AN4338 Application note EVLSTNRG-170W: 170 W SMPS with digitally controlled PFC and resonant LLC stage based on the STNRG388A Introduction This application note describes the characteristics and features of a 170 W, wide input mains range, power factor corrected, evaluation board for evaluating the STNRG388A digital controller in off-line power conversion applications such as digital industrial power supplies. The solution implements a PFC stage followed by a resonant LLC stage supporting up to 170 W with multiple output rails: a high power 24 V (6 A) channel for the main application, 1 auxiliary 12 V (2 A) for the controller and an always-on 5 V (2 A) standby. The STNRG388A power conversion dedicated peripherals (SMEDs) offer the flexibility to drive the PFC in transition mode (DCM-CCM boundary) while the resonant LLC is controlled with timeshift control (TSC). In parallel to managing the two conversion stages, the STNRG388A device guarantees all the protections required by the application as well as implementing the advanced anti-capacitive protection. Thanks to the digital core of the STNRG388A device, it is also possible to monitor, control and debug the EVLSTNRG-170W board via a convenient HyperTerminal control. The EVLSTNRG-170W evaluation kit (Figure 1) is comprised of a power board, accommodating power circuits and gate drivers L6382D, and a control card with a digital control CORE based on the STNRG388A device. The control module receives status signals from the power circuit and provides control signals to the power board. Two different control cards are provided: “Slim”: this board shows how small a real application could be “Debug”: this board allows to easily monitor all STNRG388A signals, in order to understand the operation of the system or debugging a new code. Figure 1. EVLSTNRG-170W with “slim“ control board configuration March 2016 DocID025038 Rev 2 1/59 www.st.com 59 Contents AN4338 Contents 1 Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . 5 1.1 Boost PFC stage features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 LLC resonant HB converter features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Flyback converter features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 HW configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Digital PFC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 Digital LLC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2 Efficiency measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 PFC performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Functional checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 4.1 Power factor corrector stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Resonant stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Dynamic load operation and output voltage regulation . . . . . . . . . . . . . . 20 4.4 Cross regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.5 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.6 Mains dips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.7 Mains ripple rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . . 28 Appendix A Electrical diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix B Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Board revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2/59 DocID025038 Rev 2 AN4338 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. PFC signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 LLC signals description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Overall efficiency measured at different AC input voltages . . . . . . . . . . . . . . . . . . . . . . . . 14 PFC PF and THD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Bill of materials EVLSTNRG-170W “power board” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Bill of materials EVLSTNRG-170W “STNRG388A debug control board” . . . . . . . . . . . . . . 48 Bill of materials EVLSTNRG-170W “STNRG388A slim control board”. . . . . . . . . . . . . . . . 54 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 DocID025038 Rev 2 3/59 59 List of figures AN4338 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 4/59 EVLSTNRG-170W with “slim“ control board configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 1 EVLSTNRG-170W with “debug” control board connected . . . . . . . . . . . . . . . . . . . . . . . . . . 8 PFC block diagram and signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Enhanced constant on-time PFC boost inductor current profile . . . . . . . . . . . . . . . . . . . . . 11 LLC block diagram and signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Time-shift concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 EN61000-3-2 compliance at 230 V ac - 50 Hz, full load . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 JEITA-MITI compliance at 100 V ac - 50 Hz, full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 EN61000-3-2 compliance at 230 V ac - 50 Hz, 75 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 JEITA-MITI compliance at 100 V ac - 50 Hz, 75 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input voltage and current at 115 V ac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Input voltage and current at 230 V ac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PFC Vds and inductor current at 115 V ac - 60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . 18 PFC Vds and inductor current at 115 V ac - 60 Hz - full load - detail . . . . . . . . . . . . . . . . . 18 PFC Vds and inductor current at 230 V ac - 50 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . 19 PFC Vds and inductor current at 230 V ac - 50 Hz - full load - detail . . . . . . . . . . . . . . . . . 19 PFC signals at 115 V ac - 60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PFC signals - line transient 115 V ac to 230 V ac - 60 Hz - full load . . . . . . . . . . . . . . . . . 19 Resonant stage waveforms, full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Adaptive dead time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Adaptive dead time - HB rising edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Adaptive dead time - HB falling edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 12 V load transition at 115 V ac - 60 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 12 V transition no-load to full load at 115 V ac - 60 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 24 V load transition at 115 V ac - 60 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 24 V transition no-load to full load at 115 V ac - 60 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 24 V load transition at 115 V ac - 60 Hz - cross regulation on 12 V . . . . . . . . . . . . . . . . . . 23 12 V load transition at 115 V ac - 60 Hz - cross regulation on 24 V . . . . . . . . . . . . . . . . . . 23 Startup at full load and 115 V ac - 60 Hz by ON/OFF signal . . . . . . . . . . . . . . . . . . . . . . . 24 Startup at full load and 230 V ac - 50 Hz by ON/OFF signal - detail. . . . . . . . . . . . . . . . . . 24 Resonant stage safe startup at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Turn-off at full load and 115 V ac - 60 Hz by ON/OFF signal . . . . . . . . . . . . . . . . . . . . . . . 25 Turn-off at full load and 230 V ac - 50 Hz by ON/OFF signal - detail . . . . . . . . . . . . . . . . . 25 One and half cycle (25 ms) mains dip at full load and 115 V ac - 60Hz . . . . . . . . . . . . . . . 26 One and half cycle (30 ms) mains dip at full load and 230 V ac - 50 Hz . . . . . . . . . . . . . . 26 LLC input voltage ripple rejection at full load - +12 Vout measurement . . . . . . . . . . . . . . . 27 LLC input voltage ripple rejection at full load - +24 Vout measurement . . . . . . . . . . . . . . . 27 Output voltages ripple and noise with infinite persistence . . . . . . . . . . . . . . . . . . . . . . . . . 28 Output voltages ripple and noise with maximum resolution (2 ns/pt - sync. with mains) . . 28 CE peak and average measurement 230 V - phase wire . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CE peak and average measurement 115 V - phase wire . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Main board electrical diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Electrical diagram of dead time block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Electrical diagram of debug control board - controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Electrical diagram of debug control board - connections . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Electrical diagram of debug control board - power and interfaces . . . . . . . . . . . . . . . . . . . 34 Electrical diagram of slim control board - controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Electrical diagram of slim control board - connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DocID025038 Rev 2 AN4338 1 Main characteristics and circuit description Main characteristics and circuit description The main features of the SMPS are listed here below: Universal input mains range: 90 264 V ac - frequency 45 65 Hz Full load power 170 W Output voltage 1: 24 V ± 5% at 6 A for backlight and audio supply Output voltage 2: 12 V ± 3% at 2 A for panel supply Output voltage 3: 5 V ± 2% at 2 A for microprocessor supply Mains harmonics: according to EN61000-3-2 Class-D or JEITA-MITI Class-D Standby mains consumption: at 230 V ac < 150 mW with 50 mW load Overall efficiency at full load: better than 90% at full load EMI: according to EN55022-Class-B Safety: according to EN60950 Power board size: 195 x 115 mm, 25 mm max. components height from PCB Control board size: “debug” 88 x 118 mm, “slim” 25 x 76 mm Power board PCB: dual layers, 35 µm, mixed PTH/SMT Control board PCB: four layers, 35 µm, mixed PTH/SMT The circuit is composed of two sections: 1. A 10 W standby based on the VIPER27L, a high-voltage switcher for off-line applications. This auxiliary converter delivers 5 V/2 A and is dedicated to supply the TV microprocessor, the IR receiver, the logic and supervisory circuitry, as well as the control devices of the main converter. 