HUF76107P3 Data Sheet October 1999 20A, 30V, 0.052 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs File Number 4382.5 Features • Logic Level Gate Drive These N-Channel power MOSFETs are manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products. • 20A, 30V • Ultra Low On-Resistance, rDS(ON) = 0.052Ω • Temperature Compensating PSPICE® Model • Temperature Compensating SABER© Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76107. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER HUF76107P3 PACKAGE TO-220AB BRAND D 76107P G S Packaging JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) 70 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc. 1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999. HUF76107P3 Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 20 10.5 10 Figure 4 A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 0.30 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg -40 to 150 oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 20A, VGS = 10V (Figure 9, 10) - 0.042 0.052 Ω ID = 10.5A, VGS = 5V (Figure 9) - 0.058 0.080 Ω ID = 10A, VGS = 4.5V (Figure 9) - 0.065 0.085 Ω - - 3.3 oC/W 62 oC/W THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC (Figure 3) Thermal Resistance Junction to Ambient RθJA TO-220 tON VDD = 15V, ID ≅ 10A, RL = 1.50Ω, VGS = 4.5V, RGS = 33Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time - - 120 ns - 14 - ns tr - 66 - ns td(OFF) - 16 - ns tf - 22 - ns tOFF - - 57 ns td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time 71 HUF76107P3 Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 75 ns - 18 - ns tr - 30 - ns td(OFF) - 62 - ns tf - 20 - ns tOFF - - 125 ns - 8.6 10.3 nC - 4.7 5.7 nC - 0.35 0.42 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 20A, RL =0.75Ω, VGS = 10V, RGS = 33Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V,ID ≅ 10.5A, RL = 1.43Ω Ig(REF) = 1.0mA (Figures 14, 19, 20) Gate to Source Gate Charge Qgs - 1.00 - nC Gate to Drain “Miller” Charge Qgd - 2.40 - nC - 315 - pF CAPACITANCE SPECIFICATIONS Input Capacitance CISS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Output Capacitance COSS - 170 - pF Reverse Transfer Capacitance CRSS - 30 - pF MIN TYP MAX UNITS ISD = 10.5A - - 1.25 V trr ISD = 10.5A, dISD/dt = 100A/µs - - 39 ns QRR ISD = 10.5A, dISD/dt = 100A/µs - - 49 nC Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS Typical Performance Curves Unless otherwise specified 25 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 72 150 20 VGS=10V 15 VGS=4.5V 10 5 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE HUF76107P3 Typical Performance Curves Unless otherwise specified (Continued) 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-2 10-3 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 500 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 VGS = 10V I 150 - TC = I25 125 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 FIGURE 4. PEAK CURRENT CAPABILITY 200 TJ = MAX RATED TC = 25oC ID, DRAIN CURRENT (A) 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 BVDSS MAX = 30V 100 IAS, AVALANCHE CURRENT (A) 200 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 10ms 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 1 0.001 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) 10 100 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 73 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76107P3 Typical Performance Curves Unless otherwise specified (Continued) 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 30 -40oC 25 VGS = 5V 25 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V 150oC 25oC 20 15 10 VGS = 4.5V 20 15 VGS = 4V 10 VGS = 3.5V 5 5 VDD = 15V 0 0 0 1 3 5 2 4 VGS, GATE TO SOURCE VOLTAGE (V) 6 VGS = 3V 0 2.00 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 80 ID = 12A 70 ID = 5A 60 50 40 30 2 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 4 1.75 5 6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 20A 1.50 1.25 1.00 0.75 0.50 -60 0 60 120 180 FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.15 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.1 NORMALIZED GATE THRESHOLD VOLTAGE 4 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 1.0 0.9 0.8 0.7 0.6 -60 3 FIGURE 8. SATURATION CHARACTERISTICS NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) ID = 20A 2 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS 90 1 0 60 120 TJ, JUNCTION TEMPERATURE (oC) 180 FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 74 ID = 250µA 1.10 1.05 1.00 0.95 0.90 -60 0 60 120 TJ , JUNCTION TEMPERATURE (oC) 180 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76107P3 Typical Performance Curves Unless otherwise specified (Continued) 10 600 C, CAPACITANCE (pF) 500 VGS , GATE TO SOURCE VOLTAGE (V) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 400 CISS 300 200 COSS 100 CRSS 0 0 5 15 10 25 20 VDD = 15V 8 6 4 2 0 30 WAVEFORMS IN DESCENDING ORDER: ID = 20A ID = 12A ID = 5A 0 4 2 6 8 10 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 