Figure 8. Switching Loss vs. Temperature
Figure 9. Switching Time vs. Temperature
1000
tf
Eoff
Eon
0.9
0.6
td(off)
td(on)
100
tr
10
VCE = 400 V
VGE = 15 V
TJ = 150°C
Rg = 10 W
0.3
8
40
TJ, JUNCTION TEMPERATURE (°C)
1.2
0
20
TJ, JUNCTION TEMPERATURE (°C)
VCE = 400 V
VGE = 15 V
TJ = 150°C
Rg = 10 W
1.8
100
td(on)
tr
0.2
0
SWITCHING LOSS (mJ)
1000
VCE = 400 V
VGE = 15 V
IC = 30 A
Rg = 10 W
SWITCHING TIME (ns)
SWITCHING LOSS (mJ)
1.2
16
24
32
40
48
56
1
64
8
16
24
32
40
48
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
Figure 10. Switching Loss vs. IC
Figure 11. Switching Time vs. IC
http://onsemi.com
4
56
64
NGTG30N60FWG
TYPICAL CHARACTERISTICS
2.5
SWITCHING LOSS (mJ)
1000
VCE = 400 V
VGE = 15 V
IC = 30 A
TJ = 150°C
2
td(off)
Eon
1.5
SWITCHING TIME (ns)
3
Eoff
1
0.5
5
1.8
25
35
45
1.2
55
65
75
15
25
35
45
55
65
75
85
1000
Eoff
0.3
275
325
375
425
475
525
td(off)
tf
100
td(on)
tr
10
VGE = 15 V
IC = 30 A
Rg = 10 W
TJ = 150°C
1
175
575
225
275
325
375
425
475
525
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 14. Switching Loss vs. VCE
Figure 15. Switching Time vs. VCE
1000
575
1000
100 ms
100
1 ms
10
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
5
Figure 13. Switching Time vs. Rg
0.6
50 ms
dc operation
1
Single Nonrepetitive
Pulse TC = 25°C
Curves must be derated
linearly with increase
in temperature
0.1
0.01
VCE = 400 V
VGE = 15 V
IC = 30 A
TJ = 150°C
Figure 12. Switching Loss vs. Rg
Eon
225
10
Rg, GATE RESISTOR (W)
0.9
0
175
tr
1
85
td(on)
Rg, GATE RESISTOR (W)
VGE = 15 V
IC = 30 A
Rg = 10 W
TJ = 150°C
1.5
SWITCHING LOSS (mJ)
15
SWITCHING TIME (ns)
0
tf
100
1
10
100
1000
100
10
1
VGE = 15 V, TC = 125°C
1
10
100
1000
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 16. Safe Operating Area
Figure 17. Reverse Bias Safe Operating Area
http://onsemi.com
5
NGTG30N60FWG
TYPICAL CHARACTERISTICS
1
RqJC = 0.75
50% Duty Cycle
R(t) (°C/W)
20%
0.1
10%
5%
Junction R1
2%
0.01
Rn
C2
Cn
Ri (°C/W)
Case
Ci = ti/Ri
1%
C1
0.00001
ti (sec)
0.03276
0.07477
0.12790
0.17518
0.22911
1.0E−4
6.84E−5
0.002
0.03
0.1
0.11135
2.0
Duty Factor = t1/t2
Peak TJ = PDM x ZqJC + TC
Single Pulse
0.001
0.000001
R2
0.0001
0.001
0.01
0.1
1
PULSE TIME (sec)
Figure 18. IGBT Transient Thermal Impedance
Figure 19. Test Circuit for Switching Characteristics
http://onsemi.com
6
10
100
1000
NGTG30N60FWG
Figure 20. Definition of Turn On Waveform
http://onsemi.com
7
NGTG30N60FWG
Figure 21. Definition of Turn Off Waveform
http://onsemi.com
8
NGTG30N60FWG
PACKAGE DIMENSIONS
TO−247
CASE 340L−02
ISSUE F
−T−
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
C
−B−
E
U
N
L
4
A
−Q−
1
2
0.63 (0.025)
3
M
T B
M
P
−Y−
K
F 2 PL
W
J
D 3 PL
0.25 (0.010)
M
Y Q
MILLIMETERS
MIN
MAX
20.32
21.08
15.75
16.26
4.70
5.30
1.00
1.40
1.90
2.60
1.65
2.13
5.45 BSC
1.50
2.49
0.40
0.80
19.81
20.83
5.40
6.20
4.32
5.49
--4.50
3.55
3.65
6.15 BSC
2.87
3.12
STYLE 4:
PIN 1.
2.
3.
4.
H
G
DIM
A
B
C
D
E
F
G
H
J
K
L
N
P
Q
U
W
INCHES
MIN
MAX
0.800
8.30
0.620
0.640
0.185
0.209
0.040
0.055
0.075
0.102
0.065
0.084
0.215 BSC
0.059
0.098
0.016
0.031
0.780
0.820
0.212
0.244
0.170
0.216
--0.177
0.140
0.144
0.242 BSC
0.113
0.123
GATE
COLLECTOR
EMITTER
COLLECTOR
S
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
9
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NGTG30N60FW/D