VS-ETF150Y65U Datasheet

VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
EMIPAK-2B PressFit Power Module
3-Levels Half-Bridge Inverter Stage, 150 A
FEATURES
• Trench IGBT technology
• FRED Pt® clamping diodes
• PressFit pins technology
• Exposed Al2O3 substrate with low thermal resistance
• Short circuit rated
• Square RBSOA
• Integrated thermistor
• Low internal inductances
EMIPAK-2B
(package example)
• Low switching loss
• PressFit pins locking technology. Patent # US.263.820 B2
• UL approved file E78996
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
PRODUCT SUMMARY
Q1 - Q4 IGBT STAGE
VCES
650 V
DESCRIPTION
VCE(ON) typical at IC = 100 A
1.72 V
VS-ETF150Y65U is an integrated solution for a multi level
inverter stage in a single package. The EMIPAK-2B package
is easy to use thanks to the PressFit pins and the exposed
substrate provides improved thermal performance. The
optimized layout also helps to minimize stray parameters,
allowing for better EMI performance.
Q2 - Q3 IGBT STAGE
VCES
650 V
VCE(ON) typical at IC = 150 A
1.75 V
IC at TC = 82 °C
150 A
Speed
8 kHz to 30 kHz
Package
EMIPAK-2B
Circuit
3-levels half bridge inverter stage







ABSOLUTE MAXIMUM RATINGS
PARAMETER
Operating junction temperature
SYMBOL
TEST CONDITIONS
MAX.
TJ
175
Storage temperature range
TStg
-40 to +150
RMS isolation voltage
VISOL
TJ = 25 °C, all terminals shorted, f = 50 Hz, t = 1 s
3500
UNITS
°C
V
Q1 - Q4 IGBT
Collector to emitter voltage
VCES
650
Gate to emitter voltage
VGES
20
Pulsed collector current
ICM
220
Clamped inductive load current
Continuous collector current
Power dissipation
ILM
(1)
IC
PD
220
TC = 25 °C
142
TC = 60 °C
121
TSINK = 60 °C
64
TC = 25 °C
417
TC = 60 °C
319
V
A
A
W

PATENT(S): www.vishay.com/patents 
This Vishay product is protected by one or more United States and International patents.
Revision: 16-Jun-16
Document Number: 95706
1
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
TEST CONDITIONS
MAX.
UNITS
Q2 - Q3 IGBT
Collector to emitter voltage
VCES
650
Gate to emitter voltage
VGES
20
Pulsed collector current
ICM
300
Clamped inductive load current
Continuous collector current
Power dissipation
ILM
(1)
IC
PD
V
A
300
TC = 25 °C
201
TC = 60 °C
171
TSINK = 60 °C
77
TC = 25 °C
600
TC = 60 °C
460
A
W
D5 - D6 CLAMPING DIODE
Repetitive peak reverse voltage
VRRM
Single pulse forward current
IFSM
Diode continuous forward current
Power dissipation
IF
PD
650
10 ms sine or 6 ms rectangular pulse, TJ = 25 °C
380
TC = 25 °C
95
TC = 60 °C
80
TSINK = 60 °C
45
TC = 25 °C
221
TC = 60 °C
169
10 ms sine or 6 ms rectangular pulse, TJ = 25 °C
250
TC = 25 °C
78
TC = 60 °C
66
V
A
W
D1 - D2 - D3 - D4 AP DIODE
Single pulse forward current
Diode continuous forward current
Power dissipation
IFSM
IF
PD
TSINK = 60 °C
43
TC = 25 °C
176
TC = 60 °C
135
A
W
Notes
• Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur.