100 100 VGS = 4.5V, VDD = 15V, ID = 10A, RL= 1.50Ω VGS = 10V, VDD = 15V, ID = 20A, RL= 0.75Ω tr 60 td(OFF) 40 td(OFF) 80 SWITCHING TIME (ns) SWITCHING TIME (ns) 80 tf 20 tr 60 tf 40 td(ON) 20 td(ON) 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 0 20 10 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT 75 FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76107P3 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10 VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 76 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORMS HUF76107P3 PSPICE Electrical Model SUBCKT HUF76107 2 1 3 ; REV June 1998 CA 12 8 4.2e-10 CB 15 14 4.9e-10 CIN 6 8 2.85e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DBREAK + RSLC2 5 51 ESLC 11 - EBREAK 11 7 17 18 35.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE EVTEMP RGATE + 18 22 9 20 GATE 1 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LDRAIN 2 5 1e-9 LGATE 1 9 3.61e-9 LSOURCE 3 7 3.61e-9 + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.7e-3 RGATE 9 20 3.39 RLDRAIN 2 5 10 RLGATE 1 9 36.1 RLSOURCE 3 7 36.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 30e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*50),7))} .MODEL DBODYMOD D (IS = 2.8e-13 IKF = 5 RS = 1.37e-2 TRS1 = 2e-4 TRS2 = 2e-6 CJO = 4.9e-10 TT = 2.88e-8 M = 3.9e-1 XTI =4.75 ) .MODEL DBREAKMOD D (RS = 2.5e-1 TRS1 = 9.94e-4 TRS2 = 9.12e-7) .MODEL DPLCAPMOD D (CJO = 3.2e-10 IS = 1e-30 N = 10 M = 7.4e-1) .MODEL MMEDMOD NMOS (VTO = 2.07 KP = 1.25 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.39) .MODEL MSTROMOD NMOS (VTO = 2.4 KP = 19.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.8 KP =1e-1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.9 RS=.1) .MODEL RBREAKMOD RES (TC1 = 9.94e-4 TC2 = 9.84e-8) .MODEL RDRAINMOD RES (TC1 = 3.9e-2 TC2 = 5.5e-5) .MODEL RSLCMOD RES (TC1 = 1e-4 TC2 = 3.2e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-12 TC2 = 6e-6) .MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -5.96e-6) .MODEL RVTEMPMOD RES (TC1 = -1.4e-3 TC2 = 1e-10) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.2 VOFF= -0.5) VON = -0.5 VOFF= -4.2) VON = -0.8 VOFF= 0.0) VON = 0.0 VOFF= -0.8) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 77 HUF76107P3 SABER Electrical Model nom temp=25 deg c 30v LL Ultrafet REV Junel 1998 template huf76107 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is=2.8e-13, xti=4.75, cjo=4.9e-10,tt=2.88e-8, m=3.9e-1) d..model dbreakmod = () d..model dplcapmod = (cjo=3.2e-10,is=1e-30,n=10,m=7.4e-1) m..model mmedmod = (type=_n,vto=2.07,kp=1.25,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.4,kp=19.5,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.8,kp=1e-1,is=1e-30, tox=1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.2,voff=-0.5) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-4.2) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.8,voff=0.0) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.0,voff=-0.8) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL c.ca n12 n8 = 4.2e-10 c.cb n15 n14 = 4.9e-10 c.cin n6 n8 = 2.85e-10 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 MWEAK DBODY EBREAK + 17 18 MMED MSTRO CIN 71 11 16 6 RLGATE l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 3.61e-9 l.lsource n3 n7 = 3.61e-9 DBREAK 50 - RDBODY - 8 LSOURCE 7 RSOURCE RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=9.94e-4,tc2=-9.84e-8 res.rdbody n71 n5 =1.37e-2, tc1=2e-4, tc2=2e-6 res.rdbreak n72 n5 =2.5e-1, tc1=9.94e-4, tc2=9.12e-7 res.rdrain n50 n16 = 3.7e-3, tc1=3.9e-2,tc2=5.5e-5 res.rgate n9 n20 = 3.39 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 36.1 res.rlsource n3 n7 = 36.1 res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=3.2e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 30e-3, tc1=1e-12,tc2=6e-6 res.rvtemp n18 n19 = 1, tc1=-1.4e-3,tc2=1e-10 res.rvthres n22 n8 = 1, tc1=-1.9e-3,tc2=-5.96e-6 S1A 12 S2A 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/50))**7 )) } } - 19 - IT 14 + + spe.ebreak n11 n7 n17 n18 = 35.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 78 RBREAK 15 14 13 VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76107P3 SPICE Thermal Model th JUNCTION REV June1998 HUF76107 CTHERM1 th 6 5.0e-5 CTHERM2 6 5 9.0e-4 CTHERM3 5 4 1.3e-3 CTHERM4 4 3 1.3e-3 CTHERM5 3 2 2.2e-2 CTHERM6 2 tl 7.9e-3 RTHERM1 RTHERM1 th 6 2.0e-4 RTHERM2 6 5 6.0e-3 RTHERM3 5 4 3.5e-2 RTHERM4 4 3 8.5e-1 RTHERM5 3 2 5.1e-1 RTHERM6 2 tl 1 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76107 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 5.0e-5 ctherm.ctherm2 6 5 = 9.0e-4 ctherm.ctherm3 5 4 = 1.3e-3 ctherm.ctherm4 4 3 = 1.3e-3 ctherm.ctherm5 3 2 = 2.2e-2 ctherm.ctherm6 2 tl = 7.9e-3 4 RTHERM4 CTHERM4 3 RTHERM5 rtherm.rtherm1 th 6 = 2.0e-4 rtherm.rtherm2 6 5 = 6.0e-3 rtherm.rtherm3 5 4 = 3.5e-2 rtherm.rtherm4 4 3 = 8.5e-1 rtherm.rtherm5 3 2 = 5.1e-1 rtherm.rtherm6 2 tl = 1 } CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 79