AN3861SA Sensor-less Motor Drive IC for VTR Movie Cylinder ■ Overview Unit : mm The AN3861SA is a sensor-less motor drive IC for VTR movie cylinder. It uses both sensor-less and sine wave drive, thus excellent for low-noise applications. 11.0±0.3 32 17 1 16 • Operating supply voltage range : VCC=3.0 to 5.5V, VB=4.0 to 0.1±0.1 6.1±0.3 8.1±0.3 ■ Features 10.5V 0.65 (0.625) + 0.1 1.5±0.2 (0.5) 0.65±0.1 drive. Built-in power transistor. • Standby mode for minimizing power consumption • Voltage output for controlling SW power supply • Motor neutral point input terminal 0.2 – 0.05 • Reduced magnetosound using 3-phase full-wave overlap + 0.1 SEATING PLANE 0.3 – 0.05 SEATING PLANE 32-pin SSOP Package (SSOP032-P-0300) ■ Pin Descriptions Pin No. Symbol Pin No. Symbol 1 U U-phase drive output terminal Description 17 VCC 2 CS Drive current output terminal 18 IN2H 3 VSC Switching power supply control output terminal 19 OUT2 4 WIN W-phase detection terminal 20 IN1– Operational amplifier 1 reverse phase input terminal 5 VIN V-phase detection terminal 21 IN1+ Operational amplifier 1 normal phase input terminal 6 UIN U-phase detection terminal 22 MM Motor neutral point input terminal 7 PCV Voltage feedback system compensation terminal 23 OUT1 Operational amplifier 1 output terminal 8 SG Signal ground 24 Vref Servo reference voltage input terminal 9 SL3 Slope waveform generate terminal (3) 25 PCI Current feedback system phase compensation terminal 10 SL2 Slope waveform generate terminal (2) 26 VS Motor drive power supply terminal 11 SL1 Slope waveform generate terminal (1) 27 VB Unregulated power supply terminal 12 FC Oscillation terminal 28 CS Drive current output terminal 13 BR Short brake control terminal 29 W W-phase drive output terminal 14 FR Forward/Reverse change-over terminal 30 PG Power ground 15 HSL Slope current change-over terminal 31 V V-phase drive output terminal 16 STB Stand-by input terminal 32 PG Power ground Description Power supply terminal Operational amplifier 2 input terminal Operational amplifier 2 output terminal ■ Block Diagram SW Power Block VS SW Power Control Block + Vbatt – 0.25Ω 0.1µF SG MM 8 VCC VB 22 PC1 27 25 28 3 2 17 7 OUT 1 23 IN 1– 20 – 1+ 21 OUT 2 19 PCV + VCE Detection Amplifier Distributor – Source Side Drive Tr 0.1µF U 0.1µF 31 V STB (Low : Stand-by) 16 + 18 29 W Forward/Reverse Control FR (High : Forward) A3 Reference Power Supply Sink Side Drive Tr WIN 14 4 Conducting Phase Switch Logic FC 0.1µF 1 – 2+ IN 0.047µF + 24 + – Vref IN VSC (Output for VS Control) VS CS 26 12 VIN 5 BEMF Detection Comparator UIN 6 560pF HSL 15 0.022µF × 3 Short Brake 11 10 9 13 SL 1 SL 2 SL 3 0.022µF 30 32 PG PG BR (High : Brake) 0.022µF 0.022µF Note) Values of all external C and R are nominal one. ■ Absolute Maximum Rating (Ta=25˚C) Parameter Symbol Rating Supply voltage VCC 6.0 Unit V Unregulated voltage VB 11 V V Motor power supply voltage (under VB) VS 11 Output terminal voltage n=1, 29, 31 Vn 11 Output current n=1, 29, 31 IOn 1000 mA mW V Power dissipation Note 1) PD 400 Operating ambient temperature Topr –25 to + 70 ˚C Storage temperature Tstg –55 to + 150 ˚C Note 1) Package power dissipation when Ta=75˚C ■ Recommended Operating Range (Ta=25˚C) Parameter Operating supply voltage Symbol Range VCC 3.0V to 5.5V VB 4.0V to 10.5V VS 1.5V to VB ■ Package Power Dissipation PD –Ta Power Dissipation PD (mW) 1400 Glass epoxy board (50 × 50 × 0.8tmm) Rthj – a = 96.9˚C/W PD=1290mW (25˚C) 1290 1200 1000 Single unit Rthj– a = 187.1˚C/W PD= 668mW (25˚C) 800 668 600 400 200 0 0 25 50 75 100 125 150 Ambient Temperature Ta (˚C) ■ Electrical Characteristics (VCC=3.3V, VB=6V, VS=6V, Ta=25±2˚C) Parameter Symbol Condition min typ max 0.11 0.14 0.17 –100 6 100 mV 875 mA Unit Drive Block Drive gain Gio ∆VCS ∆OUT1 Input offset voltage of Vref and OUT1 RCS=0.25Ω Drive amplifier offset ViOCS Output maximum current IOMAX Brake current IBR Sink-side output voltage VCE IO=100mA Sink-side saturation voltage VSAT (1) Source-side saturation voltage VSAT (2) 625 750 200 500 0.15 0.25 0.35 V IO=500mA 0.25 0.35 V IO=500mA 0.90 1.3 V 16 29 mV mA Bemf Detection Block Comparator hysteresis width VHCOM 4 ■ Electrical Characteristics (cont.) (VCC=3.3V, VB=6V, VS=6V, Ta=25±2˚C) Parameter Symbol Triangular wave oscillation frequency fFC Condition min typ max CFC=560PF 11.0 16.3 22.8 kHz HSL : L CFC=560pF femf < 160Hz –26 –20 –14 µA 14 20 26 µA HSL : L CFC=560pF femf > 181Hz –52 –40 –28 µA 28 40 52 µA HSL : H CFC=560pF femf < 160Hz –52 –40 –28 µA 28 40 52 µA HSL : H CFC=560pF femf > 181Hz –78 –60 –42 µA 42 60 78 µA Unit Oscillator Slope Slope terminal charging current (1) ISLC (1) Slope terminal discharging current (1) ISLD (1) Slope terminal charging current (2) ISLC (2) Slope terminal discharging current (2) ISLD (2) Slope terminal charging current (3) ISLC (3) Slope terminal discharging current (3) ISLD (3) Slope terminal charging current (4) ISLC (4) Slope terminal discharging current (4) ISLD (4) Operational Amp. 1 only Common-mode input voltage range Input offset current Voltage gain VICR (1) 0.2 IIOAI –50 GAI Output sink current (1) IOSI1 (1) OUT1=0.2V VB –1.4 or VCC 5 50 V nA 60 67 dB 20 140 µA Operational Amp. 2 only Common-mode input voltage range VICR (2) 0 VB–1.4 V Operational Amp. 1 and 2 Input offset voltage VIOA1, 2 –20 –3 Output sink current 1– (2) IOSI 1 (2) 1.8 4 mA Output sink current 2– (2) IOSI 2 (2) 2 4 mA Output source current (2) IOSA 1, 2 –15 20 –2 mV mA Mode Switch=HSL, STB, FR, BR Input high level VSWH Input low level VSWL Input bias current IBSW VSW=2V Input/output gain GIOS ∆VSC ∆U Output impedance ZOS 2.0 V 0.6 V 25 100 µA 1.4 2.0 2.6 Times 12 18 24 kΩ 0.1 0.35 0.6 V 0.35 0.63 0.9 V Motor Power Supply Control Operation point (1) VS – U (1) Operation point (2) VS – U (2) VS–U for VSC=1.6V when OUT1=Vref VS–U for VSC=1.6V when OUT1=Vref + 1 Power Supply Current Operating power supply current ICC (1) STB : H 10 15 mA STB power supply current ICC (2) STB : L 6 10 mA Unregulated power supply current (1) IBB (1) VCC=0V 0.1 10 µA Unregulated power supply current (2) IBB (2) VCC=3.3V, In2+=0V 0.3 1.5 mA ■ Electrical Characteristics [Reference Values] (Ta=25±2˚C) This is design reference value, and not guaranted one. Parameter Symbol Thermal protection circuit operation temperature TSD Condition VCC=3.3V Reference value 175 Unit ˚C ■ Pin Descriptions Pin No. Pin name Standard waveform Equivalent circuit Description CS 1 VB 1 Terminal driving the U-phase of motor U: U-phase drive output 8kΩ GND GND2 GND Vs 2 CS : Drive power supply output Terminal outputting the drive current of motor Vcc 3 Terminal outputting the control voltage of the switching power supply VSC : Switching power supply control output 100µA 18kΩ 3 150µA 1kΩ GND VB 8kΩ 4 WIN : W-phase detection W 1kΩ Terminal detecting the W-phase 4 150µA GND GND VB 8kΩ 5 VIN : V-phase detection V 1kΩ Terminal detecting the V-phase 5 150µA GND GND VB 8kΩ 6 UIN : U-phase detection U 1kΩ Terminal detecting the U-phase 6 150µA GND GND VCC 7 PCV : Voltage feedback system phase compensation Terminal attaching the capacitor for phase compensation of the voltage feedback system 50Ω GN 1kΩ GND 8 SG : Signal ground Grounding terminal for signal system 7 ■ Pin Descriptions (cont.) Pin No. Pin name Standard waveform Equivalent circuit Description VCC 2I 9 SL3 : Slope waveform generation (3) I Terminal generating the waveform of the motor drive current 9 GND VCC 2I 10 SL2 : Slope waveform generation (2) I Terminal generating the waveform of the motor drive current 10 GND VCC 2I 11 SL1 : Slope waveform generation (1) I Terminal generating the waveform of the motor drive current 11 GND VCC 12 Terminal determining the phase switching frequency at motor start FC : Oscillation 12 GND VCC 13 BR : Short brake control VCC or GND Terminal controlling the short brake 13 50kΩ GND2 GND VCC 14 FR : Forward/Reverse switching terminal VCC or GND Terminal switching the normal/reverse rotation of motor 50kΩ 14 50kΩ GND GND2 VCC 15 HSL : Slope current control terminal VCC or GND Terminal controls the charging/discharging current of the slope waveform generating terminal 50kΩ 15 50kΩ GND GND2 VCC 16 STB : Stand-by input VCC or GND Terminal controls the operation/stand-by condition 50kΩ 16 50kΩ GND GND2 ■ Pin Descriptions (cont.) Pin No. 17 Pin name Standard waveform Equivalent circuit Description Terminal inputting the V CC power supply VCC : Power supply VB 125µA 18 IN2H : Operational amp. 2 input Input terminal for operational amp. 2 1kΩ 18 3kΩ GND GND2 VB 19 OUT2 : Operational amp. 2 output Output terminal for operational amp. 2 19 30kΩ 5kΩ GND VB 1.5kΩ 20 1kΩ Terminal inputting the reverse phase voltage of operational amp. 1 IN1– : Operational amp. 1 reverse phase input 20 25µA GND GND2 VB 1.5kΩ 21 Terminal inputting the normal phase voltage of operational amp. 1 IN1+ : Operational amp. 1 normal phase input 1kΩ 21 25µA GND 22 MM : Motor neutral point input terminal Terminal inputting the motor neutral point 22 VB 23 GND2 OUT1 : Operational amp. 1 output VCC Terminal outputting the output voltage of operational amp. 1 23 VCC 24 Vref : Servo reference voltage input Vref Terminal inputting the servo reference voltage 1kΩ 24 12kΩ GND 100µA GND 100µA GND2 ■ Pin Descriptions (cont.) Pin No. Pin name Standard waveform Equivalent circuit Description VB 25 PCI : Current feedback system phase compensation Terminal attaching the capacitor for phase compensation of current feedback system 50Ω 25 GND 1kΩ GND 26 VS : Motor drive power supply Terminal inputting the VS motor drive power supply 27 VB : Unregulated power supply Terminal inputting the VB unregulated power supply VB Vs 28 CS : Drive current output CS 1.5kΩ 1kΩ Terminal outputting the motor drive current 28 GND CS 29 29 Terminal driving the W-phase of motor W: W-phase drive output VB 8kΩ GND GND2 30 PG : Power block grounding GND Terminal connecting the power transistor block to GND CS 31 VB 31 Terminal driving the V-phase of motor V: V-phase drive output 8kΩ GND GND2 