(1) V
CC = 325 V, VGE = 15 V, L = 500 μH, Rg = 4.7 , TJ = 175 °C
ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNITS
Q1 - Q4 IGBT
Collector to emitter breakdown voltage
BVCES
Collector to emitter voltage
VCE(ON)
Gate threshold voltage
VGE(th)
Temperature coefficient of threshold
voltage
VGE(th)/TJ
VGE = 0 V, IC = 100 μA
650
-
-
VGE = 15 V, IC = 100 A
-
1.72
2.06
VGE = 15 V, IC = 100 A, TJ = 125 °C
-
1.94
-
5.0
6.3
8.4
VCE = VGE, IC = 1 mA (25 °C to 125 °C)
-
-19
-
mV/°C
-
71
-
S
V
VCE = VGE, IC = 3.3 mA
Forward transconductance
gfe
VCE = 20 V, IC = 100 A
Transfer characteristics
VGE
VCE = 20 V, IC = 100 A
-
10.5
-
VGE = 0 V, VCE = 650 V
-
0.2
100
VGE = 0 V, VCE = 650 V, TJ = 125 °C
-
60
-
VGE = ± 20 V, VCE = 0 V
-
-
± 600
Zero gate voltage collector current
ICES
Gate to emitter leakage current
IGES
V
μA
nA
Revision: 16-Jun-16
Document Number: 95706
2
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
Q2 - Q3 IGBT
Collector to emitter breakdown voltage
BVCES
Collector to emitter voltage
VCE(ON)
Gate threshold voltage
Temperature coefficient of threshold
voltage
Forward transconductance
Transfer characteristics
VGE(th)
VGE(th)/TJ
gfe
VGE
Zero gate voltage collector current
ICES
Gate to emitter leakage current
D5 - D6 CLAMPING DIODE
Cathode to anode blocking voltage
IGES
Forward voltage drop
VFM
Reverse leakage current
IRM
VBR
TEST CONDITIONS
MIN.
TYP.
MAX.
UNITS
650
5.0
1.75
1.99
5.9
2.17
8.4
V
VCE = VGE, IC = 1.0 mA (25 °C to 125 °C)
-
-19
-
mV/°C
VCE = 20 V, IC = 150 A
VCE = 20 V, IC = 150 A
VGE = 0 V, VCE = 650 V
VGE = 0 V, VCE = 650 V, TJ = 125 °C
VGE = ± 20 V, VCE = 0 V
-
102
9.8
0.2
100
-
100
± 600
S
V
650
-
2.3
1.6
0.2
110
3.15
75
-
IF = 100 A
-
2.14
3.18
IF = 100 A, TJ = 125 °C
-
1.79
-
MIN.
TYP.
MAX.
-
190
-
-
65
-
-
80
-
-
0.43
-
-
1.04
-
-
1.47
-
-
113
-
-
50
-
-
108
-
VGE = 0 V, IC = 100 μA
VGE = 15 V, IC = 150 A
VGE = 15 V, IC = 150 A, TJ = 125 °C
VCE = VGE, IC = 5.0 mA
IR = 100 μA
IF = 100 A
IF = 100 A, TJ = 125 °C
VR = 650 V
VR = 650 V, TJ = 125 °C
μA
nA
V
μA
D1 - D2 - D3 - D4 AP DIODE
Forward voltage drop
VFM
V
SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
UNITS
Q1 - Q4 IGBT (WITH D5 - D6 CLAMPING DIODE)
Total gate charge (turn-on)
Qg
Gate to emitter charge (turn-on)
Qge
Gate to collector charge (turn-on)
Qgc
Turn-on switching loss
EON
Turn-off switching loss
EOFF
Total switching loss
ETOT
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tr
td(off)
IC = 100 A
VCC = 400 V
VGE = 15 V
IC = 100 A
VCC = 325 V
VGE = 15 V
Rg = 4.7 
L = 500 μH (1)
tf
-
57
-
Turn-on switching loss
EON
-
0.61
-
Turn-off switching loss
EOFF
-
1.49
-
Total switching loss
ETOT
-
2.1
-
Turn-on delay time
td(on)
IC = 100 A
VCC = 325 V
VGE = 15 V
Rg = 4.7 
L = 500 μH
TJ = 125 °C (1)
-
113
-
-
51
-
-
117
-
VGE = 0 V
VCC = 30 V
f = 1 MHz
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
-
79
Input capacitance
Cies
-
6600
Output capacitance
Coes
-
340
Reverse transfer capacitance
Cres
-
180
Reverse bias safe operating area
RBSOA
TJ = 175 °C, IC = 220 A
VCC = 325 V, VP = 650 V
Rg = 4.7 , VGE = 15 V to 0 V
Short circuit safe operating area
SCSOA
Rg = 5.0 , VCC = 400 V, VP = 600 V
VGE = 15 V to 0, TJ = 150 °C
nC
mJ
ns
mJ
ns
pF
Fullsquare
-
-
5.5
μs
Revision: 16-Jun-16
Document Number: 95706
3