2. The main converter composed of a front-end PFC and a LLC resonant converter, both controlled by the STNRG388A digital controller. The PFC stage delivers 400 V constant voltage and acts as a pre-regulator for both the LLC stage and the standby supply; the LLC resonant converter delivers two output voltages, one dedicated to supply the TV panel and the other for the backlight and audio power amplifiers. An external signal, referred to secondary ground, turns on and off the main converter. The drive function for the discrete MOSFETs of the main converter is provided by the L6382D: this dedicated companion driver integrates also the high voltage startup generator and a precise reference voltage (3.3 V) able to provide up to 30 mA to supply the STNRG388A. DocID025038 Rev 2 5/59 59 Main characteristics and circuit description 1.1 1.2 Boost PFC stage features Digitally controlled PFC pre-regulator Transition-mode (DCM-CCM boundary) operation with valley switching Enhanced constant on-time control with line voltage feedforward Valley skipping with valley lock and burst mode operation OCP with LEB on current sense Protections: 1.4 – Brownout – Overvoltage – Undervoltage – Overcurrent – Anti-continuous conduction mode Programmable soft-start Digital control loop with programmable PI frequency compensator LLC resonant HB converter features Time-shift control with min. and max. frequency limitation Self-adjustable dead time Protections: 1.3 AN4338 – 2 levels overcurrent – Overvoltage – Anti-capacitive mode Safe start and digitally adjustable soft-start Flyback converter features Fixed switching frequency (60 kHz) with frequency jittering CCM - DCM operation according to mains voltage and load amount Related documents Additional information and details about firmware and the parameters setting can be found in the following documents: UM1881 - EVLSTNRG-170W: user interface manual UM1760 - STLUX™ SMED configurator 1.0 This evaluation board has been developed starting from the existing EVL170W-FTV evaluation board, based on full analog control. Its application note (AN3329) can be used to have a description and relevant waveforms of the standby supply. Since that evaluation board refers to the same application and uses the same power components, it is a good means for comparison between the analog and digital performance. 6/59 DocID025038 Rev 2 AN4338 1.5 Main characteristics and circuit description HW configuration As already said, the EVLSTNRG-170W includes two different control boards. They work exactly in the same way, using the same STNRG388A resources and sharing the same FW. The “Slim” version has been thought to show the actual size of the digital control in a real application. Since its height is only 25 mm it is mounted vertically on the power board. Therefore the total footprint of the SMPS is the same of the power board. The “debug” version allows accessing all the STNRG388A signal with convenient test points. The STNRG388A is housed in a socket making very easy to remove / replace it. The board has also dedicated supply connectors that allow using it as a standalone board to develop a code for the STNRG388A device. Figure 2 shows the complete system using the “debug” control board. Figure 2. EVLSTNRG-170W with “debug” control board connected DocID025038 Rev 2 7/59 59 Main characteristics and circuit description 1.6 AN4338 Digital PFC description The PFC block diagram and STNRG388A pins used for PFC control are shown in Figure 3. The gate drive signal for the power MOSFET is generated by two coupled SMEDs (“State Machine Event Driven”) and delivered through the gate driver L6382. The schematic also shows that four signals are sensed and opportunely scaled and conditioned. The PFC output voltage and AC line are sensed using the STNRG388A device. These signals are scaled to a range from 0 V to 1.25 V which corresponds to the ADC full scale. The demagnetization detection and power MOSFET current sensing for the cycle-by-cycle current limiting and current threshold detection are implemented with high speed analog comparators available in the STNRG388A. The PFC operates in transition mode using a proprietary enhanced constant on-time technique. The on-time calculated by the voltage loop is kept constant for a given mains voltage and load condition during each line half cycle to obtain a good power factor and low harmonic content of the line current. The actual on-time is the sum of two times: the calculated one and that required for the current to reach a predefined threshold. As a consequence, the on-time is not rigorously constant over a line half cycle. 