VS-ETF150Y65U www.vishay.com Vishay Semiconductors EMIPAK-2B PressFit Power Module 3-Levels Half-Bridge Inverter Stage, 150 A FEATURES • Trench IGBT technology • FRED Pt® clamping diodes • PressFit pins technology • Exposed Al2O3 substrate with low thermal resistance • Short circuit rated • Square RBSOA • Integrated thermistor • Low internal inductances EMIPAK-2B (package example) • Low switching loss • PressFit pins locking technology. Patent # US.263.820 B2 • UL approved file E78996 • Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 PRODUCT SUMMARY Q1 - Q4 IGBT STAGE VCES 650 V DESCRIPTION VCE(ON) typical at IC = 100 A 1.72 V VS-ETF150Y65U is an integrated solution for a multi level inverter stage in a single package. The EMIPAK-2B package is easy to use thanks to the PressFit pins and the exposed substrate provides improved thermal performance. The optimized layout also helps to minimize stray parameters, allowing for better EMI performance. Q2 - Q3 IGBT STAGE VCES 650 V VCE(ON) typical at IC = 150 A 1.75 V IC at TC = 82 °C 150 A Speed 8 kHz to 30 kHz Package EMIPAK-2B Circuit 3-levels half bridge inverter stage ABSOLUTE MAXIMUM RATINGS PARAMETER Operating junction temperature SYMBOL TEST CONDITIONS MAX. TJ 175 Storage temperature range TStg -40 to +150 RMS isolation voltage VISOL TJ = 25 °C, all terminals shorted, f = 50 Hz, t = 1 s 3500 UNITS °C V Q1 - Q4 IGBT Collector to emitter voltage VCES 650 Gate to emitter voltage VGES 20 Pulsed collector current ICM 220 Clamped inductive load current Continuous collector current Power dissipation ILM (1) IC PD 220 TC = 25 °C 142 TC = 60 °C 121 TSINK = 60 °C 64 TC = 25 °C 417 TC = 60 °C 319 V A A W PATENT(S): www.vishay.com/patents This Vishay product is protected by one or more United States and International patents. Revision: 16-Jun-16 Document Number: 95706 1 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL TEST CONDITIONS MAX. UNITS Q2 - Q3 IGBT Collector to emitter voltage VCES 650 Gate to emitter voltage VGES 20 Pulsed collector current ICM 300 Clamped inductive load current Continuous collector current Power dissipation ILM (1) IC PD V A 300 TC = 25 °C 201 TC = 60 °C 171 TSINK = 60 °C 77 TC = 25 °C 600 TC = 60 °C 460 A W D5 - D6 CLAMPING DIODE Repetitive peak reverse voltage VRRM Single pulse forward current IFSM Diode continuous forward current Power dissipation IF PD 650 10 ms sine or 6 ms rectangular pulse, TJ = 25 °C 380 TC = 25 °C 95 TC = 60 °C 80 TSINK = 60 °C 45 TC = 25 °C 221 TC = 60 °C 169 10 ms sine or 6 ms rectangular pulse, TJ = 25 °C 250 TC = 25 °C 78 TC = 60 °C 66 V A W D1 - D2 - D3 - D4 AP DIODE Single pulse forward current Diode continuous forward current Power dissipation IFSM IF PD TSINK = 60 °C 43 TC = 25 °C 176 TC = 60 °C 135 A W Notes • Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. (1) V CC = 325 V, VGE = 15 V, L = 500 μH, Rg = 4.7 , TJ = 175 °C ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNITS Q1 - Q4 IGBT Collector to emitter breakdown voltage BVCES Collector to emitter voltage VCE(ON) Gate threshold voltage VGE(th) Temperature coefficient of