Ordering number : ENA1567 LV49157V LC01707PLF Class-D Audio Power Amplifier with built-in Headphone Amplifier BTL 15W × 2ch http://onsemi.com Overview The LV49157V is a 15W per channel stereo digital power amplifier that takes analog inputs. The LV49157V uses unique Our developed feedback technology to achieve excellent audio quality despite being a class D amplifier and can be used to implement high quality flat display panel (FDP) based systems. Features • BTL output, class D amplifier system • Unique Our developed feedback technology achieves superb audio quality • High-efficiency class D amplifier • Soft muting function reduces impulse noise at power on/off • Full complement of built-in protection circuits : over current protection, thermal protection, and low power supply voltage protection circuits • Built in Power limiter • Built in Headphone Amplifier Functions • Power : 15W × 2ch output (VD = 15V, RL = 8Ω, fin = 1kHz, AES17, THD + N = 10%) • Efficiency : 93% (VD = 15V, RL = 8Ω, fin = 1kHz, PO = 15W) • THD + N : 0.08% (VD = 15V, RL = 8Ω, fin = 1kHz, PO = 1W, Filter : AES17) • Noise : 90μVrms (Filter : A-weight) • 60mW Stereo headphone Amplifier (VD = 15V, RL = 16Ω, THD + N = 10%) • Package SSOP44J (275mil) Semiconductor Components Industries, LLC, 2013 June, 2013 N0409 SY 20090918-S00001 No.A1567-1/30 LV49157V Specifications Absolute Maximum Ratings at Ta = 25°C Parameter Symbol Conditions Maximum supply voltage VD Supply voltage Allowable power dissipation Pd max Package thermal resistance θjc Maximum junction temperature Tj max Operating temperature Storage temperature Ratings Unit 20 V Our PCB, Soldered * 5 W Our PCB, Soldered * 2.1 °C/W 3.6 °C/W 150 °C Topr -25 to +75 °C Tstg -50 to +150 °C Our PCB, Not soldered * * : Mounted on a specified board 110.0mm × 100.0mm × 1.5mm, glass epoxy (two-layer) Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Recommended Operating Range at Ta = 25°C Ratings Parameter Symbol Conditions Unit min typ max Supply voltage range VD Supply voltage 9 15 Load impedance range RL Speaker load 4 8 18 Ω V RL(HP) Headphone 16 Ω Electrical Characteristics at Ta = 25°C, VD = 15V Ratings Parameter Symbol Conditions Unit min typ max Main Amplifier (RL = 8Ω,L = 33μH (TOKO : A7502BY-330M), C = 0.1μF,CL=0.47μF) Standby current Ist STBY = L, MUTE = L 1 10 μA Mute current Imute STBY = H, MUTE = L 14 20 26 mA Quiescent current ICCO STBY = H, MUTE = H 35 45 55 mA 28 30 Voltage gain VG fin = 1kHz, VO = 0dBm Offset voltage Voffset Rg = 0 Total harmonic distortion THD+N PO = 1W, fin = 1kHz, AES17 -150 0.08 32 dB 150 mV 0.4 % Output power PO THD+N = 10%, AES17 13 15 W Channel separation CH sep. Rg = 0, VO = 0dBm, DIN AUDIO 55 70 dB Ripple rejection ratio SVRR fr = 100Hz, Vr = 0dBm, Rg = 0, DIN AUDIO 50 60 dB Noise VNO Rg = 0, A-weight 300 μVrms High-level input voltage VIH STBY and MUTE pin 3 VD V Low-level input voltage VIL STBY and MUTE pin 0 1 V 90 Under voltage protection UPPER UV_UPPER VD voltage measure 8.0 V Under voltage protection LOWER UV_LOWER VD voltage measure 7.0 V Headphone Amplifier(RL = 16Ω,fin=1kHz) ICCO HP_STBY = H Voltage gain VG VO = -10dBm Total harmonic distortion THD+N PO = 10mW, DIN AUDIO Output power PO THD+N = 10%, DIN AUDIO Channel separation CH sep. Ripple rejection ratio SVRR Noise VNO Rg = 0, A-weight High-level input voltage VIH HP_STBY pin Low-level