HUF76121D3, HUF76121D3S Data Sheet 20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. October 1999 File Number 4391.5 Features • Logic Level Gate Drive • 20A, 30V • Ultra Low On-Resistance, rDS(ON) = 0.023Ω • Temperature Compensating PSPICE® Model • Temperature Compensating SABER© Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76121. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER PACKAGE BRAND HUF76121D3 TO-251AA 76121D HUF76121D3S TO-252AA 76121D D G NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-252AA variant in tape and reel, e.g., HUF76121D3ST. S Packaging JEDEC TO-251AA JEDEC TO-252AA SOURCE DRAIN GATE DRAIN (FLANGE) 1 DRAIN (FLANGE) GATE SOURCE CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc. 1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999. HUF76121D3, HUF76121D3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 20 20 20 Figure 4 A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 0.6 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg -55 to 150 oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 20A, VGS = 10V (Figure 9, 10) - 0.017 0.023 Ω ID = 20A, VGS = 5V (Figure 9) - 0.021 0.030 Ω ID = 20A, VGS = 4.5V (Figure 9) - 0.023 0.033 Ω THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC (Figure 3) - - 1.66 oC/W Thermal Resistance Junction to Ambient RθJA TO-251AA, TO-252AA - - 100 oC/W tON VDD = 15V, ID ≅ 20A, RL = 0.75Ω, VGS = 4.5V, RGS = 11.0Ω (Figures 15, 21, 22) - - 275 ns - 18 - ns - 165 - ns td(OFF) - 18 - ns tf - 40 - ns tOFF - - 87 ns SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time 2 HUF76121D3, HUF76121D3S TA = 25oC, Unless Otherwise Specified (Continued) Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 85 ns - 6 - ns - 50 - ns td(OFF) - 45 - ns tf - 45 - ns tOFF - - 135 ns - 24 30 nC - 13 16 nC - 1.0 1.2 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 20A, RL = 0.75Ω, VGS = 10V, RGS = 12.0Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V, ID ≅ 20A, RL = 0.75Ω Ig(REF) = 1.0mA (Figures 14, 19, 20) Gate to Source Gate Charge Qgs - 2.40 - nC Gate to Drain “Miller” Charge Qgd - 7.40 - nC - 850 - pF - 465 - pF - 100 - pF MIN TYP MAX UNITS ISD = 20A - - 1.25 V trr ISD = 20A, dISD/dt = 100A/µs - - 58 ns QRR ISD = 20A, dISD/dt = 100A/µs - - 70 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS Typical Performance Curves 25 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 0 20 15 VGS = 10V 10 VGS = 4.5V 5 0 0 25 50 75 100 125 150 TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 3 175 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE HUF76121D3, HUF76121D3S Typical Performance Curves (Continued) 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 1000 IDM, PEAK CURRENT (A) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I 175 - TC = I25 150 VGS = 10V 100 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 300 TJ = MAX RATED TC = 25oC IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 500 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms BVDSS MAX = 30V 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 100 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 0.001 0.01 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 4 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76121D3, HUF76121D3S Typical Performance Curves (Continued) 75 75 -55oC VGS = 4.5V 25oC 60 45 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 175oC 30 15 60 VGS = 4V 45 30 VGS = 3.5V 15 VGS = 3V = 10V = 80µs PULSEVGS DURATION DUTY V CYCLE = 0.5% MAX GS = 5V VDD = 15V 0 0 0 1 3 4 2 VGS, GATE TO SOURCE VOLTAGE (V) 0 5 FIGURE 7. TRANSFER CHARACTERISTICS 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 20A NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), ON-STATE RESISTANCE (mΩ) 5 FIGURE 8. SATURATION CHARACTERISTICS 35 30 ID = 10A 25 ID = 1A 20 PULSE DURATION = 250µs, VGS = 10V, ID = 20A 1.4 1.2 1.0 0.8 0.6 15 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) -80 10 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. SOURCE TO DRAIN ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 VGS = VDS, ID = 250µA 1.0 0.8 0.6 NORMALIZED DRAIN TO SOURCE BREAKOWN VOLTAGE 1.2 NORMALIZED GATE THRESHOLD VOLTAGE 1 2 3 4 VDS, DRAIN TO SOURCE VOLTAGE (V) ID = 250µA 1.1 1.0 1.0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 5 -80 -40 0 40 80 0.12k 0.16k TJ , JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76121D3, HUF76121D3S Typical Performance Curves 10 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 900 VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 1200 (Continued) CISS 600 COSS 300 CRSS VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 20A ID = 10A ID = 1A 2 0 0 0 5 10 15 20 25 0 30 5 VDS , DRAIN TO SOURCE VOLTAGE (V) 10 15 Qg, GATE CHARGE (nC) 20 25 