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
-
310
-
-
95
-
-
130
-
-
0.49
-
-
2.51
-
-
3.0
-
-
162
-
-
71
-
-
148
-
UNITS
Q2 - Q3 IGBT (WITH D2 - D3 AP DIODE)
Total gate charge (turn-on)
Qg
Gate to emitter charge (turn-on)
Qge
Gate to collector charge (turn-on)
Qgc
Turn-on switching loss
EON
Turn-off switching loss
EOFF
Total switching loss
ETOT
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tr
td(off)
IC = 150 A
VCC = 400 V
VGE = 15 V
IC = 150 A
VCC = 325 V
VGE = 15 V
Rg = 4.7 
L = 500 μH (1)
tf
-
64
-
Turn-on switching loss
EON
-
0.62
-
Turn-off switching loss
EOFF
-
3.18
-
Total switching loss
ETOT
-
3.8
-
Turn-on delay time
td(on)
IC = 150 A
VCC = 325 V
VGE = 15 V
Rg = 4.7 
L = 500 μH
TJ = 125 °C (1)
-
162
-
-
75
-
-
153
-
VGE = 0 V
VCC = 30 V
f = 1 MHz
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
-
81
-
Input capacitance
Cies
-
9900
-
Output capacitance
Coes
-
460
-
Reverse transfer capacitance
Cres
-
250
-
Reverse bias safe operating area
RBSOA
TJ = 175 °C, IC = 300 A
VCC = 325 V, VP = 650 V
Rg = 4.7 , VGE = 15 V to 0 V
Short circuit safe operating area
SCSOA
Rg = 5.0 , VCC = 400 V, VP = 600 V
VGE = 15 V to 0, TJ = 150 °C
nC
mJ
ns
mJ
ns
pF
Fullsquare
-
-
5.5
μs
-
55
-
ns
-
8.7
-
A
-
242
-
nC
ns
D5 - D6 CLAMPING DIODE
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
VR = 200 V
IF = 50 A
dl/dt = 500 A/μs
VR = 200 V
IF = 50 A
dl/dt = 500 A/μs, TJ = 125 °C
-
112
-
-
21
-
A
-
1177
-
nC
-
66
-
ns
-
11
-
A
-
363
-
nC
ns
D1 - D2 - D3 - D4 AP DIODE
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
VR = 200 V
IF = 50 A
dl/dt = 500 A/μs
VR = 200 V
IF = 50 A
dl/dt = 500 A/μs, TJ = 125 °C
-
130
-
-
21.3
-
A
-
1392
-
nC
Note
(1) Energy losses include “tail” and diode reverse recovery.
Revision: 16-Jun-16
Document Number: 95706
4
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
INTERNAL NTC - THERMISTOR SPECIFICATIONS
PARAMETER
SYMBOL
TEST CONDITIONS
VALUE
UNITS
R25
TC = 25 °C
5000
R100
TC = 100 °C
493 ± 5 %
R2 = R25 exp. [B25/50 (1/T2 - 1/(298.15 K))]
3375 ± 5 %
K
220
°C
Dissipation constant
2
mW/°C
Thermal time constant
8
s
Resistance
B-value
B25/50
Maximum operating temperature

THERMAL AND MECHANICAL SPECIFICATIONS
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
Q1 - Q4 IGBT - Junction to case thermal resistance (per switch)
-
-
0.36
Q2 - Q3 IGBT - Junction to case thermal resistance (per switch)
-
-
0.25
D5 - D6 Clamping diode - Junction to case thermal resistance (per diode)
RthJC
-
-
0.68
D1 - D2 - D3 - D4 AP diode - Junction to case thermal resistance (per diode)
-
-
0.85
Q1 - Q4 IGBT - Case to sink thermal resistance (per switch)
-
0.63
-
-
0.62
-
Q2 - Q3 IGBT - Case to sink thermal resistance (per switch)
D5 - D6 Clamping diode - Case to sink thermal resistance (per diode)
(1)
UNITS
°C/W
-
1.0
-
-
0.78
-
Case to sink thermal resistance per module
-
0.08
-
°C/W
Mounting torque (M4)
2
-
3
Nm
Weight
-
45
-
g
D1 - D2 - D3 - D4 AP diode - Case to sink thermal resistance (per diode)
RthCS
Note
(1) Mounting surface flat, smooth, and greased
Revision: 16-Jun-16
Document Number: 95706
5
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
160
300
275
TJ = 25 °C
250
120
225
TJ = 125 °C
200
TJ = 175 °C
175
100
IC (A)
IC (A)
VCE = 20 V
140
150
125
TJ = 125 °C
80
60
100
75
