VS-ENQ030L120S www.vishay.com Vishay Semiconductors EMIPAK-1B PressFit Power Module Neutral Point Clamp Topology, 30 A FEATURES • Ultrafast Trench IGBT technology • HEXFRED® and silicon carbide diode technology • PressFit pins technology • Exposed Al2O3 substrate with low thermal resistance • Low internal inductances • PressFit pins locking technology. Patent # US.263.820 B2 • UL approved file E78996 EMIPAK-1B (package example) • Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 DESCRIPTION PRODUCT SUMMARY TRENCH IGBT 1200 V STAGE VCES 1200 V VCE(ON) typical at IC = 30 A 2.12 V IC at TC = 102 °C 30 A TRENCH IGBT 600 V STAGE VCES 600 V VCE(ON) typical at IC = 30 A 1.42 V IC at TC = 106 °C 30 A Speed 8 kHz to 30 kHz Package EMIPAK-1B Circuit 3-levels neutral point clamp topology VS-ENQ030L120S is an integrated solution for a neutral point clamp topology in a single package. The EMIPAK-1B package is easy to use thanks to the PressFit pins and the exposed substrate provides improved thermal performance. The optimized layout also helps to minimize stray parameters, allowing for better EMI performance. ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL TEST CONDITIONS MAX. TJ 150 Storage temperature range TStg -40 to +150 RMS isolation voltage VISOL Operating junction temperature TJ = 25 °C, all terminals shorted, f = 50 Hz, t = 1 s 3500 UNITS °C V Q1 - Q4 TRENCH IGBT 1200 V Collector to emitter voltage VCES 1200 Gate to emitter voltage VGES ± 30 ICM 120 ILM (1) 120 Pulsed collector current Clamped inductive load current Continuous drain current Power dissipation IC PD TC = 25 °C 61 TC = 80 °C 40 TSINK = 80 °C 21 TC = 25 °C 216 TC = 80 °C 121 V A A W PATENT(S): www.vishay.com/patents This Vishay product is protected by one or more United States and International patents. Revision: 16-Jun-16 Document Number: 94684 1 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL TEST CONDITIONS MAX. UNITS Q2 - Q3 TRENCH IGBT 600 V Collector to emitter voltage VCES 600 Gate to emitter voltage VGES ± 20 Pulsed collector current ICM 130 ILM Clamped inductive load current (2) IC Power dissipation PD A 130 TC = 25 °C Continuous collector current V 64 TC = 80 °C 42 TSINK = 80 °C 25 TC = 25 °C 174 TC = 80 °C 97 10 ms sine or 6 ms rectangular pulse, TJ = 25 °C 180 TC = 25 °C 46 A W D1 - D4 HEXFRED ANTIPARALLEL DIODE Single pulse forward current Diode continuous forward current Power dissipation IFSM IF PD TC = 80 °C 30 TSINK = 80 °C 17 TC = 25 °C 187 TC = 80 °C 105 10 ms sine or 6 ms rectangular pulse, TJ = 25 °C 150 A A W D2 - D3 SILICON CARBIDE ANTIPARALLEL DIODE Single pulse forward current Diode continuous forward current Power dissipation IFSM IF PD TC = 25 °C 40 TC = 80 °C 28 TSINK = 80 °C 20 TC = 25 °C 140 TC = 80 °C 79 A A W Notes • Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. (1) V CC = 600 V, VGE = 15 V, L = 500 μH, Rg = 4.7 , TJ = 150 °C (2) V CC = 300 V, VGE = 15 V, L = 500 μH, Rg = 4.7 , TJ = 150 °C ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNITS 1200 - - VGE = 15 V, IC = 30 A - 2.12 2.52 VGE = 15 V, IC = 30 A, TJ = 125 °C - 2.31 - 2.6 4.6 6.6 - - 14 - mV/°C Q1 - Q4 TRENCH IGBT 1200 V Collector to emitter breakdown voltage BVCES Collector to emitter voltage VCE(ON) Gate threshold voltage VGE(th) Temperature coefficient of threshold voltage VGE(th)/TJ VGE = 0 V, IC = 100 μA VCE = VGE, IC = 1.0 mA VCE = VGE, IC = 1 mA (25 °C to 125 °C) V Forward transconductance gfe VCE = 20 V, IC = 30 A - 36 - S Transfer characteristics VGE VCE = 20 V, IC = 30 A - 7.1 - V Zero gate voltage collector current ICES VGE = 0 V, VCE = 1200 V - 0.001 0.23 VGE = 0 V, VCE = 1200 V, TJ = 125 °C - 0.5 - Gate to emitter leakage current IGES VGE = ± 30 V, VCE = 0 V - - ± 200 mA nA Revision: 16-Jun-16 Document Number: 94684 2 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNITS 600 - - VGE = 15 V, IC = 30 A - 1.42 1.87 VGE = 15 V, IC = 30 A, TJ = 125 °C - 1.56 - 3.6 5.6 7.1 VCE = VGE, IC = 1 mA (25 °C to 125 °C) - -17 - mV/°C Q2 - Q3 TRENCH IGBT 600 V Collector to emitter breakdown voltage BVCES Collector to emitter voltage VCE(ON) Gate threshold voltage VGE(th) Temperature coefficient of threshold voltage VGE(th)/TJ VGE = 0 V, IC = 150 μA VCE = VGE, IC = 1.4 mA V Forward transconductance gfe VCE = 20 V, IC = 30 A - 24 - S Transfer characteristics VGE VCE = 20 V, IC = 30 A - 10 - V Zero gate voltage collector current ICES VGE = 0 V, VCE = 600 V - 0.0003 0.23 VGE = 0 V, VCE = 600 V, TJ = 125 °C - 0.028 - Gate to emitter leakage current IGES VGE = ± 20 V, VCE = 0 V - - ± 200 nA IF = 20 A - 2.42 3.18 V IF = 20 A, TJ = 125 °C - 2.32 - IF = 20 A - 1.54 1.8 IF = 20 A TJ = 125 °C - 1.86 - MIN. TYP. MAX. mA D1 - D4 ANTIPARALLEL DIODE Forward voltage drop VFM D2 - D3 ANTIPARALLEL DIODE Forward voltage drop VFM V SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS UNITS Q1 - Q4 TRENCH IGBT (WITH FREEWHEELING D1 - D4 ANTIPARALLEL DIODE) Total gate charge (turn-on) Qg IC = 30 A - 157 - Gate to emitter charge (turn-on) Qge VCC = 600 V - 21 - Gate to collector charge (turn-on) Qgc VGE = 15 V - 69 - Turn-on switching loss EON - 0.52 - Turn-off switching loss EOFF Total switching loss ETOT Turn-on delay time td(on) Rise time Turn-off delay time Fall time tr td(off) IC = 30 A VCC = 600 V VGE = 15 V Rg = 4.7 L = 500 μH (1) - 0.9 - - 1.42 - - 93 - - 39 - - 133 - tf - 156 - Turn-on switching loss EON - 0.64 - Turn-off switching loss EOFF - 1.61 - Total switching loss ETOT Turn-on delay time td(on) Rise time Turn-off delay time Fall time tr td(off) tf Input capacitance Cies Output capacitance Coes Reverse transfer capacitance Cres Reverse bias safe operating area IC = 30 A VCC = 600 V VGE = 15 V Rg = 4.7 L = 500 μH TJ = 125 °C (1) RBSOA VGE = 0 V VCC = 30 V f = 1 MHz TJ = 150 °C, IC = 120 A, VCC = 600 V, VP = 1200 V, Rg = 4.7 , VGE = 15 V to 0 V nC mJ ns mJ 2.24 - 93 - - 39 - - 136 - - 193 - - 3338 - - 124 - - 75 - ns pF Fullsquare Revision: 16-Jun-16 Document Number: 94684 3 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNITS Q2 - Q3 TRENCH IGBT (WITH FREEWHEELING EXTERNAL TO-247 DIODE DISCRETE 30ETH06) Total gate charge (turn-on) Qg IC = 48 A - 95 - Gate to emitter charge (turn-on) Qge VCC = 400 V - 28 - Gate to collector charge (turn-on) Qgc VGE = 15 V - 35 - Turn-on switching loss EON - 0.23 - Turn-off switching loss EOFF - 0.26 - Total switching loss ETOT VCC = 300 V - 0.49 - Turn-on delay time td(on) VGE = 15 V Rg = 4.7 L = 500 μH (1) - 70 - - 31 - - 91 - Rise time Turn-off delay time Fall time tr td(off) IC = 30 A tf - 87 - Turn-on switching loss EON - 0.33 - Turn-off switching loss EOFF - 0.48 - Total switching loss ETOT - 0.61 - Turn-on delay time td(on) - 70 - - 31 - - 96 - - 117 - - 3025 - - 245 - - 90 - Rise time Turn-off delay time Fall time tr td(off) tf Input capacitance Cies Output capacitance Coes Reverse transfer capacitance Cres Reverse bias safe operating area IC = 30 A VCC = 300 V VGE = 15 V Rg = 4.7 L = 500 μH TJ = 125 °C (1) RBSOA VGE = 0 V VCC = 30 V f = 1 MHz TJ = 150 °C, IC = 130 A VCC = 300 V, VP = 600 V Rg = 4.7 , VGE = 15 V to 0 V nC mJ ns mJ ns pF Fullsquare D1 - D4 ANTIPARALLEL DIODE Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr VR = 400 V IF = 20 A dl/dt = 500 A/μs - 103 - ns - 16 - A - 800 - nC VR = 400 V IF = 20 A dl/dt = 500 A/μs, TJ = 125 °C - 135 - ns - 21 - A - 1412 - nC VR = 200 V IF = 20 A dl/dt = 500 A/μs - 30 - ns - 4.8 - A - 73 - nC - 31 - ns D2 - D3 ANTIPARALLEL DIODE Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr Diode reverse recovery time trr Diode peak reverse current Irr Diode recovery charge Qrr VR = 200 V IF = 20 A dl/dt = 500 A/μs, TJ = 125 °C - 5 - A - 78 - nC Note (1) Energy losses include “tail” and diode reverse recovery. Revision: 16-Jun-16 Document Number: 94684 4 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors INTERNAL NTC - THERMISTOR SPECIFICATIONS PARAMETER SYMBOL TEST CONDITIONS VALUE UNITS R25 TC = 25 °C 5000 R100 TC = 100 °C 493 ± 5 % R2 = R25 exp. [B25/50 (1/T2 - 1/(298.15 K))] 3375 ± 5 % K 220 °C Dissipation constant 2 mW/°C Thermal time constant 8 s Resistance B-value B25/50 Maximum operating temperature THERMAL AND MECHANICAL SPECIFICATIONS PARAMETER SYMBOL MIN. TYP. MAX. Q1 - Q4 TRENCH IGBT 1200 V - Junction to case thermal resistance (per switch) - - 0.58 Q2 - Q3 TRENCH IGBT 600 V- Junction to case thermal resistance (per switch) - - 0.72 RthJC D1 - D4 AP diode - Junction to case thermal resistance (per diode) - - 0.67 D2 - D3 AP diode - Junction to case thermal resistance (per diode) - - 0.89 Q1 - Q4 TRENCH IGBT 1200 V - Case to sink thermal resistance (per switch) - 0.75 - Q2 - Q3 TRENCH IGBT 600 V - Case to sink thermal resistance (per switch) UNITS °C/W - 0.77 - - 0.78 - D2 - D3 AP diode - Case to sink thermal resistance (per diode) - 0.65 - Case to sink thermal resistance (per module) - 0.1 - Mounting torque (M4) 2 - 3 Nm Weight - 28 - g RthCS (1) D1 - D4 AP diode - Case to sink thermal resistance (per diode) Note (1) Mounting surface flat, smooth, and greased 60 60 55 55 50 50 TJ = 25 °C TJ = 125 °C TJ = 150 °C IC (A) 40 35 30 25 40 VGE = 9 V VGE = 12 V 35 VGE = 15 V 30 VGE = 18 V 45 IC (A) 45 25 20 20 15 15 10 10 5 5 0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VCE (V) VCE (V) Fig. 1 - Typical Q1 - Q4 Trench IGBT 1200 V Output Characteristics VGE = 15 V Fig. 2 - Typical Q1 - Q4 