VS-ENQ030L120S Datasheet

VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
EMIPAK-1B PressFit Power Module
Neutral Point Clamp Topology, 30 A
FEATURES
• Ultrafast Trench IGBT technology
• HEXFRED® and silicon carbide diode technology
• PressFit pins technology
• Exposed Al2O3 substrate with low thermal resistance
• Low internal inductances
• PressFit pins locking technology. Patent # US.263.820 B2
• UL approved file E78996
EMIPAK-1B
(package example)
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
DESCRIPTION
PRODUCT SUMMARY
TRENCH IGBT 1200 V STAGE
VCES
1200 V
VCE(ON) typical at IC = 30 A
2.12 V
IC at TC = 102 °C
30 A
TRENCH IGBT 600 V STAGE
VCES
600 V
VCE(ON) typical at IC = 30 A
1.42 V
IC at TC = 106 °C
30 A
Speed
8 kHz to 30 kHz
Package
EMIPAK-1B
Circuit
3-levels neutral point clamp topology
VS-ENQ030L120S is an integrated solution for a neutral
point clamp topology in a single package. The EMIPAK-1B
package is easy to use thanks to the PressFit pins and the
exposed substrate provides improved thermal performance.
The optimized layout also helps to minimize stray
parameters, allowing for better EMI performance.








ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
TEST CONDITIONS
MAX.
TJ
150
Storage temperature range
TStg
-40 to +150
RMS isolation voltage
VISOL
Operating junction temperature
TJ = 25 °C, all terminals shorted, f = 50 Hz, t = 1 s
3500
UNITS
°C
V
Q1 - Q4 TRENCH IGBT 1200 V
Collector to emitter voltage
VCES
1200
Gate to emitter voltage
VGES
± 30
ICM
120
ILM (1)
120
Pulsed collector current
Clamped inductive load current
Continuous drain current
Power dissipation
IC
PD
TC = 25 °C
61
TC = 80 °C
40
TSINK = 80 °C
21
TC = 25 °C
216
TC = 80 °C
121
V
A
A
W

PATENT(S): www.vishay.com/patents 
This Vishay product is protected by one or more United States and International patents.
Revision: 16-Jun-16
Document Number: 94684
1
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
TEST CONDITIONS
MAX.
UNITS
Q2 - Q3 TRENCH IGBT 600 V
Collector to emitter voltage
VCES
600
Gate to emitter voltage
VGES
± 20
Pulsed collector current
ICM
130
ILM
Clamped inductive load current
(2)
IC
Power dissipation
PD
A
130
TC = 25 °C
Continuous collector current
V
64
TC = 80 °C
42
TSINK = 80 °C
25
TC = 25 °C
174
TC = 80 °C
97
10 ms sine or 6 ms rectangular pulse, TJ = 25 °C
180
TC = 25 °C
46
A
W
D1 - D4 HEXFRED ANTIPARALLEL DIODE
Single pulse forward current
Diode continuous forward current
Power dissipation
IFSM
IF
PD
TC = 80 °C
30
TSINK = 80 °C
17
TC = 25 °C
187
TC = 80 °C
105
10 ms sine or 6 ms rectangular pulse, TJ = 25 °C
150
A
A
W
D2 - D3 SILICON CARBIDE ANTIPARALLEL DIODE
Single pulse forward current
Diode continuous forward current
Power dissipation
IFSM
IF
PD
TC = 25 °C
40
TC = 80 °C
28
TSINK = 80 °C
20
TC = 25 °C
140
TC = 80 °C
79
A
A
W
Notes
• Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur.
