HUF75542P3, HUF75542S3S TM Data Sheet June 2000 File Number 4845.2 75A, 80V, 0.014 Ohm, N-Channel, UltraFET Power MOSFETs Packaging JEDEC TO-220AB JEDEC TO-263AB SOURCE DRAIN GATE Features • Ultra Low On-Resistance - rDS(ON) = 0.014Ω, VGS = 10V GATE SOURCE DRAIN (FLANGE) DRAIN (FLANGE) • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.intersil.com HUF75542S3S HUF75542P3 • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol D Ordering Information PART NUMBER G S Absolute Maximum Ratings PACKAGE BRAND HUF75542P3 TO-220AB 75542P HUF75542S3S TO-263AB 75542S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF75542S3ST. TC = 25oC, Unless Otherwise Specified HUF75542P3, HUF75542S3S UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 80 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 80 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 75 58 Figure 4 A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 14, 15 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 1.54 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC NOTE: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000 SABER© is a Copyright of Analogy Inc. HUF75542P3, HUF75542S3S TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 80 - - V VDS = 75V, VGS = 0V - - 1 µA VDS = 70V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 0.012 0.014 Ω TO-220 and TO-263 - - 0.65 oC/W - - 62 oC/W - - 195 ns - 12.5 - ns - 117 - ns td(OFF) - 50 - ns tf - 80 - ns tOFF - - 195 ns - 150 180 nC - 80 96 nC - 5.7 7 nC THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 40V, ID = 75A VGS = 10V, RGS = 3.9Ω (Figures 18, 19) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 40V, ID = 75A, Ig(REF) = 1.0mA (Figures 13, 16, 17) Gate to Source Gate Charge Qgs - 15 - nC Gate to Drain "Miller" Charge Qgd - 33 - nC - 2750 - pF - 700 - pF - 250 - pF MIN TYP MAX UNITS ISD = 75A - - 1.25 V ISD = 37.5A - - 1.00 V trr ISD = 75A, dISD/dt = 100A/µs - - 102 ns QRR ISD = 75A, dISD/dt = 100A/µs - - 255 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS HUF75542P3, HUF75542S3S Typical Performance Curves POWER DISSIPATION MULTIPLIER 1.2 80 VGS = 10V ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 60 40 20 0.2 0 0 25 0 25 50 75 100 125 150 50 175 75 100 125 150 175 TC, CASE TEMPERATURE (oC) TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC , NORMALIZED THERMAL IMPEDANCE 1 0.1 PDM NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t1 t2 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 1000 IDM , PEAK CURRENT (A) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150 VGS = 10V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 10-1 100 101 HUF75542P3, HUF75542S3S Typical Performance Curves (Continued) 1000 SINGLE PULSE TJ = MAX RATED TC = 25oC 100 100µs 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] IAS , AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 500 100 STARTING TJ = 25oC STARTING TJ = 150oC 10 0.001 10 100 0.01 0.1 1 10 200 tAV, TIME IN AVALANCHE (ms) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 150 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 120 ID , DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 150 90 60 TJ = 175oC 30 TJ = 25oC VGS = 20V VGS = 10V VGS = 7V 120 VGS = 6V 90 VGS = 5V 60 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC TJ = -55oC 0 0 2 3 4 5 0 6 VGS , GATE TO SOURCE VOLTAGE (V) 2 4 FIGURE 8. SATURATION CHARACTERISTICS 2.5 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 2.0 1.5 VGS = 10V, ID = 75A 1.0 0.5 -80 3 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS NORMALIZED DRAIN TO SOURCE ON RESISTANCE 1 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 200 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE HUF75542P3, HUF75542S3S Typical Performance Curves (Continued) 10000 VGS = 0V, f = 1MHz ID = 250µA 1.1 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 1.0 0.9 0.8 -80 -40 0 40 