8/59 DocID025038 Rev 2 AN4338 Main characteristics and circuit description Figure 3. PFC block diagram and signals description Table 1. PFC signals description Name Description Vin AC line monitor for: line synchronization, peak voltage sampling, brown-in/out Vbulk Output voltage sampled for control loop PI and OVP, UVP Vzcd Demagnetization detection from auxiliary for TM Isen Current sensing for minimum current threshold and OCP DocID025038 Rev 2 9/59 59 Main characteristics and circuit description AN4338 As shown in Figure 4, defining the minimum current level before starting the calculated Ton period allows the PFC to process more energy as compared to the case using only the ontime calculated by the control loop. This is a good way to balance the energy lost in MOS charging, nearly compensating constant on-time non-idealities. This operation allows also to artificially increase the on-time near the mains voltage zero crossing. As a result the energy transfer is more efficient and the input current distortion is reduced. Figure 4. Enhanced constant on-time PFC boost inductor current profile The frequency compensation of the feedback loop that controls the output voltage is implemented using firmware execution by the STNRG388A. The voltage feedback loop is compensated using a PI algorithm. More in detail it uses two different loop speeds according to the operating conditions. During steady-state operation the algorithm implements a slow response loop with crossover frequency designed around 10 Hz, which guarantees excellent THD and PF. During transient operations that cause large bulk voltage deviation, the loop speed becomes faster and the recovery time is dramatically reduced. This effect is obtained using a different set of PI coefficients applied when the controller detects a variation of the bulk voltage greater than a defined threshold. This control technique, available only with the digital approach, allows the best performance in both steady-state and transient conditions. A feedforward compensation based on mains input voltage measurement is also introduced in order to keep the regulation loop bandwidth constant over the complete mains input voltage range. The PI compensation algorithm calculates the required on-time near the zero-crossings of the mains voltage. The calculation is based on the last taken sixteen output voltage samples. The PWM signal is generated using two coupled high speed “State Machine, Event Driven” (SMED). SMEDs are software configurable peripherals able to manage very fast asynchronous events without CPU intervention. SMEDs inputs are the zero current detection signal, used for valley switching, minimum current detection for enhanced constant on-time implementation and overcurrent information for power stage protection. All these three signals use the analog comparators inside the STNRG388A device. 10/59 DocID025038 Rev 2 AN4338 Main characteristics and circuit description In critical condition, such as when the mains voltage approaches the PFC DC output, a proprietary algorithm guarantees that the “Continuous Conduction Mode” (CCM) is avoided. The PFC can be operated in valley skipping and burst mode for improved efficiency at low output loads. Valley skipping condition is directly managed by properly configured SMEDs states. If the calculated on-time is lower than a minimum configurable thresholds, the system inserts valley skipping, up to three valleys. The system continuously checks that the PFC output voltage is under a reference value. If the limit is exceeded, the PFC enters the burst mode switching off the MOS. As soon as the PFC output voltage goes below a recovery value, the PFC is restarted. 1.7 Digital LLC description The LLC block diagram and STNRG388A pins used for LLC control are shown in Figure 5. The schematic shows that the voltage feedback loop is implemented with a typical analog approach. The loop is closed sensing both the output voltages with a circuit using a TL431 device modulating the current in the optocoupler diode. The resulting feedback voltage is then sampled by the 10-bit ADC of the STNRG388A device. In order to avoid half bridge (HB) switching noise effects, feedback voltage sampling instants are opportunely chosen by means of a dedicated ADC hardware triggering function. The resonant stage average current is also sampled by the ADC to implement the first level of overcurrent protection (OCP). The intervention level is calculated taking into account the input voltage to the resonant stage. This approach allows limiting the maximum output power. A second level OCP is implemented by an external comparator integrated in the L6382D IC which immediately stops the gate drives activity. A digital fault signal is sent to the STNRG388A that resets the system and attempts a restart after about 1 s. This protection has therefore an auto-restart behavior but can be easily modified into a latched one. The HB power MOSFETs are driven by the controller's coupled SMEDs through the half bridge gate