input voltage VIL HP_STBY pin Quiescent current 8 12 mA 11.5 13.5 dB 0.05 0.3 % 48 60 72 W fin=1kHz, Rg = 0, VO = -10dBm, DIN AUDIO 55 70 fr = 100Hz, Vr = 0dBm, Rg = 0, DIN AUDIO 55 70 9.5 dB dB 60 μVrms 3 VD V 0 1 V 12 Note : The values of these characteristics were measured in the Our test environment. The actual values in an end system will vary depending on the printed circuit board pattern, the external components actually used, and other factors. No.A1567-2/30 LV49157V Package Dimensions unit : mm (typ) 3285 TOP VIEW BOTTOM VIEW Exposed Die-Pad 15.0 23 0.5 5.6 7.6 44 1 22 0.22 0.65 0.2 1.7max (0.68) (1.5) SIDE VIEW SANYO : SSOP44J(275mil) Pd max - Ta 8 Allowable power dissipation, Pd max - W Mounted on a specified board : 110 × 100 × 1.5mm3 glass epoxy (two-layer) 6 Soldered = 5.05W 4 Not Soldered = 3.35W 2 0 —25 0 25 50 75 100 125 150 Ambient temperature, Ta - C PVD1 PVD1 OUT1+ OUT1+ BOOT1+ VDD1 BOOT1- OUT1- OUT1- PGND1 PGND1 PGND2 PGND2 OUT2- OUT2- BOOT2- VDD2 BOOT2+ OUT2+ OUT2+ PVD2 PVD2 Pin Assignment 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 MUTE STBY VIN1+ VIN1- PLC VIN2- VIN2+ MUTECAP VCC BIASCAP VBIAS VREG5 GND HP_IN1 HP_RF HP_IN2 HP_GND1 HP_OUT1 HP_REF HP_OUT2 HP_GND2 HP_STBY LV49157 Top view No.A1567-3/30 LV49157V Block Diagram and Application Circuit + 0-5V 1 0-5V 2 VIN1+ 3 4 5 6 VIN2+ PVD1 STBY PVD1 FB 8 9 10 11 12 13 VIN1- + 15 PLC 41 REC. & CONT. 40 VIN2- VDD1 37 OUTPUT VCC 36 FB BIASCAP PGND1 VBIAS PGND1 START SEQUENCE POWER LIMITER VREG5 GND PGND2 PGND2 FB RL(HP) 17 + 18 19 + 20 21 22 REC. & CONT. HP_OUT1 HP_OUT2 HP_GND2 HP_STBY 26 OUTPUT 25 FB PVD2 PVD2 OUT1- VD OUT2OUT2BOOT2SP 28 27 HP_REF OUT1- 32 29 Head phone RL(HP) SP BOOT1- 33 30 VDD2 BOOT1+ 34 31 HP_GND1 OUT1+ 35 OUTPUT HP_RF OUT1+ 39 38 MUTECAP 16 HP_IN2 43 OUTPUT 14 HP_IN1 44 42 7 + 0-5V MUTE BOOT2+ OUT2+ OUT2+ 24 23 + No.A1567-4/30 LV49157V Pin Equivalent Circuit Pin No. 1 Pin name MUTE I/O I Description Equivalent Circuit Mute control pin VD 250kΩ 1 10kΩ 100kΩ GND 2 STBY I Standby control pin VD 250kΩ 2 10kΩ 100kΩ GND 3 VIN1+ I Input pin, CH1 plus VD 3 300Ω 30kΩ VBIAS GND 4 VIN1- I Input pin, CH1 minus VD 4 300Ω 30kΩ VBIAS GND 5 PLC I Power level control pin VD 5 200Ω GND Continued on next page. No.A1567-5/30 LV49157V Continued from preceding page. Pin No. 6 Pin name VIN2- I/O I Description Equivalent Circuit Input pin, CH2 minus VD 300Ω 6 30kΩ VBIAS GND 7 VIN2+ I Input pin, CH2 plus VD 300Ω 7 30kΩ VBIAS GND 8 MUTECAP O Muteing sysytem capcitor connection VD VDD 20kΩ 10kΩ 8 GND 9 VCC O Internal power supply VD decupling capacitor connection 9 GND 10 BIASCAP O Internal regulator VD decupling capacitor connection 100kΩ 10 1kΩ 1kΩ 100kΩ GND Continued on next page. No.A1567-6/30 LV49157V Continued from preceding page. Pin No. 11 Pin name VBIAS I/O O Description Equivalent Circuit Internal regulator VD decupling capacitor connection 500Ω 11 500Ω GND 12 VREG5 O Internal regulator VD decupling capacitor connection 12 500Ω GND 13 GND 14 HP_IN1 Analog Ground I PREVD VD Headphone CH1 input 14 VREF HP_GND 15 HP_RF O VD Internal regulator decupling capacitor connection 15 HP_GND 16 HP_IN2 I VD Headphone CH2 input PREVD 16 VREF HP_GND Continued on next page. No.A1567-7/30 LV49157V Continued from preceding page. Pin No. Pin name 17 HP_GND1 18 HP_OUT1 I/O Description Equivalent Circuit Headphone Ground O VD Headphone