(1) V
CC = 600 V, VGE = 15 V, L = 500 μH, Rg = 4.7 , TJ = 150 °C
(2) V
CC = 300 V, VGE = 15 V, L = 500 μH, Rg = 4.7 , TJ = 150 °C


ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNITS
1200
-
-
VGE = 15 V, IC = 30 A
-
2.12
2.52
VGE = 15 V, IC = 30 A, TJ = 125 °C
-
2.31
-
2.6
4.6
6.6
-
- 14
-
mV/°C
Q1 - Q4 TRENCH IGBT 1200 V
Collector to emitter breakdown voltage
BVCES
Collector to emitter voltage
VCE(ON)
Gate threshold voltage
VGE(th)
Temperature coefficient of threshold
voltage
VGE(th)/TJ
VGE = 0 V, IC = 100 μA
VCE = VGE, IC = 1.0 mA
VCE = VGE, IC = 1 mA (25 °C to 125 °C)
V
Forward transconductance
gfe
VCE = 20 V, IC = 30 A
-
36
-
S
Transfer characteristics
VGE
VCE = 20 V, IC = 30 A
-
7.1
-
V
Zero gate voltage collector current
ICES
VGE = 0 V, VCE = 1200 V
-
0.001
0.23
VGE = 0 V, VCE = 1200 V, TJ = 125 °C
-
0.5
-
Gate to emitter leakage current
IGES
VGE = ± 30 V, VCE = 0 V
-
-
± 200
mA
nA
Revision: 16-Jun-16
Document Number: 94684
2
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNITS
600
-
-
VGE = 15 V, IC = 30 A
-
1.42
1.87
VGE = 15 V, IC = 30 A, TJ = 125 °C
-
1.56
-
3.6
5.6
7.1
VCE = VGE, IC = 1 mA (25 °C to 125 °C)
-
-17
-
mV/°C
Q2 - Q3 TRENCH IGBT 600 V
Collector to emitter breakdown voltage
BVCES
Collector to emitter voltage
VCE(ON)
Gate threshold voltage
VGE(th)
Temperature coefficient of threshold
voltage
VGE(th)/TJ
VGE = 0 V, IC = 150 μA
VCE = VGE, IC = 1.4 mA
V
Forward transconductance
gfe
VCE = 20 V, IC = 30 A
-
24
-
S
Transfer characteristics
VGE
VCE = 20 V, IC = 30 A
-
10
-
V
Zero gate voltage collector current
ICES
VGE = 0 V, VCE = 600 V
-
0.0003
0.23
VGE = 0 V, VCE = 600 V, TJ = 125 °C
-
0.028
-
Gate to emitter leakage current
IGES
VGE = ± 20 V, VCE = 0 V
-
-
± 200
nA
IF = 20 A
-
2.42
3.18
V
IF = 20 A, TJ = 125 °C
-
2.32
-
IF = 20 A
-
1.54
1.8
IF = 20 A TJ = 125 °C
-
1.86
-
MIN.
TYP.
MAX.
mA
D1 - D4 ANTIPARALLEL DIODE
Forward voltage drop
VFM
D2 - D3 ANTIPARALLEL DIODE
Forward voltage drop
VFM
V
SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
UNITS
Q1 - Q4 TRENCH IGBT (WITH FREEWHEELING D1 - D4 ANTIPARALLEL DIODE)
Total gate charge (turn-on)
Qg
IC = 30 A
-
157
-
Gate to emitter charge (turn-on)
Qge
VCC = 600 V
-
21
-
Gate to collector charge (turn-on)
Qgc
VGE = 15 V
-
69
-
Turn-on switching loss
EON
-
0.52
-
Turn-off switching loss
EOFF
Total switching loss
ETOT
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tr
td(off)
IC = 30 A
VCC = 600 V
VGE = 15 V
Rg = 4.7 
L = 500 μH (1)
-
0.9
-
-
1.42
-
-
93
-
-
39
-
-
133
-
tf
-
156
-
Turn-on switching loss
EON
-
0.64
-
Turn-off switching loss
EOFF
-
1.61
-
Total switching loss
ETOT
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
Input capacitance
Cies
Output capacitance
Coes
Reverse transfer capacitance
Cres
Reverse bias safe operating area
IC = 30 A 
VCC = 600 V
VGE = 15 V
Rg = 4.7 
L = 500 μH
TJ = 125 °C (1)
RBSOA
VGE = 0 V
VCC = 30 V
f = 1 MHz
TJ = 150 °C, IC = 120 A, VCC = 600 V, 
VP = 1200 V, Rg = 4.7 , VGE = 15 V to 0 V
nC
mJ
ns
mJ
2.24
-
93
-
-
39
-
-
136
-
-
193
-
-
3338
-
-
124
-
-
75
-
ns
pF
Fullsquare
Revision: 16-Jun-16
Document Number: 94684
3
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNITS
Q2 - Q3 TRENCH IGBT (WITH FREEWHEELING EXTERNAL TO-247 DIODE DISCRETE 30ETH06)