TJ = 25 °C
40
50
20
25
0
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5
4.5
6
7
8
VCE (V)
300
7.5
275
7.0
12
6.0
175
VGEth (V)
IC (A)
200
11
TJ = 25 °C
6.5
VGE = 12 V
VGE = 15 V
VGE = 18 V
225
10
Fig. 4 - IC vs VGE
Typical Q1 - Q4 Trench IGBT Transfer Characteristics
Fig. 1 - IC vs. VCE,
Typical Q1 - Q4 Trench IGBT Output Characteristics, VGE = 15 V
250
9
VGE (V)
150
125
100
5.0
TJ = 125 °C
4.5
4.0
VGE = 9 V
75
5.5
3.5
50
3.0
25
0
2.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
4.5
1
2
3
4
5
VCE (V)
IC (mA)
Fig. 2 - IC vs. VCE
Typical Q1 - Q4 Trench IGBT Output Characteristics, TJ = 125 °C
Fig. 5 - VGEth vs. IC
Typical Q1 - Q4 Trench IGBT Gate Threshold Voltage
10
TJ = 175 °C
160
1
140
120
TJ = 125 °C
0.1
DC
ICES (mA)
Allowable Case Temperature (°C)
180
100
80
0.01
0.001
60
TJ = 25 °C
40
0.0001
20
0.00001
0
0
20
40
60
80
100
120
140
160
IC - Continuous Collector Current (A)
Fig. 3 - Allowable Case Temperature vs. Continuous Collector Current,
Maximum Q1 - Q4 IGBT Continuous Collector Current vs.
Case Temperature
50
150
250
350
450
550
650
VCES (V)
Fig. 6 - ICES vs VCES
Typical Q1 - Q4 Trench IGBT Zero Gate Voltage Collector Current
Revision: 16-Jun-16
Document Number: 95706
6
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
3.5
1000
td(on)
Switching Time (ns)
3
Energy (mJ)
2.5
2
Eoff
1.5
1
Eon
td(off)
tr
tf
100
0.5
10
0
40
60
80
100
120
140
160
0
5
10
15
25
30
35
40
45
50
Rg (Ω)
IC (A)
Fig. 7 - Energy Loss vs. IC
(Typical Q1 - Q4 Trench IGBT Energy Loss vs. IC (with D5 - D6
Clamping Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 ,
VGE = ± 15 V, L = 500 μH
Fig. 10 - Switching Time vs. Rg
(Typical Q1 - Q4 Trench IGBT Switching Time vs. Rg (with D5 - D6
Clamping Diode)), TJ = 125 °C, VCC = 325 V, IC = 100 A,
VGE = ± 15 V, L = 500 μH
180
Allowable Case Temperature (°C)
1000
Switching Time (ns)
20
td(off)
100
tf
td(on)
tr
10
40
60
80
100
120
140
160
140
120
DC
100
80
60
40
20
0
0
160
10 20 30 40 50 60 70 80 90 100 110
IC (A)
IF - Continuous Forward Current (A)
Fig. 8 - Switching Time vs. IC
(Typical Q1 - Q4 Trench IGBT Switching Time vs. IC (with D5 - D6
Clamping Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 ,
VGE = ± 15 V, L = 500 μH
Fig. 11 - Allowable Case Temperature vs. Continuous Collector Current,
(Maximum D5 - D6 Diode Continuous Forward Current vs.
Case Temperature)
300
7
250
6
5
200
IF (A)
Energy (mJ)
Eon
4
3
TJ = 125 °C
Eoff
TJ = 175 °C
150
TJ = 25 °C
100
2
50
1
0
0
0
5
10
15
20
25
30
35
40
45
50
Rg (Ω)
Fig. 9 - Energy Loss vs. Rg
(Typical Q1 - Q4 Trench IGBT Energy Loss vs Rg (with D5 - D6
Clamping Diode)), TJ = 125 °C, VCC = 325 V, IC = 100 A,
VGE = ± 15 V, L = 500 μH
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VFM (V)
Fig. 12 - IF vs. VFM
(Typical D5 - D6 Clamping Diode Forward Characteristics)
Revision: 16-Jun-16
Document Number: 95706
7
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
10
24
TJ = 175 °C
22
1
20
125 °C
16
Irr (A)
IRM (mA)
18
TJ = 125 °C
0.1
0.01
0.001
14
12
10
8
TJ = 25 °C
25 °C
6
0.0001
4
2
0.00001
0
50
150
250
350
450
550
650
100
300
400
500
VR (V)
dIF/dt (A/μs)
Fig. 13 - IRM vs. VR
(Typical D5 - D6 Clamping Diode Reverse Leakage Current)
Fig. 15 - Irr vs. dIF/dt)
(Typical D5 - D6 Clamping Diode Reverse Recovery Current vs.