CH1 output 18 HP_GND 19 HP_REF O PREVD Internal regulator decupling capacitor connection 19 HP_GND 20 HP_OUT2 O VD Headphone CH2 output 20 HP_GND 21 HP_GND2 22 HP_STBY Headphone Ground I VD Headphone Amplifier standby control pin 22 GND 23 PVD2 CH2 power supply 24 PVD2 CH2 power supply 25 OUT2+ O Output pin, CH2 plus VD 25 GND Continued on next page. No.A1567-8/30 LV49157V Continued from preceding page. Pin No. 26 Pin name OUT2+ I/O O Description Output pin, CH2 plus Equivalent Circuit VD 26 GND 27 BOOT2+ I/O 28 VDD2 O Boot strap pin, CH2 plus CH2 internal regulator decupling capacitor connection 29 BOOT2- I/O Boot strap pin, CH2 minus 30 OUT2- O Output pin, CH2 minus VD 30 GND 31 OUT2- O Output pin, CH2 minus VD 31 GND 32 PGND2 CH2 Power Ground 33 PGND2 CH2 Power Ground 34 PGND1 CH1 Power Ground 35 PGND1 36 OUT1- CH1 Power Ground O Output pin, CH1 minus VD 36 GND 37 OUT1- O Output pin, CH1 minus VD 37 GND 38 BOOT1- I/O 39 VDD1 O Boot strap pin, CH1 minus CH1 internal regulator decupling capacitor connection 40 BOOT1+ I/O Boot strap pin, CH1 plus Continued on next page. No.A1567-9/30 LV49157V Continued from preceding page. Pin No. 41 Pin name OUT1+ I/O O Description Output pin, CH1 plus Equivalent Circuit VD 41 GND 42 OUT1+ O Output pin, CH1 plus VD 42 GND 43 PVD1 CH1 power supply 44 PVD1 CH1 power supply No.A1567-10/30 LV49157V Operation Mode Summary STBY mode (STBY = L, MUTE = L and HP_STBY = L) Each bias becomes off state when the regulator in IC has been turned off. The most of circuits becomes off state. The supply current : 1μA (typical). MUTE mode (STBY = H and MUTE = L) Each bias becomes on state when the regulator in IC has been turned on. When more than half of the circuits are active, the amplifier in the output stages become off. The supply current : 20mA (typical). Operation mode (STBY = H, MUTE = H and HP_STBY = H) The LV49157V operates as D-class amplifier and Headphone amplifier. The output signal is synchronized with the input signal. The current of the main amplifier is 45mA (typical) in our recommendation condition, and the current of the headphone amplifier is 8mA (typical) at RG=0. Main amplifier function image No.A1567-11/30 LV49157V ON TIME/OFF TIME Secure and control ON TIME and OFF TIME about the control of the terminal STBY and the terminal MUTE for the Pop noise decrease. The following, ON TIME, and OFF TIME are the recommendation and set time in our recommendation constant. ON TIME Please secure ON TIME of 350msec or more for reducing Pop noise. Function image ON TIME • • • the time until the MUTE pin is set to high level after the STBY pin is set to high level OFF TIME Please secure OFF TIME of 1000msec or more for reducing Pop noise. Function image OFF TIME • • • the time until the STBY pin is set to low level after the MUTE pin is set to low level No.A1567-12/30 LV49157V SOFT MUTE The soft mute circuit is able to use fade in/fade out function, and the main amplifier can set Rise time and fall time by the time constant of the MUTECAP capacitor. Main amplifier FADE IN Mute rise time is Applpx.450msec in our recommended external components. 5V/DIV. MUTE pin MUTECAP pin [OUT+] vs [OUT-] Mute rise time Main amplifier FADE IN function image Main amplifier FADE OUT Mute fall time is Applpx.450msec in our recommended external components. 