Trench IGBT 1200 V Output Characteristics TJ = 125 °C Revision: 16-Jun-16 Document Number: 94684 5 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S Vishay Semiconductors 10 160 140 TJ = 150 °C 1 120 TJ = 125 °C DC 100 ICES (mA) Allowable Case Temperature (°C) www.vishay.com 80 60 0.1 0.01 40 TJ = 25 °C 0.001 20 0 0 10 20 30 40 50 60 0.0001 100 200 300 400 500 600 700 800 900 1000 1100 1200 70 IC - Continuous Collector Current (A) VCES (V) Fig. 6 - Typical Q1 - Q4 Trench IGBT 1200 V Zero Gate Voltage Collector Current Fig. 3 - Maximum Q1 - Q4 Trench IGBT 1200 V Continuous Collector Current vs. Case Temperature 60 3.5 VCE = 20 V 55 3.0 50 45 2.5 Energy (mJ) IC (A) 40 35 TJ = 125 °C 30 25 20 TJ = 25 °C 15 10 Eoff 2.0 1.5 1.0 Eon 0.5 5 0 0 4.0 5.0 6.0 7.0 8.0 9.0 0 10 20 30 VGE (V) 50 60 70 Fig. 7 - Typical Q1 - Q4 Trench IGBT 1200 V Energy Loss vs. IC (with D1 - D4 Freewheeling Diode), TJ = 125 °C, VCC = 600 V, Rg = 4.7 , VGE = 15 V, L = 500 μH Fig. 4 - Typical Q1 - Q4 Trench IGBT 1200 V Transfer Characteristics 5.5 1000 5.0 Switching Time (ns) TJ = 25 °C 4.5 VGEth (V) 40 IC (A) 4.0 3.5 TJ = 125 °C 3.0 tf td(off) 100 td(on) tr 2.5 2.0 10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 10 20 30 40 50 60 70 IC (mA) IC (A) Fig. 5 - Typical Q1 - Q4 Trench IGBT 1200 V Gate Threshold Voltage Fig. 8 - Typical Q1 - Q4 Trench IGBT 1200 V Switching Time vs. IC (with D1 - D4 Freewheeling Diode) TJ = 125 °C, VCC = 600 V, Rg = 4.7 , VGE = 15 V, L = 500 μH Revision: 16-Jun-16 Document Number: 94684 6 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors 160 Allowable Case Temperature (°C) 3.5 Energy (mJ) 3.0 2.5 Eon 2.0 1.5 Eoff 1.0 0.5 0 5 140 120 100 80 60 40 20 0 10 15 20 25 30 35 40 45 50 55 0 10 20 30 40 50 60 Rg (Ω) IF - Continuous Forward Current (A) Fig. 9 - Typical Q1 - Q4 Trench IGBT 1200 V Energy Loss vs. Rg (with D1 - D4 Freewheeling Diode) TJ = 125 °C, VCC = 600 V, IC = 30 A, VGE = 15 V, L = 500 μH Fig. 12 - Maximum D1 - D4 Antiparallel Diode Forward Current vs. Case Temperature 1000 270 250 230 td(off) 210 trr (ns) Switching Time (ns) td(on) tf 100 tr 190 125 °C 170 15 150 130 25 °C 110 90 10 0 5 10 15 20 100 25 30 35 40 45 50 55 200 300 400 500 Rg (Ω) dIF/dt (A/μs) Fig. 10 - Typical Q1 - Q4 Trench IGBT 1200 V Switching Time vs. Rg (with D1 - D4 Freewheeling Diode) TJ = 125 °C, VCC = 600 V, IC = 30 A, VGE = 15 V, L = 500 μH Fig. 13 - Typical D1 - D4 Antiparallel Diode Reverse Recovery Time vs. dIF/dt Vrr = 400 V, IF = 20 A 60 24 22 50 5 20 18 TJ = 125 °C TJ = 150 °C 30 Irr (A) IF (A) 40 125 °C 16 14 12 20 10 25 °C 8 10 TJ = 25 °C 6 0 4 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 100 200 300 400 500 VFM (V) dIF/dt (A/μs) Fig. 11 - Typical D1 - D4 Antiparallel Diode Forward Characteristics Fig. 14 - Typical D1 - D4 Antiparallel Diode Reverse Recovery Current vs. dIF/dt Vrr = 400 V, IF = 20 A Revision: 16-Jun-16 Document Number: 94684 7 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors 1700 1500 125 °C Qrr (nC) 1300 1100 900 700 25 °C 500 300 100 200 300 400 500 dIF/dt (A/μs) Fig. 15 - Typical D1 - D4 Antiparallel Diode Reverse Recovery Charge vs. dIF/dt Vrr = 400 V, IF = 20 A ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 0. 