Total gate charge (turn-on)
Qg
IC = 48 A
-
95
-
Gate to emitter charge (turn-on)
Qge
VCC = 400 V
-
28
-
Gate to collector charge (turn-on)
Qgc
VGE = 15 V
-
35
-
Turn-on switching loss
EON
-
0.23
-
Turn-off switching loss
EOFF
-
0.26
-
Total switching loss
ETOT
VCC = 300 V
-
0.49
-
Turn-on delay time
td(on)
VGE = 15 V
Rg = 4.7 
L = 500 μH (1)
-
70
-
-
31
-
-
91
-
Rise time
Turn-off delay time
Fall time
tr
td(off)
IC = 30 A
tf
-
87
-
Turn-on switching loss
EON
-
0.33
-
Turn-off switching loss
EOFF
-
0.48
-
Total switching loss
ETOT
-
0.61
-
Turn-on delay time
td(on)
-
70
-
-
31
-
-
96
-
-
117
-
-
3025
-
-
245
-
-
90
-
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
Input capacitance
Cies
Output capacitance
Coes
Reverse transfer capacitance
Cres
Reverse bias safe operating area
IC = 30 A
VCC = 300 V
VGE = 15 V
Rg = 4.7 
L = 500 μH
TJ = 125 °C (1)
RBSOA
VGE = 0 V
VCC = 30 V
f = 1 MHz
TJ = 150 °C, IC = 130 A
VCC = 300 V, VP = 600 V
Rg = 4.7 , VGE = 15 V to 0 V
nC
mJ
ns
mJ
ns
pF
Fullsquare
D1 - D4 ANTIPARALLEL DIODE
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
VR = 400 V
IF = 20 A
dl/dt = 500 A/μs
-
103
-
ns
-
16
-
A
-
800
-
nC
VR = 400 V
IF = 20 A
dl/dt = 500 A/μs, TJ = 125 °C
-
135
-
ns
-
21
-
A
-
1412
-
nC
VR = 200 V
IF = 20 A
dl/dt = 500 A/μs
-
30
-
ns
-
4.8
-
A
-
73
-
nC
-
31
-
ns
D2 - D3 ANTIPARALLEL DIODE
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
Diode reverse recovery time
trr
Diode peak reverse current
Irr
Diode recovery charge
Qrr
VR = 200 V
IF = 20 A
dl/dt = 500 A/μs, TJ = 125 °C
-
5
-
A
-
78
-
nC
Note
(1) Energy losses include “tail” and diode reverse recovery.
Revision: 16-Jun-16
Document Number: 94684
4
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
INTERNAL NTC - THERMISTOR SPECIFICATIONS
PARAMETER
SYMBOL
TEST CONDITIONS
VALUE
UNITS
R25
TC = 25 °C
5000
R100
TC = 100 °C
493 ± 5 %
R2 = R25 exp. [B25/50 (1/T2 - 1/(298.15 K))]
3375 ± 5 %
K
220
°C
Dissipation constant
2
mW/°C
Thermal time constant
8
s
Resistance
B-value
B25/50
Maximum operating temperature

THERMAL AND MECHANICAL SPECIFICATIONS
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
Q1 - Q4 TRENCH IGBT 1200 V - Junction to case thermal resistance (per switch)
-
-
0.58
Q2 - Q3 TRENCH IGBT 600 V- Junction to case thermal resistance (per switch)
-
-
0.72
RthJC
D1 - D4 AP diode - Junction to case thermal resistance (per diode)
-
-
0.67
D2 - D3 AP diode - Junction to case thermal resistance (per diode)
-
-
0.89
Q1 - Q4 TRENCH IGBT 1200 V - Case to sink thermal resistance (per switch)
-
0.75
-
Q2 - Q3 TRENCH IGBT 600 V - Case to sink thermal resistance (per switch)
UNITS
°C/W
-
0.77
-
-
0.78
-
D2 - D3 AP diode - Case to sink thermal resistance (per diode)
-
0.65
-
Case to sink thermal resistance (per module)
-
0.1
-
Mounting torque (M4)
2
-
3
Nm
Weight
-
28
-
g
RthCS (1)
D1 - D4 AP diode - Case to sink thermal resistance (per diode)
Note
(1) Mounting surface flat, smooth, and greased
60
60
55
55
50
50
TJ = 25 °C
TJ = 125 °C
TJ = 150 °C
IC (A)
40
35
30
25
40
VGE = 9 V
VGE = 12 V
35
VGE = 15 V
30
VGE = 18 V
45
IC (A)
45
25
20
20
15
15
10
10
5
5
0
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VCE (V)
VCE (V)
Fig. 1 - Typical Q1 - Q4 Trench IGBT 1200 V
Output Characteristics VGE = 15 V