80 120 160 CISS = CGS + CGD 1000 COSS ≅ CDS + CGD CRSS = CGD 100 0.1 200 1 TJ , JUNCTION TEMPERATURE (oC) 10 80 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VGS , GATE TO SOURCE VOLTAGE (V) 10 VDD = 40V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 50A ID = 25A 2 0 0 20 40 60 80 100 Qg, GATE CHARGE (nC) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG - VGS VDS IAS VDD VDD DUT 0V tP IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT 5 FIGURE 15. UNCLAMPED ENERGY WAVEFORMS HUF75542P3, HUF75542S3S Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + - VDD VGS = 10V VGS DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 6 10% 50% 50% PULSE WIDTH FIGURE 19. SWITCHING TIME WAVEFORM HUF75542P3, HUF75542S3S PSPICE Electrical Model .SUBCKT HUF75542P3 2 1 3 ; rev 15 Feb 2000 CA 12 8 4.4e-9 CB 15 14 4.2e-9 CIN 6 8 2.5e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 - IT 8 17 1 GATE 1 6 8 EVTEMP RGATE + 18 22 9 20 11 + 17 EBREAK 18 - 50 21 16 DBODY MWEAK 6 MMED MSTRO LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 5.5e-3 RGATE 9 20 1.0 RLDRAIN 2 5 10 RLGATE 1 9 26 RLSOURCE 3 7 11 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.3e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B EVTHRES + 19 8 RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD ESLC RDRAIN + LGATE DBREAK + RSLC2 ESG LDRAIN 2 5 1.0e-9 LGATE 1 9 2.6e-9 LSOURCE 3 7 1.1e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 87.2 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S2A S1A 12 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 14 13 13 8 - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*230),2.5))} .MODEL DBODYMOD D (IS = 2.5e-12 RS = 2.85e-3 XTI = 5.5 TRS1 = 2e-3 TRS2 = 1e-6 CJO = 3.2e-9 TT = 5.5e-8 M = 0.6) .MODEL DBREAKMOD D (RS = 2.9e-1 TRS1 = 1e-3 TRS2 = 1e-6) .MODEL DPLCAPMOD D (CJO = 3.4e-9 IS = 1e-30 M = 0.8 N = 10) .MODEL MMEDMOD NMOS (VTO = 3.06 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1) .MODEL MSTROMOD NMOS (VTO = 3.5 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.67 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10) .MODEL RBREAKMOD RES (TC1 =1.3e-3 TC2 = -9e-7) .MODEL RDRAINMOD RES (TC1 = 1.1e-2 TC2 = 2.5e-5) .MODEL RSLCMOD RES (TC1 = 4.5e-3 TC2 = 1e-5) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.5e-3 TC2 = -1.1e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.0 VOFF= -4.5) VON = -4.5 VOFF= -6.0) VON = -0.5 VOFF= 0.5) VON = 0.5 VOFF= -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 HUF75542P3, HUF75542S3S SABER Electrical Model REV 15 Feb 00 template huf75542p3 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (is = 2.5e-12, rs = 2.85e-3, xti = 5.5, trs1 = 2e-3, trs2 = 1e-6, cjo = 3.2e-9, tt = 5.5e-8, m = 0.6) dp..model dbreakmod = (rs = 2.9e-1, trs1 = 1e-3, trs2 = 1e-6) dp..model dplcapmod = (cjo = 3.4e-9, is = 1e-30, m = 0.8, nl = 10) m..model mmedmod = (type=_n, vto = 3.06, kp = 4.8, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.5, kp = 80, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.67, kp = 0.08, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -4.5) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -4.5, voff = -6.0) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.5) RSLC1 DRAIN 2 RLDRAIN 51 c.ca n12 n8 = 4.4e-9 c.cb n15 n14 = 4.2e-9 c.cin n6 n8 = 2.5e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RSLC2 ISCL RDRAIN 6 8 ESG i.it n8 n17 = 1 LGATE GATE 1 EVTHRES + 19 8 EVTEMP RGATE + 18 22 9 20 21 11 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -9e-7 res.rdrain n50 n16 = 5.5e-3, tc1 = 1.1e-2, tc2 = 2.5e-5 res.rgate n9 n20 = 1.0 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 26 res.rlsource n3 n7 = 11 res.rslc1 n5 n51 = 1e-6, tc1 = 4.5e-3, tc2 = 1e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.3e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -2.5e-3, tc2 = -1.1e-5 DBREAK 50 - + l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 2.6e-9 l.lsource n3 n7 = 1.1e-9 LDRAIN CIN 8 DBODY LSOURCE 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 87.2 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/230))** 2.5)) } } 8 SOURCE 3 HUF75542P3, HUF75542S3S SPICE Thermal Model th REV 15 Feb 00 JUNCTION T75542 CTHERM1 th 6 4.1e-3 CTHERM2 6 5 5.5e-3 CTHERM3 5 4 8.6e-3 CTHERM4 4 3 1.5e-2 CTHERM5 3 2 1.6e-2 CTHERM6 2 tl 6.5e-2 RTHERM1 CTHERM1 6 RTHERM1 th 6 2.0e-4 RTHERM2 6 5 3.5e-3 RTHERM3 5 4 2.5e-2 RTHERM4 4 3 9.0e-2 RTHERM5 3 2 1.6e-1 RTHERM6 2 tl 2.3e-1 RTHERM2 CTHERM2 5 SABER Thermal Model RTHERM3 CTHERM3 SABER thermal model t75542 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 4.1e-3 ctherm.ctherm2 6 5 = 5.5e-3 ctherm.ctherm3 5 4 = 8.6e-3 ctherm.ctherm4 4 3 = 1.5e-2 ctherm.ctherm5 3 2 = 1.6e-2 ctherm.ctherm6 2 tl = 6.5e-2 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 = 2.0e-4 rtherm.rtherm2 6 5 = 3.5e-3 rtherm.rtherm3 5 4 = 2.5e-2 rtherm.rtherm4 4 3 = 9.0e-2 rtherm.rtherm5 3 2 = 1.6e-1 rtherm.rtherm6 2 tl = 2.3e-1 } RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl 9 CASE HUF75542P3, HUF75542S3S TO-263AB SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE E A A1 H1 TERM. 4 D L2 L1 L 1 3 b b1 e c J1 e1 0.450 (11.43) TERM. 4 L3 b2 3 0.350 (8.89) 0.700 (17.78) 0.150 (3.81) 1 0.080 TYP (2.03) 0.062 TYP (1.58) MINIMUM PAD SIZE RECOMMENDED FOR SURFACE-MOUNTED APPLICATIONS 1.5mm DIA. HOLE INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A 0.170 0.180 4.32 4.57 A1 0.048 0.052 1.22 1.32 4, 5 b 0.030 0.034 0.77 0.86 4, 5 b1 0.045 0.055 1.15 1.39 4, 5 b2 0.310 7.88 2 c 0.018 0.022 0.46 0.55 4, 5 D 0.405 0.425 10.29 10.79 E 0.395 0.405 10.04 10.28 e 0.100 TYP 2.54 TYP 7 e1 0.200 BSC 5.08 BSC 7 H1 0.045 0.055 1.15 1.39 J1 0.095 0.105 2.42 2.66 L 0.175 0.195 4.45 4.95 L1 0.090 0.110 2.29 2.79 4, 6 L2 0.050 0.070 1.27 1.77 3 L3 0.315 8.01 2 NOTES: 1. These dimensions are within allowable dimensions of Rev. C of JEDEC TO-263AB outline dated 2-92. 2. L3 and b2 dimensions established a minimum mounting surface for terminal 4. 3. Solder finish uncontrolled in this area. 4. Dimension (without solder). 5. Add typically 0.002 inches (0.05mm) for solder plating. 6. L1 is the terminal length for soldering. 7. Position of lead to be measured 0.120 inches (3.05mm) from bottom of dimension D. 8. Controlling dimension: Inch. 9. Revision 10 dated 5-99. 4.0mm USER DIRECTION OF FEED 2.0mm TO-263AB 1.75mm C L 24mm TAPE AND REEL 24mm 16mm COVER TAPE 40mm MIN. ACCESS HOLE 30.4mm 13mm 330mm 100mm GENERAL INFORMATION 1. 800 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS. 10 24.4mm HUF75542P3, HUF75542S3S TO-220AB 3 LEAD JEDEC TO-220AB PLASTIC PACKAGE A INCHES E ØP A1 Q H1 TERM. 4 D 45o E1 D1 L1 b1 L b c MIN MAX MIN MAX NOTES A 0.170 0.180 4.32 4.57 - A1 0.048 0.052 1.22 1.32 - b 0.030 0.034 0.77 0.86 3, 4 b1 0.045 0.055 1.15 1.39 2, 3 c 0.014 0.019 0.36 0.48 2, 3, 4 D 0.590 0.610 14.99 15.49 - 4.06 - 10.41 - D1 - 0.160 E 0.395 0.410 E1 - 0.030 e 60o 1 2 e1 3 e J1 e1 MILLIMETERS SYMBOL H1 0.100 TYP 0.200 BSC 0.235 0.255 10.04 - 0.76 - 2.54 TYP 5 5.08 BSC 5 5.97 6.47 - J1 0.100 0.110 2.54 2.79 6 L 0.530 0.550 13.47 13.97 - L1 0.130 0.150 3.31 3.81 2 ØP 0.149 0.153 3.79 3.88 - Q 0.102 0.112 2.60 2.84 - NOTES: 1. These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AB outline dated 3-24-87. 2. Lead dimension and finish uncontrolled in L1. 3. Lead dimension (without solder). 4. Add typically 0.002 inches (0.05mm) for solder coating. 5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D. 6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D. 7. Controlling dimension: Inch. 8. Revision 2 dated 7-97. All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 11 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil Ltd. 8F-2, 96, Sec. 1, Chien-kuo North, Taipei, Taiwan 104 Republic of China TEL: 886-2-2515-8508 FAX: 886-2-2515-8369