dIF/dt), Vrr = 200 V, IF = 50 A
180
160
140
120
125 °C
Qrr (nC)
trr (ns)
200
100
80
60
25 °C
40
20
100
200
300
400
500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
125 °C
25 °C
100
200
300
400
500
dIF/dt (A/μs)
dIF/dt (A/μs)
Fig. 14 - trr vs. dIF/dt
(Typical D5 - D6 Clamping Diode Reverse Recovery Time vs. dIF/dt),
Vrr = 200 V, IF = 50 A
Fig. 16 - Qrr vs. dIF/dt)
(Typical D5 - D6 Clamping Diode Reverse Recovery Charge vs.
dIF/dt)), Vrr = 200 V, IF = 50 A
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
0.1
0.50
0.20
0.10
0.05
0.02
0.01
DC
0.01
0.001
0.0001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 17 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (Q1 - Q4 Trench IGBT))
Revision: 16-Jun-16
Document Number: 95706
8
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
0.1
0.50
0.20
0.10
0.05
0.02
0.01
DC
0.01
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 18 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (D5 - D6 Clamping Diode))
180
275
TJ = 25 °C
250
225
TJ = 125 °C
IC (A)
200
TJ = 175 °C
175
150
125
100
75
50
25
0
0
0.5
1.0
1.5
2.0
2.5
3.0
Allowable Case Temperature (°C)
300
160
140
120
DC
100
80
60
40
20
0
0
3.5
30
60
90
120
150
180
210
240
VCE (V)
IC - Continuous Collector Current (A)
Fig. 19 - IC vs. VCE
(Typical Q2 - Q3 Trench IGBT Output Characteristics, VGE = 15 V)
Fig. 21 - Allowable Case Temperature vs. Continuous Collector Current,
(Maximum Q2 - Q3 IGBT Continuous Collector Current vs. Case
Temperature)
160
300
275
VGE = 12 V
VGE = 15 V
VGE = 18 V
225
200
120
100
175
IC (A)
IC (A)
VCE = 20 V
140
250
150
125
TJ = 125 °C
80
60
100
VGE = 9 V
75
TJ = 25 °C
40
50
20
25
0
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VCE (V)
Fig. 20 - IC vs. VCE (Typical Q2 - Q3 Trench IGBT Output
Characteristics, TJ = 125°C)
5
6
7
8
9
10
11
VGE (V)
Fig. 22 - IC vs. VGE
(Typical Q2 - Q3 Trench IGBT Transfer Characteristics)
Revision: 16-Jun-16
Document Number: 95706
9
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
7.5
1000
7.0
TJ = 25 °C
6.0
VGEth (V)
Switching Time (ns)
6.5
5.5
5.0
4.5
TJ = 125 °C
4.0
3.5
td(on)
100
td(off)
tf
tr
3.0
10
2.5
0
1
2
3
4
5
40
60
80
100
120
140
160
IC (mA)
IC (A)
Fig. 23 - VGEth vs. IC
(Typical Q2 - Q3 Trench IGBT Gate Threshold Voltage)
Fig. 26 - Switching Time vs. IC
(Typical Q2 - Q3 Trench IGBT Switching Time vs. IC (with D2 - D3
Antiparallel Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 ,
VGE = ± 15 V, L = 500 μH
10
10
TJ = 175 °C
9
1
8
TJ = 125 °C
7
Energy (mJ)
ICES (mA)
0.1
0.01
0.001
TJ = 25 °C
6
5
Eoff
4
3
Eon
2
0.0001
1
0.00001
50
150
250
350
450
550
0
650
0
5
10
15
20
VCES (V)
25
30
35
40
45
50
Rg (Ω)
Fig. 24 - ICES vs. VCES
(Typical Q2 - Q3 Trench IGBT Zero Gate Voltage Collector Current)
Fig. 27 - Energy Loss vs. Rg
(Typical Q2 - Q3 Trench IGBT Energy Loss vs. Rg (with D2 - D3
Antiparallel Diode)), TJ = 125 °C, VCC = 325 V, IC = 150 A,
VGE = ± 15 V, L = 500 μH
3.5
1000
td(on)
3
Switching Time (ns)
Energy (mJ)
2.5
Eoff
2
1.5
1
Eon
td(off)
tr
100
tf
0.5
0
40
60
80
100