threshold voltage VGE(th)/TJ VGE = 0 V, IC = 100 μA 650 - - VGE = 15 V, IC = 100 A - 1.72 2.06 VGE = 15 V, IC = 100 A, TJ = 125 °C - 1.94 - 5.0 6.3 8.4 VCE = VGE, IC = 1 mA (25 °C to 125 °C) - -19 - mV/°C - 71 - S V VCE = VGE, IC = 3.3 mA Forward transconductance gfe VCE = 20 V, IC = 100 A Transfer characteristics VGE VCE = 20 V, IC = 100 A - 10.5 - VGE = 0 V, VCE = 650 V - 0.2 100 VGE = 0 V, VCE = 650 V, TJ = 125 °C - 60 - VGE = ± 20 V, VCE = 0 V - - ± 600 Zero gate voltage collector current ICES Gate to emitter leakage current IGES V μA nA Revision: 16-Jun-16 Document Number: 95706 2 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL Q2 - Q3 IGBT Collector to emitter breakdown voltage BVCES Collector to emitter voltage VCE(ON) Gate threshold voltage Temperature coefficient of threshold voltage Forward transconductance Transfer characteristics VGE(th) VGE(th)/TJ gfe VGE Zero gate voltage collector current ICES Gate to emitter leakage current D5 - D6 CLAMPING DIODE Cathode to anode blocking voltage IGES Forward voltage drop VFM Reverse leakage current IRM VBR TEST CONDITIONS MIN. TYP. MAX. UNITS 650 5.0 1.75 1.99 5.9 2.17 8.4 V VCE = VGE, IC = 1.0 mA (25 °C to 125 °C) - -19 - mV/°C VCE = 20 V, IC = 150 A VCE = 20 V, IC = 150 A VGE = 0 V, VCE = 650 V VGE = 0 V, VCE = 650 V, TJ = 125 °C VGE = ± 20 V, VCE = 0 V - 102 9.8 0.2 100 - 100 ± 600 S V 650 - 2.3 1.6 0.2 110 3.15 75 - IF = 100 A - 2.14 3.18 IF = 100 A, TJ = 125 °C - 1.79 - MIN. TYP. MAX. - 190 - - 65 - - 80 - - 0.43 - - 1.04 - - 1.47 - - 113 - - 50 - - 108 - VGE = 0 V, IC = 100 μA VGE = 15 V, IC = 150 A VGE = 15 V, IC = 150 A, TJ = 125 °C VCE = VGE, IC = 5.0 mA IR = 100 μA IF = 100 A IF = 100 A, TJ = 125 °C VR = 650 V VR = 650 V, TJ = 125 °C μA nA V μA D1 - D2 - D3 - D4 AP DIODE Forward voltage drop VFM V SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS UNITS Q1 - Q4 IGBT (WITH D5 - D6 CLAMPING DIODE) Total gate charge (turn-on) Qg Gate to emitter charge (turn-on) Qge Gate to collector charge (turn-on) Qgc Turn-on switching loss EON Turn-off switching loss EOFF Total switching loss ETOT Turn-on delay time td(on) Rise time Turn-off delay time Fall time tr td(off) IC = 100 A VCC = 400 V VGE = 15 V IC = 100 A VCC = 325 V VGE = 15 V Rg = 4.7 L = 500 μH (1) tf - 57 - Turn-on switching loss EON - 0.61 - Turn-off switching loss EOFF - 1.49 - Total switching loss ETOT - 2.1 - Turn-on delay time td(on) IC = 100 A VCC = 325 V VGE = 15 V Rg = 4.7 L = 500 μH TJ = 125 °C (1) - 113 - - 51 - - 117 - VGE = 0 V VCC = 30 V f = 1 MHz Rise time Turn-off delay time Fall time tr td(off) tf - 79 Input capacitance Cies - 6600 Output capacitance Coes - 340 Reverse transfer capacitance Cres - 180 Reverse bias safe operating area RBSOA TJ = 175 °C, IC = 220 A VCC = 325 V, VP = 650 V Rg = 4.7 , VGE = 15 V to 0 V Short circuit safe operating area SCSOA Rg = 5.0 , VCC = 400 V, VP = 600 V VGE = 15 V to 0, TJ = 150 °C nC mJ ns mJ ns pF Fullsquare - - 5.5 μs Revision: 16-Jun-16 Document Number: 95706 3 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. - 310 - - 95 - - 130 - - 0.49 - - 2.51 - - 3.0 - - 162 - - 71 - - 148 - UNITS Q2 - Q3 IGBT (WITH D2 - D3 AP DIODE) Total gate charge (turn-on) Qg Gate to emitter charge (turn-on) Qge Gate to collector charge (turn-on) Qgc Turn-on switching loss EON Turn-off switching loss EOFF Total switching loss ETOT Turn-on delay time td(on) Rise time Turn-off delay time Fall time tr td(off) IC = 150 A VCC = 400 V VGE = 15 V IC = 150 A VCC = 325 V VGE = 15 V Rg = 4.7 L = 500 μH (1) tf - 64 - Turn-on switching loss EON - 0.62 - Turn-off switching loss EOFF - 3.18 - Total switching loss ETOT - 3.8 - Turn-on delay time td(on) IC = 150 A VCC = 325 V VGE = 15 V Rg = 4.7 L = 500 μH TJ = 125 °C (1) - 162 - - 75 - - 153 - VGE = 0 V VCC = 30 V f = 1 MHz Rise time Turn-off delay time Fall time tr td(off) tf - 81 - Input capacitance Cies - 9900 - Output capacitance Coes - 460 - Reverse transfer capacitance Cres - 250 - Reverse bias safe operating area RBSOA TJ = 175 °C, IC = 300 A VCC = 325 V, VP = 650 V Rg = 4.7 , VGE = 15 V to 0 V Short circuit safe operating area SCSOA Rg = 5.0 , VCC = 400 V, VP = 600 V VGE = 15 V to 0, TJ = 150 °C nC mJ ns mJ ns pF Fullsquare - - 5.5 μs - 55 - ns - 8.7 - A - 242 - nC ns D5 - D6 CLAMPING DIODE Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr VR = 200 V IF = 50 A dl/dt = 500 A/μs VR = 200 V IF = 50 A dl/dt = 500 A/μs, TJ = 125 °C - 112 - - 21 - A - 1177 - nC - 66 - ns - 11 - A - 363 - nC ns D1 - D2 - D3 - D4 AP DIODE Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr VR = 200 V IF = 50 A dl/dt = 500 A/μs VR = 200 V IF = 50 A dl/dt = 500 A/μs, TJ = 125 °C - 130 - - 21.3 - A - 1392 - nC Note (1) Energy losses include “tail” and diode reverse recovery. Revision: 16-Jun-16 Document Number: 95706 4 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors INTERNAL NTC - THERMISTOR SPECIFICATIONS PARAMETER SYMBOL TEST CONDITIONS VALUE UNITS R25 TC = 25 °C 5000 R100 TC = 100 °C 493 ± 5 % R2 = R25 exp. [B25/50 (1/T2 - 1/(298.15 K))] 3375 ± 5 % K 220 °C Dissipation constant 2 mW/°C Thermal time constant 8 s Resistance B-value B25/50 Maximum operating temperature THERMAL AND MECHANICAL SPECIFICATIONS PARAMETER SYMBOL MIN. TYP. MAX. Q1 - Q4 IGBT - Junction to case thermal resistance (per switch) - - 0.36 Q2 - Q3 IGBT - Junction to case thermal resistance (per switch) - - 0.25 D5 - D6 Clamping diode - Junction to case thermal resistance (per diode) RthJC - - 0.68 D1 - D2 - D3 - D4 AP diode - Junction to case thermal resistance (per diode) - - 0.85 Q1 - Q4 IGBT - Case to sink thermal resistance (per switch) - 0.63 - - 0.62 - Q2 - Q3 IGBT - Case to sink thermal resistance (per switch) D5 - D6 Clamping diode - Case to sink thermal resistance (per diode) (1) UNITS °C/W - 1.0 - - 0.78 - Case to sink thermal resistance per module - 0.08 - °C/W Mounting torque (M4) 2 - 3 Nm Weight - 45 - g D1 - D2 - D3 - D4 AP diode - Case to sink thermal resistance (per diode) RthCS Note (1) Mounting surface flat, smooth, and greased Revision: 16-Jun-16 Document Number: 95706 5 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors 160 300 275 TJ = 25 °C 250 120 225 TJ = 125 °C 200 TJ = 175 °C 175 100 IC (A) IC (A) VCE = 20 V 