5V/DIV. MUTE pin MUTECAP pin [OUT+] vs [OUT-] Mute fall time Main amplifier FADE OUT function image No.A1567-13/30 LV49157V The headphone amplifier can set Rise time and fall time by the time constant of the HP_RF capacitor. Headphone amplifier FADE IN Rise time is Applpx.900msec in our recommended external components. HP_STBY pin HP_RF terminal HP_OUT rise time Headphone amplifier FADE IN function image Headphone amplifier FADE OUT Fall time is Applpx.900msec in our recommended external components. HP_STBY pin HP_RF terminal HP_OUT fall time Headphone amplifier FADE OUT function image No.A1567-14/30 LV49157V Power supply lowering protection circuit Since the instable operation in the low voltage is prevented by using this circuit, after the voltage of the PVD pin is monitored and the voltage below the Attack voltage (PVD = 8V typ.), AMP is turned off. Also, to prevent the instable operation when the voltage of the PVD pin is decreased by any cause during operations, the Attack voltage (PVD = 7V typ.) is set. The voltage of Attack and Recover has hysteresis (About 1V) to prevent ON/OFF continuous action of the power supply lowering protection circuit. Function image Also, this IC is designed to turn off AMP in the same sequence that the MUTE is on as a pop noise measures when the plug of products are put off. Over current protection circuit The over current protection circuit is a protection circuit * to protect the output DMOS from the over current and corresponds to any mode of the power supply, GND and a load short. The protection operation is performed when the current reaches the detection current value set out in IC and the output DMOS is compulsorily turned off for about 20μsec. After compulsorily tuning off the output DMOS, when the Amplifier is automatically reset in usual operation and the over current flows continuously, the protection operation is performed again. Function image * The over current protection circuit is a function to avoid the abnormal state like the output short-circuit temporarily. Unfortunately, we cannot guarantee that IC is not destroyed. No.A1567-15/30 LV49157V Thermal protection circuit The LV49157V includes a thermal protection circuit to prevent damage to or destruction of the IC should abnormal internal heat generation occur. This means that should the IC junction temperature (Tj) rise above about 175°C due to inadequate heat dissipation or other reason, the thermal protection circuit will operate to stop IC operation should the temperature rise further. If the temperature is reduced by lowering the input level or other means, the thermal protection circuit will recover automatically (about 105°C). Recovery Attack Hystsrisis Temperature (Tj) rise Internal TSD DET. Shut down PWM Internal TSD DET. Temperature (Tj) fall Shut down PWM 40 50 60 70 80 90 100 110 110 130 110 150 160 170 180 190 200 Junction temperature Tj [°C] Function image * The thermal protection circuit is a function to avoid the abnormal state temporarily. Unfortunately, we cannot guarantee that IC is not destroyed. No.A1567-16/30 LV49157V PLC The PLC (power level control) function is able to control the maximum index modulation by setting a value of external PLC resistance R1 voluntarily, and prevent a PWM signal from becoming the over modulation mode. In addition, this circuit can be use as output power limit circuit because the PLC