120
140
160
10
0
5
10
15
20
25
30
35
40
45
50
IC (A)
Rg (Ω)
Fig. 25 - Energy Loss vs. IC
(Typical Q2 - Q3 Trench IGBT Energy Loss vs. IC (with D2 - D3
Antiparallel Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 ,
VGE = ± 15 V, L = 500 μH
Fig. 28 - Switching Time vs. Rg (Typical Q2 - Q3 Trench IGBT
Switching Time vs. Rg (with D2 - D3 Antiparallel Diode)),
TJ = 125 °C, VCC = 325 V, IC = 150 A, VGE = ± 15 V, L = 500 μH
Revision: 16-Jun-16
Document Number: 95706
10
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
150
180
160
TJ = 125 °C
125
140
125 °C
trr (ns)
IF (A)
100
TJ = 175 °C
75
TJ = 25 °C
50
120
100
80
25 °C
25
60
0
40
0
0.5
1.0
1.5
2.0
2.5
3.0
100
200
300
400
500
VFM (V)
dIF/dt (A/μs)
Fig. 29 - IF vs. VFM
(Typical D1 - D2 - D3 - D4 Antiparallel Diode Forward Characteristics)
Fig. 31 - trr vs. dIF/dt
(Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery Time
vs. dIF/dt), Vrr = 200 V, IF = 50 A
24
22
160
20
140
18
120
125 °C
16
DC
100
Irr (A)
Allowable Case Temperature (°C)
180
80
14
12
10
8
60
25 °C
6
40
4
20
2
0
0
0
10
20
30
40
50
60
70
80
100
200
300
400
500
IF - Continuous Forward Current (A)
dIF/dt (A/μs)
Fig. 30 - Allowable Case Temperature vs. Continuous Collector Current,
(Maximum D1- D2 - D3 - D4 Diode Continuous Forward Current vs.
Case Temperature)
Fig. 32 - Irr vs. dIF/dt
(Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery
Current vs. dIF/dt), Vrr = 200 V, IF = 50 A
1800
1600
1400
125 °C
Qrr (nC)
1200
1000
800
600
400
25 °C
200
0
100
200
300
400
500
dIF/dt (A/μs)
Fig. 33 - Qrr vs. dIF/dt
(Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery Charge vs. dIF/dt), Vrr = 200 V, IF = 50 A
Revision: 16-Jun-16
Document Number: 95706
11
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
0.1
0.50
0.20
0.10
0.05
0.02
0.01
DC
0.01
0.001
0.0001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 34 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (Q2 - Q3 Trench IGBT))
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
0.1
0.50
0.20
0.10
0.05
0.02
0.01
DC
0.01
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 35 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (D1 - D2 - D3 - D4 Antiparallel Diode))
ORDERING INFORMATION TABLE
Device code
VS-
ET
F
150
Y
65
U
1
2
3
4
5
6
7
1
-
Vishay Semiconductors product
2
-
Package indicator (ET = EMIPAK-2B)
3
-
Circuit configuration (F = 3-levels half-bridge inverter stage)
4
-
Current rating (150 = 150 A)
5
-
Switch die technology (Y = trench IGBT)
6
-
Voltage rating (65 = 650 V)
7
-
Diode die technology (U = ultrafast diode)
Revision: 16-Jun-16
Document Number: 95706
12
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ETF150Y65U
www.vishay.com
Vishay Semiconductors
CIRCUIT CONFIGURATION
1
1
1
1
1
Q1
D1
5
D5
6
Q2
D2
2
2
2
2
2
2
2
7
8
Q3
D3
9
4
4
4
4
4
4
D6
10
Q4
D4
11
12
13
Ntc
14
3
3
3
3
3
PACKAGE in millimeters
LINKS TO RELATED DOCUMENTS
Dimensions
www.vishay.com/doc?95559
Revision: 16-Jun-16
Document Number: 95706
13
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000