0.1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 DC 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 16 - Maximum Thermal Impedance ZthJC Characteristics (Q1 - Q4 Trench IGBT 1200 V) ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 0. 0.1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 DC 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 17 - Maximum Thermal Impedance ZthJC Characteristics (D1 - D4 Antiparallel Diode) Revision: 16-Jun-16 Document Number: 94684 8 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors 60 55 60 50 50 45 45 40 40 30 ICE (A) TJ = 25 °C TJ = 125 °C TJ = 150 °C 35 IC (A) VCE = 20 V 55 25 TJ = 125 °C 35 30 25 20 2 20 15 15 10 10 5 5 TJ = 25 °C 0 0 0 0.5 1 1.5 2 2.5 3 5 6 7 8 9 10 11 12 13 VCE (V) VGE (V) Fig. 18 - Typical Q2 - Q3 Trench IGBT 600 V Output Characteristics VGE = 15 V Fig. 21 - Typical Q2 - Q3 Trench IGBT 600 V Transfer Characteristics 6.5 60 55 6.0 TJ = 25 °C 45 VGE = 18 V 40 VGE = 15 V 35 VGE = 12 V 30 VGE = 9 V 5.5 VGEth (V) IC (A) 50 25 5.0 4.5 TJ = 125 °C 4.0 20 3.5 15 10 3.0 5 2.5 0 0 0.5 1.0 1.5 2.0 2.5 3.0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 Fig. 19 - Typical Q2 - Q3 Trench IGBT 600 V Output Characteristics TJ = 125 °C Fig. 22 - Typical Q2 - Q3 Trench IGBT 600 V Gate Threshold Voltage 1 160 TJ = 150 °C 140 0.1 120 TJ = 125 °C DC 100 ICES (mA) Allowable Case Temperature (°C) VCE (V) IC (mA) 80 60 0.01 0.001 TJ = 25 °C 40 0.0001 20 0 0 10 20 30 40 50 60 70 80 IC - Continuous Collector Current (A) Fig. 20 - Maximum Q2 - Q3 Trench IGBT 600 V Continuous Collector Current vs. Case Temperature 0.00001 100 200 300 400 500 600 VCES (V) Fig. 23 - Typical Q2 - Q3 Trench IGBT 600 V Zero Gate Voltage Collector Current Revision: 16-Jun-16 Document Number: 94684 9 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors 1000 60 55 50 TJ = 25 °C 45 Switching Time (ns) TJ = 150 °C 40 IF (A) 35 TJ = 125 °C 30 25 20 15 tf td(off) 100 td(on) tr 10 5 10 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 20 30 40 50 60 70 VFM (V) IC (A) Fig. 24 - Typical D2 - D3 Antiparallel Diode Forward Characteristics Fig. 27 - Typical Q2 - Q3 Trench IGBT 600 V Switching Time vs. IC (with Freewheeling External TO-247 Diode Discrete 30ETH06) TJ = 125 °C, VCC = 300 V, Rg = 4.7 , VGE = 15 V, L = 500 μH 0.80 160 0.75 140 0.70 120 0.65 0.60 100 Energy (mJ) Allowable Case Temperature (°C) 10 80 60 40 0.55 Eoff 0.50 0.45 0.40 0.35 0.30 20 Eon 0.25 0 0.20 0 5 10 15 20 25 30 35 40 45 0 50 5 10 15 20 25 30 35 40 45 50 55 IF - Continuous Forward Current (A) Rg (Ω) Fig. 25 - Maximum D2 - D3 Antiparallel Diode Forward Current vs. Case Temperature Fig. 28 - Typical Q2 - Q3 Trench IGBT 600 V Energy Loss vs. Rg (with Freewheeling External TO-247 Diode Discrete 30ETH06) TJ = 125 °C, VCC = 300 V, IC =30 A, VGE = 15 V, L = 500 μH 1000 1.2 1.1 Energy (mJ) 0.9 Switching Time (ns) 1.0 Eoff 0.8 0.7 0.6 Eon 0.5 0.4 0.3 td(on) td(off) 100 tf tr 0.2 0.1 0 10 0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35 40 45 50 55 