32 PG : Power block grounding Terminal connecting the power transistor block to GND GND ■ Operation Descriptions (1) STB terminal The operating condition of the IC internal circuit is shown in the following table : STB input Condition of the IC internal circuit L Note) AMP2 and sensor-less block only operating H All circuit operating Note) Since the sensor-less block operates, if the motor rotates, it detects the inductive voltage and synthesizes the energization switching signal which is synchronized with the motor rotation phase. (2) FR, BR terminal FR terminal H : Forward rotation L : Reverse rotation BR terminal H : Short brake circuit operation L : Short brake circuit stop (3) Drive amplifier The AN3861SA is an IC of current drive type, and the motor drive current Ia is determined by the voltage of OUT1 terminal, as shown in Fig.1. VS – CS Ia = Rcs mV Ia max = 140 Rcs gm = Gio = 0.14 Rcs Rcs OUT1 Vref Fig.1 Drive Characteristics The collector voltage value is controlled as shown in Fig.2 since the sink-side output transistor is operated with non-saturation voltage. U, V, W 0.5V 0.2V OUT1 Vref Vref + 1.35V Fig.2 OUT1 and VCE of Sink-side Output Transistor (4) VCS terminal For the AN3861SA, since the collector voltage of the sink-side output transistor is controlled to a certain value. Therefore, when the VB is high enough, extra voltage is applied to the VCE of source side output transistor. This loss voltage of VCE can be reduced by the VSC voltage through the circuit as shown in the following figure. – 1.6V VS + VSC CS AN3861 Fig.3 Switching Regulater System with VSC Terminal VSC OUT1=Vref OUT1 > Vref + 1.0V gm=–2 OUT1 increases 1.6V 0.35V 0.63V Fig.4 VSC Characteristics VS – U VS – V VS – W (5) FC terminal This is an oscillation terminal which determines the commutation frequency at operation start and the frequency femf of inductive voltage for switching over the charging/discharging current of the SL terminal (Refer to (6) below). Normally, fFC=16.3kHz when CFC=560pF and the frequency at operation start is approx. 4Hz. (6) SL1, SL2, SL3 terminal The SL1, SL2 and SL3 are terminals producing the slope waveform for synthesizing the trapezoidal wave current. Since the slope waveform is synthesized by charging/discharging the external capacitor with the constant current, the amplitude VSL becomes as follows : VSL = VSL Ich 6 femf × CSL GND Fig.5 Waveform of SL1, SL2 and SL3 Where, Ich : Charging/Discharging current CSL : Capacitance value femf : Frequency of motor inductive voltage The value of Ich is changed according to the relationship between the frequency of the motor inductive voltage and the oscillation frequency of the FC terminal, as shown in Fig.6 in the next page. Therefore, the capacitance value of external capacitor CSL should be selected so that the value of VSL could fall in the range from 0.5 to 1.5V during constant rotation. Since the relative dispersion of three external capacitors may cause increase of motor noise, the capacitor with high accuracy should be used. (7) Capacitance value of Uin, Vin, Win The capacitor of Uin, Vin and Win prevents the malfunction of the comparator due to spike-shaped voltage which is generated in the motor coil at operation start. For this reason, it should be used as necessary for large motor of large L such as winding coil.