function can set the maximum index modulation voluntarily, and variable from 2W to 15W with output power linearly in the state that made the power supply voltage and load resistance fixation. Because the PLC function can set the suitable rated output with the same power supply voltage/speaker regardless of screen size in flat screen televisions by this, set can plan the commonization of the board. Furthermore, The PLC function can reduce abnormal noise in the hard clip so that output wave pattern becomes the soft clip when it limited output power. MAX. Power Half Power Min. Power PLC 5 LV49157V R1 GND 13 Function image Measuring condition VD = 15V, RL = 8Ω, L = 33μH (TOKO : A7502BY-330M), C = 0.1uF,CL = 0.47μF,Ta = 25°C R1 -- PO@THD + N = 10% 18 R1 [kΩ] Po@10% [W] 3.0 0.694 3.6 1.073 4.7 1.982 6.2 3.642 10 7.5 5.562 8 8.2 6.855 9.1 8.591 10 10.64 VD = 15V RL = 8Ω fin = 1kHz THD + N = 10% 2ch-Drive AES17 PO@THD + N = 10% – W 16 14 12 6 4 13 15.32 2 15 15.94 0 20 16.01 0 2 4 6 8 10 12 14 16 18 20 R1 – kΩ Setting example of the output power limit value * When it is used this function as output power limit, please use the high-precision resistance such as the metal film resistor when precision of the electricity value is necessary. * The value of external PLC resistance R1 please connects more than 3kΩ. * When it is changed a value of external PLC resistance R1, please turn off an amplifier. No.A1567-17/30 LV49157V Cut-off frequency calculation method and the output LC filter setting L OUT+ C CL RL C L OUT- The cut off frequency fc of the output LC filter is calculated by the following formula. fc = 1 2π√2LCL Also, by setting the cut off frequency fc, the value of CL and L is calculated by using the following formula. 1 CL = 2√2 × π RLfc L= √2 × RL 4π fc In general, the value from 20% to 30% of CL is set to C. In case of fc = 30kHz RL [Ω] L [μH] CL [μF] C [μF] Q 4 15 1 0.22 0.650 6 22 0.68 0.15 0.636 8 33 0.47 0.1 0.704 16 68 0.22 0.047 0.739 Above formula is common calculation method and is a measure of constant setting. In fact, it is necessary to set with each set that considers the speaker characteristics. In addition, please set the fixed number to become Q ≤ 1 in currents in the fc neighborhood increasing if Q value of the LC filter is big. No.A1567-18/30 LV49157V Glaph deta (Digital Amplifier: L = 33μH (TOKO : A7502BY-330M), C = 0.1μF, CL = 0.47μF) Ist -- VD 0.15 0.1 0.1 0.05 0.05 0 0 2 4 6 8 10 12 14 16 0 —50 18 Externally applied voltage, VD - V Imute -- VD 20 15 10 5 0 0 2 4 6 8 10 12 14 16 ICC -- VD Quiescent current, ICC - mA Quiescent current, ICC - mA 30 20 10 0 2 4 6 8 10 12 14 16 18 VCC -- VD 100 50 100 ICC -- Ta 40 30 20 10 0 Ambient temperature, Ta - C VCC -- Ta 15 VCC - V VCC - V 0 Ambient temperature, Ta - C 20 15 50 5 Externally applied voltage, VD - V 20 100 10 0 —50 0 50 Imute -- Ta 50 40 100 15 0 —50 18 50 20 Externally applied voltage, VD - V 50 0 Ambient temperature, Ta - C 25 Muting current, Imute - mA Muting current, Imute - mA 25 Ist -- Ta 0.15 10 5 10 5 0 0 2 4 6 8 10 12 14 Externally applied voltage, VD - V 16 18 0 —50 0 Ambient temperature, Ta - C No.A1567-19/30 LV49157V BIASCAP -- VD 10 10 RL = 8Ω Rg = 0 8 BIASCAP – V BIASCAP – V 8 6 4 2 BIASCAP -- Ta VD = 15V RL = 8Ω Rg = 0 6 4 2 0 0 2 4 6 8 10 12 14 16 0 – 50 18 Externally applied voltage, VD – V VBIAS -- VD 10 10 RL = 