IC (A) Rg (Ω) Fig. 26 - Typical Q2 - Q3 Trench IGBT 600 V Energy Loss vs. IC (with Freewheeling External TO-247 Diode Discrete 30ETH06 ) TJ = 125 °C, VCC = 300 V, Rg = 4.7 , VGE = 15 V, L = 500 μH Fig. 29 - Typical Q2 - Q3 Trench IGBT 600 V Switching Time vs. Rg (with Freewheeling External TO-247 Diode Discrete 30ETH06) TJ = 125 °C, VCC = 300 V, IC = 30 A, VGE = 15 V, L = 500 μH Revision: 16-Jun-16 Document Number: 94684 10 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors 80 6.0 75 5.5 70 5.0 65 4.5 125 °C 4.0 55 Irr (A) trr (ns) 60 50 45 3.5 3.0 125 °C 40 35 25 °C 2.5 25 °C 2.0 30 1.5 25 1.0 20 100 200 300 400 500 100 200 dIF/dt (A/μs) 300 400 500 dIF/dt (A/μs) Fig. 30 - Typical D2 - D3 Antiparallel Diode Reverse Recovery Time vs. dIF/dt Vrr = 200 V, IF = 20 A Fig. 31 - Typical D2 - D3 Antiparallel Diode Reverse Recovery Current vs. dIF/dt Vrr = 200 V, IF = 20 A 90 85 Qrr (nC) 80 125 °C 75 25 °C 70 65 60 100 200 300 400 500 dIF/dt (A/μs) Fig. 32 - Typical D2 - D3 Antiparallel Diode Reverse Recovery Charge vs. dIF/dt Vrr = 200 V, IF = 20 A ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 0. 0.1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 DC 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 33 - Maximum Thermal Impedance ZthJC Characteristics (Q2 - Q3 Trench IGBT 600 V) Revision: 16-Jun-16 Document Number: 94684 11 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors ZthJC - Thermal Impedance Junction to Case (°C/W) 10 1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 DC 0.1 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 34 - Maximum Thermal Impedance ZthJC Characteristics (D2 - D3 Antiparallel Diode) ORDERING INFORMATION TABLE Device code VS- EN Q 030 L 120 S 1 2 3 4 5 6 7 1 - Vishay Semiconductors product 2 - Package indicator (EN = EMIPAK-1B) 3 - Circuit configuration (Q = neutral point clamp topology) 4 - Current rating (030 = 30 A) 5 - Switch die technology (L = ultrafast Trench IGBT 1200 V and Trench IGBT 600 V) 6 - Voltage rating (120 = 1200 V) 7 - Diode die technology (S = SiC diode) Revision: 16-Jun-16 Document Number: 94684 12 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-ENQ030L120S www.vishay.com Vishay Semiconductors CIRCUIT CONFIGURATION DC+ DC+ T1 E3 G3 Q1 T2 D1 Q3 G1 E1 D2 BR BR BR M M Q4 D3 Q2 D4 G4 E4 DCDC- PACKAGE 16 16 12.8 12.8 9.6 3.2 12.8 3.2 3.2 T1 T2 G4 E4 G3 E3 E2 G2 9.6 G1 12.8 BR BR BR E1 M M DCDC- 3.2 DC+ DC+ LINKS TO RELATED DOCUMENTS Dimensions www.vishay.com/doc?95558 Revision: 16-Jun-16 Document Number: 94684 13 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Outline Dimensions www.vishay.com Vishay Semiconductors EMIPAK-1B PressFit 12 ± 0.35 4.1 ± 0.3 3 ± 0.15 DIMENSIONS in millimeters 48 ± 0.3 62.8 ± 0.5 53 ± 0.15 42.5 ± 0.2 .5 37 ± 0.5 x8 12.8 12.8 9.6 9.6 6.4 3.2 6.4 16.4 20.4 28.1 ± 0.2 33.8 ± 0.3 30.9 ± 0.5 3.2 Ø 2.1 ± 0. 1 3.2 Ø 4. 4 3.2 Pin position 0.4 6.4 9.6 12.8 16 Revision: 27-Jun-14 6.4 9.6 12.8 16 Document Number: 95558 1 For technical questions within your region: [email protected], [email protected], [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000