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 400 200 tr VGS = 10V, VDD = 15V, ID = 20A, RL = 0.75Ω 300 SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 20A, RL = 0.75Ω 200 tf 100 td(OFF) td(OFF) 150 tf 100 tr 50 td(ON) td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 0 FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT 6 FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76121D3, HUF76121D3S Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) IgREF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 7 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76121D3, HUF76121D3S PSPICE Electrical Model .SUBCKT HUF76121D 2 1 3 ; rev May 1998 CA 12 8 1.3e-9 CB 15 14 1.25e-9 CIN 6 8 7.5e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DBREAK + RSLC2 5 51 ESLC 11 - EBREAK 11 7 17 18 33.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LDRAIN 2 5 1e-9 LGATE 1 9 2.4e-9 LSOURCE 3 7 3.14e-9 + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.6e-3 RGATE 9 20 4 RLDRAIN 2 5 10 RLGATE 1 9 24 RLSOURCE 3 7 31.4 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 12.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*155),4))} .MODEL DBODYMOD D (IS = 3.5e-13 RS = 8.7e-3 TRS1 = 2.2e-3 TRS2 = 2e-6 CJO = 1.34e-9 TT = 2.8e-8 M = 0.4 XTI = 4.3 N = 0.95 IKF = 3.7) .MODEL DBREAKMOD D (RS = 1.3e-1 TRS1 = 2e-3 TRS2 = -2e-5) .MODEL DPLCAPMOD D (CJO = 7.7e-10 IS = 1e-30 N = 10 M = 0.63) .MODEL MMEDMOD NMOS (VTO = 1.9 KP = 3.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 4) .MODEL MSTROMOD NMOS (VTO = 2.23 KP = 55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.64 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 2e-2 TC2 = 2.4e-5) .MODEL RSLCMOD RES (TC1 = 5e-3 TC2 = 8e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -1.9e-3 TC2 = -5.5e-6) .MODEL RVTEMPMOD RES (TC1 = -1.2e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.5 VOFF= -3) VON = -3 VOFF= -5.5) VON = -1 VOFF= 1.8) VON = 1.8 VOFF= -1) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 8 HUF76121D3, HUF76121D3S SABER Electrical Model REV May 1998 template huf76121d n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 3.5e-13, xti = 4.3, cjo = 1.34e-9, tt = 2.8e-8, n = 0.95, m = 0.4) d..model dbreakmod = () d..model dplcapmod = (cjo = 7.7e-10, is = 1e-30, n = 10, m = 0.63) m..model mmedmod = (type=_n, vto = 1.9, kp = 3.5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.23, kp = 55, is = 1e-30, tox = 1) DPLCAP m..model mweakmod = (type=_n, vto = 1.64, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.5, voff = -3) 10 sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -5.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1, voff = 1.8) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 1.8, voff = -1) RSLC2 LDRAIN DRAIN 2 5 RSLC1 51 RLDRAIN RDBREAK 72 ISCL c.ca n12 n8 = 1.3e-9 c.cb n15 n14 = 1.25e-9 c.cin n6 n8 = 7.5e-10 EVTHRES + 19 8 + LGATE GATE 1 i.it n8 n17 = 1 RDRAIN 6 8 ESG d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 2.4e-9 l.lsource n3 n7 = 3.14e-9 EVTEMP RGATE + 18 22 9 20 21 DBODY EBREAK + 17 18 MSTRO - 8 LSOURCE 7 RSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/155))** 4)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 33.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 9 MWEAK MMED CIN 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 0 res.rdbody n71 n5 = 8.7e-3, tc1 = 2.2e-3, tc2 = 2e-6 res.rdbreak n72 n5 = 1.3e-1, tc1 = 2e-3, tc2 = -2e-5 res.rdrain n50 n16 = 2.6e-3, tc1 = 2e-2, tc2 = 2.4e-5 res.rgate n9 n20 = 4 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 24 res.rlsource n3 n7 = 31.4 res.rslc1 n5 n51 = 1e-6, tc1 = 5e-3, tc2 = 8e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 12.5e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.2e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -5.5e-6 DBREAK 50 - RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76121D3, HUF76121D3S SPICE Thermal Model th JUNCTION REV May 1998 HUF76121D CTHERM1 th 6 1.1e-3 CTHERM2 6 5 2.5e-3 CTHERM3 5 4 3.2e-3 CTHERM4 4 3 8.5e-3 CTHERM5 3 2 4.0e-2 CTHERM6 2 tl 2.2 RTHERM1 RTHERM1 th 6 1.8e-3 RTHERM2 6 5 1.5e-2 RTHERM3 5 4 2.4e-1 RTHERM4 4 3 4.5e-1 RTHERM5 3 2 3.4e-1 RTHERM6 2 tl 7.0e-2 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76121D 4 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.1e-3 ctherm.ctherm2 6 5 = 2.5e-3 ctherm.ctherm3 5 4 = 3.2e-3 ctherm.ctherm4 4 3 = 8.5e-3 ctherm.ctherm5 3 2 = 4.0e-2 ctherm.ctherm6 2 tl = 2.2 RTHERM4 CTHERM4 3 RTHERM5 rtherm.rtherm1 th 6 = 1.8e-3 rtherm.rtherm2 6 5 = 1.5e-2 rtherm.rtherm3 5 4 = 2.4e-1 rtherm.rtherm4 4 3 = 4.5e-1 rtherm.rtherm5 3 2 = 3.4e-1 rtherm.rtherm6 2 tl = 7.0e-2 } CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 10 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029