140 150 125 TJ = 125 °C 80 60 100 75 TJ = 25 °C 40 50 20 25 0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5 4.5 6 7 8 VCE (V) 300 7.5 275 7.0 12 6.0 175 VGEth (V) IC (A) 200 11 TJ = 25 °C 6.5 VGE = 12 V VGE = 15 V VGE = 18 V 225 10 Fig. 4 - IC vs VGE Typical Q1 - Q4 Trench IGBT Transfer Characteristics Fig. 1 - IC vs. VCE, Typical Q1 - Q4 Trench IGBT Output Characteristics, VGE = 15 V 250 9 VGE (V) 150 125 100 5.0 TJ = 125 °C 4.5 4.0 VGE = 9 V 75 5.5 3.5 50 3.0 25 0 2.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 4.5 1 2 3 4 5 VCE (V) IC (mA) Fig. 2 - IC vs. VCE Typical Q1 - Q4 Trench IGBT Output Characteristics, TJ = 125 °C Fig. 5 - VGEth vs. IC Typical Q1 - Q4 Trench IGBT Gate Threshold Voltage 10 TJ = 175 °C 160 1 140 120 TJ = 125 °C 0.1 DC ICES (mA) Allowable Case Temperature (°C) 180 100 80 0.01 0.001 60 TJ = 25 °C 40 0.0001 20 0.00001 0 0 20 40 60 80 100 120 140 160 IC - Continuous Collector Current (A) Fig. 3 - Allowable Case Temperature vs. Continuous Collector Current, Maximum Q1 - Q4 IGBT Continuous Collector Current vs. Case Temperature 50 150 250 350 450 550 650 VCES (V) Fig. 6 - ICES vs VCES Typical Q1 - Q4 Trench IGBT Zero Gate Voltage Collector Current Revision: 16-Jun-16 Document Number: 95706 6 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors 3.5 1000 td(on) Switching Time (ns) 3 Energy (mJ) 2.5 2 Eoff 1.5 1 Eon td(off) tr tf 100 0.5 10 0 40 60 80 100 120 140 160 0 5 10 15 25 30 35 40 45 50 Rg (Ω) IC (A) Fig. 7 - Energy Loss vs. IC (Typical Q1 - Q4 Trench IGBT Energy Loss vs. IC (with D5 - D6 Clamping Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 , VGE = ± 15 V, L = 500 μH Fig. 10 - Switching Time vs. Rg (Typical Q1 - Q4 Trench IGBT Switching Time vs. Rg (with D5 - D6 Clamping Diode)), TJ = 125 °C, VCC = 325 V, IC = 100 A, VGE = ± 15 V, L = 500 μH 180 Allowable Case Temperature (°C) 1000 Switching Time (ns) 20 td(off) 100 tf td(on) tr 10 40 60 80 100 120 140 160 140 120 DC 100 80 60 40 20 0 0 160 10 20 30 40 50 60 70 80 90 100 110 IC (A) IF - Continuous Forward Current (A) Fig. 8 - Switching Time vs. IC (Typical Q1 - Q4 Trench IGBT Switching Time vs. IC (with D5 - D6 Clamping Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 , VGE = ± 15 V, L = 500 μH Fig. 11 - Allowable Case Temperature vs. Continuous Collector Current, (Maximum D5 - D6 Diode Continuous Forward Current vs. Case Temperature) 300 7 250 6 5 200 IF (A) Energy (mJ) Eon 4 3 TJ = 125 °C Eoff TJ = 175 °C 150 TJ = 25 °C 100 2 50 1 0 0 0 5 10 15 20 25 30 35 40 45 50 Rg (Ω) Fig. 9 - Energy Loss vs. Rg (Typical Q1 - Q4 Trench IGBT Energy Loss vs Rg (with D5 - D6 Clamping Diode)), TJ = 125 °C, VCC = 325 V, IC = 100 A, VGE = ± 15 V, L = 500 μH 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VFM (V) Fig. 12 - IF vs. VFM (Typical D5 - D6 Clamping Diode Forward Characteristics) Revision: 16-Jun-16 Document Number: 95706 7 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors 10 24 TJ = 175 °C 22 1 20 125 °C 16 Irr (A) IRM (mA) 18 TJ = 125 °C 0.1 0.01 0.001 14 12 10 8 TJ = 25 °C 25 °C 6 0.0001 4 2 0.00001 0 50 150 250 350 450 550 650 100 