8Ω Rg = 0 8 VBIAS – V VBIAS – V 8 6 4 0 0 VBIAS -- Ta VD = 15V RL = 8Ω Rg = 0 6 4 2 4 6 8 10 12 14 16 0 – 50 18 Externally applied voltage, VD – V 5 4 4 VREG5 – V 5 3 3 2 2 1 1 4 6 8 10 12 14 16 VD = 15V RL = 8Ω Rg = 0 0 – 50 0 2 18 Externally applied voltage, VD – V 6 RL = 8Ω Rg = 0 5 4 4 VDD – V 5 3 2 1 1 0 2 4 6 8 10 12 14 Externally applied voltage, VD – V 100 50 16 18 VDD -- Ta VD = 15V RL = 8Ω Rg = 0 3 2 0 0 Ambient temperature, Ta – °C VDD -- VD 6 100 50 VREG5 -- Ta 6 RL = 8Ω Rg = 0 0 0 Ambient temperature, Ta – °C VREG5 -- VD 6 VREG5 – V 100 50 2 2 VDD – V 0 Ambient temperature, Ta – °C 0 – 50 0 100 50 Ambient temperature, Ta – °C No.A1567-20/30 LV49157V VG -- VD 32 32 RL = 8Ω fin = 1kHz VO = 0dBm 31 Gain, VG -- dB Gain, VG -- dB 31 30 VG -- Ta VD = 15V RL = 8Ω fin = 1kHz VO = 0dBm 30 29 29 28 9 10.5 12 15 13.5 16.5 28 --50 18 Voffset -- VD 20 RL = 8Ω Rg = 0 Offset voltage, Voffset -- mV Offset voltage, Voffset -- mV 20 0 --20 CH2 --40 CH1 --60 10.5 12 15 13.5 16.5 Voffset -- Ta VD = 15V RL = 8Ω Rg = 0 --20 CH2 --40 CH1 --60 --80 --50 18 THD+N -- VD CH2 0.1 7 5 3 2 CH1 0.01 7 5 3 2 0.001 9 10.5 12 15 13.5 10 7 5 3 2 Total harmonic distortion, THD+N -- % Total harmonic distortion, THD+N -- % RL = 8Ω fin = 1kHz PO = 1W 2ch-Drive AES17 1 7 5 3 2 16.5 18 1 7 5 3 2 THD+N -- Ta CH2 0.1 7 5 3 2 CH1 0.01 7 5 3 2 0.001 --50 THD+N = 10% Output power, PO -- W Output power, PO -- W 24 18 12 THD+N = 1% 6 0 9 10.5 12 13.5 15 16.5 Externally applied voltage, VD -- V 0 100 50 Ambient temperature, Ta -- °C PO -- VD RL = 8Ω fin = 1kHz 2ch-Drive AES17 100 50 VD = 15V RL = 8Ω fin = 1kHz PO = 1W 2ch-Drive AES17 Externally applied voltage, VD -- V 24 0 Ambient temperature, Ta -- °C Externally applied voltage, VD -- V 10 7 5 3 2 100 50 0 --80 9 0 Ambient temperature, Ta -- °C Externally applied voltage, VD -- V 18 18 PO -- Ta VD = 15V RL = 8Ω fin = 1kHz 2ch-Drive AES17 12 THD+N = 10% THD+N = 1% 6 0 --50 0 100 50 Ambient temperature, Ta -- °C No.A1567-21/30 LV49157V CHsep. -- VD 0 RL = 8Ω fin = 1kHz Rg = 0 VO = 0dBm DIN AUDIO --20 Channel separation, CHsep. -- dB Channel separation, CHsep. -- dB 0 --40 --60 CH1→CH2 CH2→CH1 --80 --100 9 10.5 12 15 13.5 16.5 --20 CHsep. -- Ta VD = 15V RL = 8Ω Rg = 0 VO = 0dBm DIN AUDIO --40 --60 CH1→CH2 CH2→CH1 --80 --100 --50 18 SVRR -- VD 0 RL = 8Ω fin = 100Hz Rg = 0 VDr = 0dBm DIN AUDIO --20 Ripple rejection ratio, SVRR -- dB Ripple rejection ratio, SVRR -- dB 0 --40 CH1 --60 CH2 --80 9 10.5 12 15 13.5 16.5 --20 SVRR -- Ta --40 CH1 --60 CH2 --80 --50 18 VNO -- VD 1 7 5 3 Noise, VNO -- mVrms Noise, VNO -- mVrms 5 2 CH2 0.1 CH1 7 5 3 100 50 VNO -- Ta VD = 15V RL = 8Ω Rg = 0 A-weight 3 2 CH2 0.1 7 CH1 5 3 2 2 0.01 --50 0.01 9 10.5 12 15 13.5 16.5 18 fO -- VD 430 Oscillating frequency, fO -- kHz 400 CH1 340 CH2 310 280 9 10.5 12 13.5 15 16.5 Externally applied voltage, VD -- V 100 50 fO -- Ta 430 RL = 8Ω Rg = 0 370 0 Ambient temperature, Ta -- °C Externally applied voltage, VD -- V Oscillating frequency, fO -- kHz 0 Ambient temperature, Ta -- °C RL = 8Ω Rg = 0 A-weight 7 100 50 VD = 15V RL = 8Ω fin = 100Hz Rg = 0 VDr = 0dBm DIN AUDIO Externally applied voltage, VD -- V 1 0 Ambient temperature, Ta -- °C Externally applied voltage, VD -- V 18 VD = 15V RL = 8Ω Rg = 0 400 CH1 370 340 CH2 310 280 --50 0 100 50 Ambient temperature, Ta -- °C No.A1567-22/30 LV49157V DUTY -- VD CH2 50 CH1 45 9 