Fig. 2 - Typical Q1 - Q4 Trench IGBT 1200 V
Output Characteristics TJ = 125 °C
Revision: 16-Jun-16
Document Number: 94684
5
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
Vishay Semiconductors
10
160
140
TJ = 150 °C
1
120
TJ = 125 °C
DC
100
ICES (mA)
Allowable Case Temperature (°C)
www.vishay.com
80
60
0.1
0.01
40
TJ = 25 °C
0.001
20
0
0
10
20
30
40
50
60
0.0001
100 200 300 400 500 600 700 800 900 1000 1100 1200
70
IC - Continuous Collector Current (A)
VCES (V)
Fig. 6 - Typical Q1 - Q4 Trench IGBT 1200 V
Zero Gate Voltage Collector Current
Fig. 3 - Maximum Q1 - Q4 Trench IGBT 1200 V
Continuous Collector Current vs. Case Temperature
60
3.5
VCE = 20 V
55
3.0
50
45
2.5
Energy (mJ)
IC (A)
40
35
TJ = 125 °C
30
25
20
TJ = 25 °C
15
10
Eoff
2.0
1.5
1.0
Eon
0.5
5
0
0
4.0
5.0
6.0
7.0
8.0
9.0
0
10
20
30
VGE (V)
50
60
70
Fig. 7 - Typical Q1 - Q4 Trench IGBT 1200 V
Energy Loss vs. IC (with D1 - D4 Freewheeling Diode),
TJ = 125 °C, VCC = 600 V, Rg = 4.7 , VGE = 15 V, L = 500 μH
Fig. 4 - Typical Q1 - Q4 Trench IGBT 1200 V
Transfer Characteristics
5.5
1000
5.0
Switching Time (ns)
TJ = 25 °C
4.5
VGEth (V)
40
IC (A)
4.0
3.5
TJ = 125 °C
3.0
tf
td(off)
100
td(on)
tr
2.5
2.0
10
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0
10
20
30
40
50
60
70
IC (mA)
IC (A)
Fig. 5 - Typical Q1 - Q4 Trench IGBT 1200 V
Gate Threshold Voltage
Fig. 8 - Typical Q1 - Q4 Trench IGBT 1200 V
Switching Time vs. IC (with D1 - D4 Freewheeling Diode)
TJ = 125 °C, VCC = 600 V, Rg = 4.7 , VGE = 15 V, L = 500 μH
Revision: 16-Jun-16
Document Number: 94684
6
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
160
Allowable Case Temperature (°C)
3.5
Energy (mJ)
3.0
2.5
Eon
2.0
1.5
Eoff
1.0
0.5
0
5
140
120
100
80
60
40
20
0
10 15 20 25 30 35 40 45 50 55
0
10
20
30
40
50
60
Rg (Ω)
IF - Continuous Forward Current (A)
Fig. 9 - Typical Q1 - Q4 Trench IGBT 1200 V
Energy Loss vs. Rg (with D1 - D4 Freewheeling Diode)
TJ = 125 °C, VCC = 600 V, IC = 30 A, VGE = 15 V, L = 500 μH
Fig. 12 - Maximum D1 - D4 Antiparallel Diode
Forward Current vs. Case Temperature
1000
270
250
230
td(off)
210
trr (ns)
Switching Time (ns)
td(on)
tf
100
tr
190
125 °C
170
15
150
130
25 °C
110
90
10
0
5
10
15 20
100
25 30 35 40 45 50 55
200
300
400
500
Rg (Ω)
dIF/dt (A/μs)
Fig. 10 - Typical Q1 - Q4 Trench IGBT 1200 V
Switching Time vs. Rg (with D1 - D4 Freewheeling Diode)
TJ = 125 °C, VCC = 600 V, IC = 30 A, VGE = 15 V, L = 500 μH
Fig. 13 - Typical D1 - D4 Antiparallel Diode
Reverse Recovery Time vs. dIF/dt
Vrr = 400 V, IF = 20 A
60
24
22
50
5
20
18
TJ = 125 °C
TJ = 150 °C
30
Irr (A)
IF (A)
40
125 °C
16
14
12
20
10
25 °C
8
10
TJ = 25 °C
6
0
4
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
100
200
300
400
500
VFM (V)
dIF/dt (A/μs)
Fig. 11 - Typical D1 - D4 Antiparallel Diode Forward Characteristics
Fig. 14 - Typical D1 - D4 Antiparallel Diode
Reverse Recovery Current vs. dIF/dt
Vrr = 400 V, IF = 20 A
Revision: 16-Jun-16
Document Number: 94684
7
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
1700
1500
125 °C
Qrr (nC)
1300
1100
900
700
25 °C
500
300
100
200
300
400
500
dIF/dt (A/μs)
Fig. 15 - Typical D1 - D4 Antiparallel Diode
Reverse Recovery Charge vs. dIF/dt
Vrr = 400 V, IF = 20 A
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
0.