300 400 500 VR (V) dIF/dt (A/μs) Fig. 13 - IRM vs. VR (Typical D5 - D6 Clamping Diode Reverse Leakage Current) Fig. 15 - Irr vs. dIF/dt) (Typical D5 - D6 Clamping Diode Reverse Recovery Current vs. dIF/dt), Vrr = 200 V, IF = 50 A 180 160 140 120 125 °C Qrr (nC) trr (ns) 200 100 80 60 25 °C 40 20 100 200 300 400 500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 125 °C 25 °C 100 200 300 400 500 dIF/dt (A/μs) dIF/dt (A/μs) Fig. 14 - trr vs. dIF/dt (Typical D5 - D6 Clamping Diode Reverse Recovery Time vs. dIF/dt), Vrr = 200 V, IF = 50 A Fig. 16 - Qrr vs. dIF/dt) (Typical D5 - D6 Clamping Diode Reverse Recovery Charge vs. dIF/dt)), Vrr = 200 V, IF = 50 A ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 0.1 0.50 0.20 0.10 0.05 0.02 0.01 DC 0.01 0.001 0.0001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 17 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (Q1 - Q4 Trench IGBT)) Revision: 16-Jun-16 Document Number: 95706 8 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 0.1 0.50 0.20 0.10 0.05 0.02 0.01 DC 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 18 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (D5 - D6 Clamping Diode)) 180 275 TJ = 25 °C 250 225 TJ = 125 °C IC (A) 200 TJ = 175 °C 175 150 125 100 75 50 25 0 0 0.5 1.0 1.5 2.0 2.5 3.0 Allowable Case Temperature (°C) 300 160 140 120 DC 100 80 60 40 20 0 0 3.5 30 60 90 120 150 180 210 240 VCE (V) IC - Continuous Collector Current (A) Fig. 19 - IC vs. VCE (Typical Q2 - Q3 Trench IGBT Output Characteristics, VGE = 15 V) Fig. 21 - Allowable Case Temperature vs. Continuous Collector Current, (Maximum Q2 - Q3 IGBT Continuous Collector Current vs. Case Temperature) 160 300 275 VGE = 12 V VGE = 15 V VGE = 18 V 225 200 120 100 175 IC (A) IC (A) VCE = 20 V 140 250 150 125 TJ = 125 °C 80 60 100 VGE = 9 V 75 TJ = 25 °C 40 50 20 25 0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VCE (V) Fig. 20 - IC vs. VCE (Typical Q2 - Q3 Trench IGBT Output Characteristics, TJ = 125°C) 5 6 7 8 9 10 11 VGE (V) Fig. 22 - IC vs. VGE (Typical Q2 - Q3 Trench IGBT Transfer Characteristics) Revision: 16-Jun-16 Document Number: 95706 9 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors 7.5 1000 7.0 TJ = 25 °C 6.0 VGEth (V) Switching Time (ns) 6.5 5.5 5.0 4.5 TJ = 125 °C 4.0 3.5 td(on) 100 td(off) tf tr 3.0 10 2.5 0 1 2 3 4 5 40 60 80 100 120 140 160 IC (mA) IC (A) Fig. 23 - VGEth vs. IC (Typical Q2 - Q3 Trench IGBT Gate Threshold Voltage) Fig. 26 - Switching Time vs. IC (Typical Q2 - Q3 Trench IGBT Switching Time vs. IC (with D2 - D3 Antiparallel Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 , VGE = ± 15 V, L = 500 μH 10 10 TJ = 175 °C 9 1 8 TJ = 125 °C 7 Energy (mJ) ICES (mA) 0.1 0.01 0.001 TJ = 25 °C 6 5 Eoff 4 3 Eon 2 0.0001 1 0.00001 50 150 250 350 450 550 0 650 0 5 10 15 20 VCES (V) 25 30 35 40 45 50 Rg (Ω) Fig. 24 - ICES vs. VCES (Typical Q2 - Q3 Trench IGBT Zero Gate Voltage Collector Current) Fig. 27 - Energy Loss vs. Rg (Typical Q2 - Q3 Trench IGBT Energy Loss vs. Rg (with D2 - D3 Antiparallel Diode)), TJ = 125 °C, VCC = 325 V, IC = 150 A, VGE = ± 15 V, L = 500 μH 3.5 1000 