10.5 12 13.5 DUTY -- Ta 55 DUTY -- % DUTY -- % 55 15 16.5 CH2 50 CH1 45 --50 18 0 CHsep. -- f --20 --40 --60 CH1®CH2 CH2®CH1 --80 --100 10 2 3 5 7 100 2 3 5 7 1k 2 3 5 7 10k 2 3 Frequency, f -- Hz --20 --40 CH1 --60 CH2 --80 10 5 7100k VNO -- Rg 1 100 SVRR -- fr 0 Ripple rejection ratio, SVRR -- dB Channel separation, CHsep. -- dB 0 50 Ambient temperature, Ta -- °C Externally applied voltage, VD -- V 3.0 2 3 5 7 100 2 3 5 7 1k 2 3 5 7 10k 2 3 Ripple frequency, fr -- Hz 5 7100k High & Low level -- Ta 7 3 High & Low level -- V Noise, VNO -- mVrms 5 2 CH2 0.1 CH1 7 5 3 2.5 2.0 High 1.5 Low 2 0.01 1 3 5 7 100 2 3 5 7 10k 2 3 1.0 --50 5 71000k 0 50 100 Ambient temperature, Ta -- °C High & Low level -- Ta 9 Upper & Lower -- Ta 2.5 Upper & Lower -- V High & Low level -- V 3.0 2 2.0 High 1.5 1.0 --50 8 Upper 7 Low 0 Lower 50 Ambient temperature, Ta -- °C 100 6 --50 0 50 100 Ambient temperature, Ta -- °C No.A1567-23/30 THD+N -- PO 10 7 5 VD = 15V RL = 8Ω 2ch-Drive AES17 3 2 1 7 5 z kH fin 3 2 0.1 7 5 = fin 7 6.6 z kH =1 0Hz fin = 10 3 2 0.01 0.001 2 3 5 70.01 2 3 5 7 0.1 2 3 5 7 1 2 3 5 7100 VD = 15V RL = 6Ω 2ch-Drive AES17 3 2 1 7 5 = fin Hz 7k 6.6 3 2 fin = 0.1 7 5 3 2 0.01 0.001 2 3 5 70.01 2 3 5 7 0.1 2 3 5 7 1 kHz 1 fin = z 100H 10 10 7 5 3 2 1 7 5 3 2 Hz k .67 6 n= fi 3 2 fin = 0.1 7 5 3 z 1kH fin = 2 0.01 0.001 2 3 5 70.01 2 3 5 70.1 2 3 5 7 1 Hz 100 10 7 5 3 2 1 7 5 3 2 RL = 8Ω 2 3 5 7100 RL = 4Ω Output power, PO -- W Efficiency -- % 5 7100k 5 7 10k 2 3 5 7100k 5 7 10k 2 3 5 7100k CH2 CH1 2 3 5 7 100 2 3 5 7 1k 2 3 Frequency, f -- Hz THD+N -- f VD = 15V RL = 4Ω PO = 1W 2ch-Drive AES17 CH2 CH1 10 30 60 40 VD = 15V fin = 1kHz 2ch-Drive AES17 20 0 8 2 3 0.01 7 5 3 2 80 4 5 7 10k THD+N -- f 0.1 7 5 3 2 Efficiency -- PO 0 2 3 0.001 2 3 5 7 10 Output power, PO -- W 100 5 7 1k Frequency, f -- Hz VD = 15V RL = 6Ω PO = 1W 2ch-Drive AES17 10 Total harmonic distortion, THD+N -- % 2 2 3 0.01 7 5 3 2 THD+N -- PO 1 7 5 5 7 100 0.1 7 5 3 2 2 3 5 7100 VD = 15V RL = 4Ω 2ch-Drive AES17 3 2 3 0.001 2 3 5 7 10 Output power, PO -- W 10 7 5 CH1 0.01 7 5 3 2 THD+N -- PO 10 7 5 CH2 0.1 7 5 3 2 Total harmonic distortion, THD+N -- % Total harmonic distortion, THD+N -- % 1 7 5 3 2 THD+N -- f VD = 15V RL = 8Ω PO = 1W 2ch-Drive AES17 0.001 2 3 5 7 10 Output power, PO -- W Total harmonic distortion, THD+N -- % 10 7 5 3 2 Total harmonic distortion, THD+N -- % Total harmonic distortion, THD+N -- % LV49157V 12 Output power, PO -- W 16 20 2 3 5 7 100 2 3 5 7 1k 2 3 Frequency, f -- Hz PO -- VD fin = 1kHz THD+N = 10% 2ch-Drive AES17 RL = 4Ω RL =6 Ω Ω RL 20 =8 10 0 9 10.5 12 13.5 15 16.5 18 Externally applied voltage, VD -- V No.A1567-24/30 LV49157V Response -- f 10 Phase -- f 40 20 0 Phase -- deg Response -- dB 0 --10 --20 --40 --20 --60 --30 10 2 3 5 7 100 2 3 5 7 1k 2 3 Frequency, f -- Hz 5 7 10k 2 3 5 7100k --80 10 2 3 5 7 100 2 3 5 7 1k 2 3 5 7 10k 2 3 5 7100k Frequency, f -- Hz No.A1567-25/30 LV49157V Glaph deta (Digital Amplifier: L = 33μH (TOKO : A7502BY-330M), C = 0.1μF, CL = 0.47μF) ICChp -- VD 10 10 8 8 6 6 4 4 2 2 0 0 2 4 6 8 10 12 14 16 0 --50 18 HP_RF -- VD 12 10 10 HP_RF -- V HP_RF -- V 14 12 8 6 2 2 0 4 6 8 10 12 14 16 0 --50 18 Externally applied voltage, VD -- V HP_REF -- VD 4 4 HP_RF -- Ta 0 50 Ambient temperature, Ta -- ∞C 100 HP_REF -- Ta 3 HP_REF -- V HP_REF -- V 3 2 1 2 1 0 0 2 4 6 8 10 12 14 16 0 --50 18 Externally