0.1
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
DC
0.01
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 16 - Maximum Thermal Impedance ZthJC Characteristics (Q1 - Q4 Trench IGBT 1200 V)
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
0.
0.1
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
DC
0.01
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 17 - Maximum Thermal Impedance ZthJC Characteristics (D1 - D4 Antiparallel Diode)
Revision: 16-Jun-16
Document Number: 94684
8
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
60
55
60
50
50
45
45
40
40
30
ICE (A)
TJ = 25 °C
TJ = 125 °C
TJ = 150 °C
35
IC (A)
VCE = 20 V
55
25
TJ = 125 °C
35
30
25
20
2
20
15
15
10
10
5
5
TJ = 25 °C
0
0
0
0.5
1
1.5
2
2.5
3
5
6
7
8
9
10
11
12
13
VCE (V)
VGE (V)
Fig. 18 - Typical Q2 - Q3 Trench IGBT 600 V Output Characteristics
VGE = 15 V
Fig. 21 - Typical Q2 - Q3 Trench IGBT 600 V
Transfer Characteristics
6.5
60
55
6.0
TJ = 25 °C
45
VGE = 18 V
40
VGE = 15 V
35
VGE = 12 V
30
VGE = 9 V
5.5
VGEth (V)
IC (A)
50
25
5.0
4.5
TJ = 125 °C
4.0
20
3.5
15
10
3.0
5
2.5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
Fig. 19 - Typical Q2 - Q3 Trench IGBT 600 V Output Characteristics
TJ = 125 °C
Fig. 22 - Typical Q2 - Q3 Trench IGBT 600 V
Gate Threshold Voltage
1
160
TJ = 150 °C
140
0.1
120
TJ = 125 °C
DC
100
ICES (mA)
Allowable Case Temperature (°C)
VCE (V)
IC (mA)
80
60
0.01
0.001
TJ = 25 °C
40
0.0001
20
0
0
10
20
30
40
50
60
70
80
IC - Continuous Collector Current (A)
Fig. 20 - Maximum Q2 - Q3 Trench IGBT 600 V
Continuous Collector Current vs. Case Temperature
0.00001
100
200
300
400
500
600
VCES (V)
Fig. 23 - Typical Q2 - Q3 Trench IGBT 600 V
Zero Gate Voltage Collector Current
Revision: 16-Jun-16
Document Number: 94684
9
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
1000
60
55
50
TJ = 25 °C
45
Switching Time (ns)
TJ = 150 °C
40
IF (A)
35
TJ = 125 °C
30
25
20
15
tf
td(off)
100
td(on)
tr
10
5
10
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
20
30
40
50
60
70
VFM (V)
IC (A)
Fig. 24 - Typical D2 - D3 Antiparallel Diode
Forward Characteristics
Fig. 27 - Typical Q2 - Q3 Trench IGBT 600 V Switching Time vs. IC
(with Freewheeling External TO-247 Diode Discrete 30ETH06)
TJ = 125 °C, VCC = 300 V, Rg = 4.7 , VGE = 15 V, L = 500 μH
0.80
160
0.75
140
0.70
120
0.65
0.60
100
Energy (mJ)
Allowable Case Temperature (°C)
10
80
60
40
0.55
Eoff
0.50
0.45
0.40
0.35
0.30
20
Eon
0.25
0
0.20
0
5
10
15
20
25
30
35
40
45
0
50
5
10 15 20 25 30 35 40 45 50 55
IF - Continuous Forward Current (A)
Rg (Ω)
Fig. 25 - Maximum D2 - D3 Antiparallel Diode
Forward Current vs. Case Temperature
Fig. 28 - Typical Q2 - Q3 Trench IGBT 600 V Energy Loss vs. Rg
(with Freewheeling External TO-247 Diode Discrete 30ETH06)
TJ = 125 °C, VCC = 300 V, IC =30 A, VGE = 15 V, L = 500 μH
1000
1.2
1.1
Energy (mJ)
0.9
Switching Time (ns)
1.0
Eoff
0.8
0.7
0.6
Eon
0.5
0.4
0.3
td(on)
td(off)
100
tf
tr
0.2
0.1
0
10
0
10
20
30
40
50
60
70
0
5
10 15 20 25 30 35 40 45 50 55
IC (A)
Rg (Ω)