td(on) 3 Switching Time (ns) Energy (mJ) 2.5 Eoff 2 1.5 1 Eon td(off) tr 100 tf 0.5 0 40 60 80 100 120 140 160 10 0 5 10 15 20 25 30 35 40 45 50 IC (A) Rg (Ω) Fig. 25 - Energy Loss vs. IC (Typical Q2 - Q3 Trench IGBT Energy Loss vs. IC (with D2 - D3 Antiparallel Diode)), TJ = 125 °C, VCC = 325 V, Rg = 4.7 , VGE = ± 15 V, L = 500 μH Fig. 28 - Switching Time vs. Rg (Typical Q2 - Q3 Trench IGBT Switching Time vs. Rg (with D2 - D3 Antiparallel Diode)), TJ = 125 °C, VCC = 325 V, IC = 150 A, VGE = ± 15 V, L = 500 μH Revision: 16-Jun-16 Document Number: 95706 10 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors 150 180 160 TJ = 125 °C 125 140 125 °C trr (ns) IF (A) 100 TJ = 175 °C 75 TJ = 25 °C 50 120 100 80 25 °C 25 60 0 40 0 0.5 1.0 1.5 2.0 2.5 3.0 100 200 300 400 500 VFM (V) dIF/dt (A/μs) Fig. 29 - IF vs. VFM (Typical D1 - D2 - D3 - D4 Antiparallel Diode Forward Characteristics) Fig. 31 - trr vs. dIF/dt (Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery Time vs. dIF/dt), Vrr = 200 V, IF = 50 A 24 22 160 20 140 18 120 125 °C 16 DC 100 Irr (A) Allowable Case Temperature (°C) 180 80 14 12 10 8 60 25 °C 6 40 4 20 2 0 0 0 10 20 30 40 50 60 70 80 100 200 300 400 500 IF - Continuous Forward Current (A) dIF/dt (A/μs) Fig. 30 - Allowable Case Temperature vs. Continuous Collector Current, (Maximum D1- D2 - D3 - D4 Diode Continuous Forward Current vs. Case Temperature) Fig. 32 - Irr vs. dIF/dt (Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery Current vs. dIF/dt), Vrr = 200 V, IF = 50 A 1800 1600 1400 125 °C Qrr (nC) 1200 1000 800 600 400 25 °C 200 0 100 200 300 400 500 dIF/dt (A/μs) Fig. 33 - Qrr vs. dIF/dt (Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery Charge vs. dIF/dt), Vrr = 200 V, IF = 50 A Revision: 16-Jun-16 Document Number: 95706 11 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 0.1 0.50 0.20 0.10 0.05 0.02 0.01 DC 0.01 0.001 0.0001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 34 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (Q2 - Q3 Trench IGBT)) ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 0.1 0.50 0.20 0.10 0.05 0.02 0.01 DC 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 35 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (D1 - D2 - D3 - D4 Antiparallel Diode)) ORDERING INFORMATION TABLE Device code VS- ET F 150 Y 65 U 1 2 3 4 5 6 7 1 - Vishay Semiconductors product 2 - Package indicator (ET = EMIPAK-2B) 3 - Circuit configuration (F = 3-levels half-bridge inverter stage) 4 - Current rating (150 = 150 A) 5 - Switch die technology (Y = trench IGBT) 6 - Voltage rating (65 = 650 V) 7 - Diode die technology (U = ultrafast diode) Revision: 16-Jun-16 Document Number: 95706 12 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ETF150Y65U www.vishay.com Vishay Semiconductors CIRCUIT CONFIGURATION 1 1 1 1 1 Q1 D1 5 D5 6 Q2 D2 2 2 2 2 2 2 2 7 8 Q3 D3 9 4 4 4 4 4 4 D6 10 Q4 D4 11 12 13 Ntc 14 3 3 3 3 3 PACKAGE in millimeters LINKS TO RELATED DOCUMENTS Dimensions www.vishay.com/doc?95559 Revision: 16-Jun-16 Document Number: 95706 13 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000