applied voltage, VD -- V HP_OUT -- VD 4 4 3 0 50 Ambient temperature, Ta -- ∞C 100 HP_OUT -- Ta 3 HP_OUT -- V HP_OUT -- V 100 6 4 2 50 8 4 0 0 Ambient temperature, Ta -- ∞C Externally applied voltage, VD -- V 14 ICChp -- Ta 12 ICChp -- mA ICChp -- mA 12 2 1 2 1 0 0 2 4 6 8 10 12 14 Externally applied voltage, VD -- V 16 18 0 --50 0 50 100 Ambient temperature, Ta -- ∞C No.A1567-26/30 LV49157V VG -- VD 13.5 12.5 Gain, VG -- dB Gain, VG -- dB 12.5 CH2 11.5 CH1 CH2 11.5 CH1 10.5 10.5 9.5 9 10.5 12 13.5 15 16.5 9.5 --50 18 Externally applied voltage, VD -- V Offset voltage, Voffset -- mV Offset voltage, Voffset -- mV CH2 CH1 --0.1 --0.2 9 10.5 12 15 13.5 16.5 CH2 0 Total harmonic distortion, THD+N -- % Total harmonic distortion, THD+N -- % 2 1 7 5 3 2 CH2 CH1 2 0.01 9 10.5 12 13.5 15 16.5 10 7 5 18 1 7 5 3 2 0.1 7 5 Output power, PO -- mW THD+N = 1% 20 0 9 10.5 12 13.5 CH1 15 Externally applied voltage, VD -- V 16.5 18 CH2 3 2 0 100 50 Ambient temperature, Ta -- °C PO -- Ta 80 THD+N = 10% 40 THD+N -- Ta 2 0.01 --50 PO -- VD 60 100 50 3 Externally applied voltage, VD -- V 80 0 Ambient temperature, Ta -- °C 3 3 CH1 --0.1 --0.2 --50 18 THD+N -- VD 0.1 7 5 100 0.1 Externally applied voltage, VD -- V 10 7 5 50 Voffset -- Ta 0.2 0.1 0 0 Ambient temperature, Ta -- °C Voffset -- VD 0.2 Output power, PO -- mW VG -- Ta 13.5 THD+N = 10% 60 THD+N = 1% 40 20 0 --50 0 50 100 Ambient temperature, Ta -- °C No.A1567-27/30 LV49157V CHsep. -- VD 0 --20 Channel separation, CHsep. -- dB Channel separation, CHsep. -- dB 0 --40 --60 CH1 CH2 CH2 CH1 --80 --100 9 10.5 13.5 15 16.5 Ripple rejection ratio, SVRR -- dB --60 CH2 CH1 --100 10.5 12 15 13.5 --60 --80 16.5 50 100 SVRR -- Ta --40 --60 CH2 VNO -- VD CH1 --80 --100 --50 18 0 50 100 Ambient temperature, Ta -- °C VNO -- Ta 0.1 7 7 Noise, VNO -- mVrms Noise, VNO -- mVrms 0 --20 Externally applied voltage, VD -- V 0.1 CH1 CH2 CH2 CH1 0 --40 9 --40 Ambient temperature, Ta -- °C --20 --80 --20 --100 --50 18 SVRR -- VD 0 Ripple rejection ratio, SVRR -- dB 12 Externally applied voltage, VD -- V CHsep. -- Ta 5 3 2 5 3 2 CH2 CH1 CH2 CH1 0.01 9 10.5 12 13.5 15 Externally applied voltage, VD -- V 16.5 18 0.01 --50 0 50 Ambient temperature, Ta -- °C 100 No.A1567-28/30 LV49157V CHsep. -- f --20 --40 --60 CH1®CH2 CH2®CH1 --80 --100 10 2 3 5 7 100 2 3 5 7 1k 2 3 5 7 10k 2 3 Frequency, f -- Hz --20 --40 --60 CH2 --80 --100 10 5 7100k VNO -- Rg 0.1 SVRR -- fr 0 Ripple rejection ratio, SVRR -- dB Channel separation, CHsep. -- dB 0 CH1 2 3 5 7 100 2 3 5 7 1k 2 3 5 7 10k 2 3 Ripple frequency, fr -- Hz 5 7100k High & Low level -- Ta 3.0 5 3 2 CH2 High & Low level -- V Noise, VNO -- mVrms 7 2.5 2.0 High 1.5 Low CH1 5 70.01 2 3 5 70.01 2 3 5 70.01 2 3 Total harmonic distortion, THD+N -- % Hz 3 2 1 7 5 fin 3 =1 0k 2 Hz 0.1 7 5 fin = 1kHz 3 2 2 3 5 7 0.1 4 2 3 5 7 1 2 3 5 7 10 Output power, PO -- mW 2 3 5 7100 0 100 50 Ambient temperature, Ta -- °C THD+N -- PO 10 7 5 0.01 0.01 1.0 --50 5 710000 fin = 100 Total harmonic distortion, THD+N -- % 0.01 0.0001 2 3 THD+N -- f 10 7 5 3 2 1 7 5 3 2 CH2 0.1 7 5 CH1 3 2 0.01 10 2 3 5 7 100 2 3 5 7 1k 2 3 5 7 10k Frequency, f -- Hz 2 3 5 7100k Response -- f Response -- dB 2 0 --2 --4 --6 --8 0.01 2 3 5 70.1 2 3 57 1 2 3 5 7 10 2 3 5 7100 2 3 5 71000 Frequency, f -- kHz No.A1567-29/30 LV49157V ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PS No.A1567-30/30