Fig. 26 - Typical Q2 - Q3 Trench IGBT 600 V Energy Loss vs. IC
(with Freewheeling External TO-247 Diode Discrete 30ETH06 )
TJ = 125 °C, VCC = 300 V, Rg = 4.7 , VGE = 15 V, L = 500 μH
Fig. 29 - Typical Q2 - Q3 Trench IGBT 600 V Switching Time vs. Rg
(with Freewheeling External TO-247 Diode Discrete 30ETH06)
TJ = 125 °C, VCC = 300 V, IC = 30 A, VGE = 15 V, L = 500 μH
Revision: 16-Jun-16
Document Number: 94684
10
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
80
6.0
75
5.5
70
5.0
65
4.5
125 °C
4.0
55
Irr (A)
trr (ns)
60
50
45
3.5
3.0
125 °C
40
35
25 °C
2.5
25 °C
2.0
30
1.5
25
1.0
20
100
200
300
400
500
100
200
dIF/dt (A/μs)
300
400
500
dIF/dt (A/μs)
Fig. 30 - Typical D2 - D3 Antiparallel Diode
Reverse Recovery Time vs. dIF/dt
Vrr = 200 V, IF = 20 A
Fig. 31 - Typical D2 - D3 Antiparallel Diode
Reverse Recovery Current vs. dIF/dt
Vrr = 200 V, IF = 20 A
90
85
Qrr (nC)
80
125 °C
75
25 °C
70
65
60
100
200
300
400
500
dIF/dt (A/μs)
Fig. 32 - Typical D2 - D3 Antiparallel Diode
Reverse Recovery Charge vs. dIF/dt
Vrr = 200 V, IF = 20 A
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
0.
0.1
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
DC
0.01
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 33 - Maximum Thermal Impedance ZthJC Characteristics (Q2 - Q3 Trench IGBT 600 V)
Revision: 16-Jun-16
Document Number: 94684
11
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
ZthJC - Thermal Impedance
Junction to Case (°C/W)
10
1
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
DC
0.1
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 34 - Maximum Thermal Impedance ZthJC Characteristics (D2 - D3 Antiparallel Diode)
ORDERING INFORMATION TABLE
Device code
VS-
EN
Q
030
L
120
S
1
2
3
4
5
6
7
1
-
Vishay Semiconductors product
2
-
Package indicator (EN = EMIPAK-1B)
3
-
Circuit configuration (Q = neutral point clamp topology)
4
-
Current rating (030 = 30 A)
5
-
Switch die technology (L = ultrafast Trench IGBT 1200 V and Trench IGBT 600 V)
6
-
Voltage rating (120 = 1200 V)
7
-
Diode die technology (S = SiC diode)
Revision: 16-Jun-16
Document Number: 94684
12
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-ENQ030L120S
www.vishay.com
Vishay Semiconductors
CIRCUIT CONFIGURATION
DC+
DC+
T1
E3 G3
Q1
T2
D1
Q3
G1
E1
D2
BR
BR
BR
M
M
Q4
D3
Q2
D4
G4
E4
DCDC-
PACKAGE
16
16
12.8
12.8
9.6
3.2
12.8
3.2
3.2
T1 T2
G4 E4
G3 E3
E2 G2
9.6
G1
12.8
BR BR BR
E1
M
M
DCDC-
3.2
DC+ DC+
LINKS TO RELATED DOCUMENTS
Dimensions
www.vishay.com/doc?95558
Revision: 16-Jun-16
Document Number: 94684
13
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Outline Dimensions
www.vishay.com
Vishay Semiconductors
EMIPAK-1B PressFit
12 ± 0.35
4.1 ± 0.3
3 ± 0.15
DIMENSIONS in millimeters
48 ± 0.3
62.8 ± 0.5
53 ± 0.15
42.5 ± 0.2
.5
37 ± 0.5
x8
12.8
12.8
9.6
9.6
6.4
3.2
6.4
16.4
20.4
28.1 ± 0.2
33.8 ± 0.3
30.9 ± 0.5
3.2
Ø
2.1
±
0.
1
3.2
Ø
4.
4
3.2
Pin position
0.4
6.4
9.6
12.8
16
Revision: 27-Jun-14
6.4
9.6
12.8
16
Document Number: 95558
1
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000