driver in the L6382. The input signals to the SMEDs include the resonant stage zero current detection signal and a signal for adaptive dead time management generated by a dedicated circuitry. The zero current detection information is used to implement a proprietary control technique named “Time-Shift Control” (TSC). The TSC methodology consists in controlling the amount of time elapsing from a zero-crossing of the tank current to the switch-off of the MOSFET currently on, as shown in Figure 6. Conceptually, with TSC an inner loop is closed and the outer loop that regulates the output voltage provides the reference for the inner loop. This inner loop is completely managed by SMEDs using the zero current detection information. Time-shift control outperforms the direct frequency control method. DocID025038 Rev 2 11/59 59 Main characteristics and circuit description AN4338 In particular, one of the advantages of the TSC method is that the power stage, as a first approximation, behaves like a first order system. As a consequence, the compensator design is considerably simplified and can be obtained better dynamic performance to input voltage and load transients. A dedicated anti-capacitive protection mechanism prevents the harmful switching in the capacitive mode operation. This protection acts in two different ways. If the HB operation approaches the capacitive mode (i.e.: the ZCD signal becomes closer to the HB transition than a predefined time) the STNRG388A decreases linearly the time-shift applied. This means an increase of the HB switching frequency that moves the system away from the capacitive mode. If the operation is still close to the capacitive mode after a certain timeout value, the system is shut down. If the capacitive mode is detected (i.e.: the current waveform leads the HB voltage) the system is immediately shut down. Figure 5. LLC block diagram and signals description 12/59 DocID025038 Rev 2 AN4338 Main characteristics and circuit description Table 2. LLC signals description Name Description Vfb Control loop feedback voltage Isen Current sense for load management and OCP HB_deadT Adaptive dead time signal Figure 6. Time-shift concept DocID025038 Rev 2 13/59 59 Efficiency measurement 2 AN4338 Efficiency measurement Table 3 shows the overall efficiency, measured at different mains voltages. It is worth reminding that, even if the efficiency results are quite good, this evaluation board is not optimized in this respect. Many circuits, that are not currently used, are still supplied, adversely affecting efficiency results. Table 3. Overall efficiency measured at different AC input voltages Load = 100% Vin [Vrms] 5 Volt 12 Volt 24 Volt Pout Pin Eff. Vout [V] Iout [A] Vout [V] Iout [A] Vout [V] Iout [A] [W] [W] [%] 90 5.013 1.9987 11.95 2.0001 23.96 5.993 177.513 201.71 88.00% 115 5.013 1.9987 11.95 2.0001 23.96 5.993 177.513 198.21 89.56% 230 5.013 1.9987 11.95 2.0001 23.96 5.993 177.513 194.21 91.40% 264 5.013 1.9987 11.95 2.0001 23.96 5.993 177.513 193.75 91.62% Pout Pin Eff. Load = 75% Vin [Vrms] 5 Volt 12 Volt 24 Volt Vout [V] Iout [A] Vout [V] Iout [A] Vout [V] Iout [A] [W] [W] [%] 90 5.011 1.4981 11.95 1.4997 23.99 4.4943 133.2467 150.66 88.44% 115 5.01 1.4981 11.95 1.4997 23.99 4.4943 133.2452 148.75 89.58% 230 5.01 1.4981 11.95 1.4997 23.99 4.4943 133.2452 146.76 90.79% 264 5.01 1.4981 11.95 1.4998 23.99 4.4962 133.2919 146.55 90.95% Pout Pin Eff. Load = 50% Vin [Vrms] 5 Volt 12 Volt 24 Volt Vout [V] Iout [A] Vout [V] Iout [A] Vout [V] Iout [A] [W] [W] [%] 90 5.009 0.9981 11.95 0.9998 24.01 2.9962 88.88585 101.26 87.78% 115 5.009 0.9981 11.95 0.9998 24.02 2.9962 88.91582 100.51 88.46% 230 5.009 0.9981 11.95 0.9998 24.01 2.9962 88.88585 99.82 89.05% 264 5.009 0.9981 11.95 0.9998 24.01 2.9962 88.88585 99.72 89.14% Pout Pin Eff. Load = 25% Vin [Vrms] 5 Volt 12 Volt 24 Volt Vout [V] Iout [A] Vout [V] Iout [A] Vout [V] Iout [A] [W] [W] [%] 90 5.01 0.4937 11.96 0.4997 24.03 1.4981 44.44919 53.02 83.83% 115 5.01 0.4937 11.96 0.4997 24.03 1.4981 44.44919 52.94 83.96% 230 5.01 0.4937 11.96 0.4997 24.03 1.4981 44.44919 52.85 84.10% 264 5.01 0.4937 11.96 0.4997 24.03 1.4981 44.44919 52.47 84.71% 14/59 DocID025038 Rev 2 AN4338 3 PFC performance PFC performance This evaluation board has been tested according to the European standard EN61000-3-2 Class-D and Japanese standard JEITA-MITI Class-D, at the full load and 75 W input power, at both the nominal input voltage mains. The test results are shown from Figure 7 to Figure 10. Figure 7. EN61000-3-2 compliance at 230 V ac 50 Hz, full load Figure 8. JEITA-MITI compliance at 100 V ac 50 Hz, full load Vin = 230 V ac - 50 Hz, Pin = 196 W Vin = 100 V ac - 50 Hz, Pin = 202 W Figure 9. EN61000-3-2 compliance at 230 V ac 50 Hz, 75 W Figure 10. JEITA-MITI compliance at 100 V ac 50 Hz, 75 W Vin = 230 V ac - 50 Hz, Pin = 75 W Vin = 100 V ac - 50 Hz, Pin = 75 W DocID025038 Rev 2 15/59 59 PFC performance AN4338 In Figure 11 and Figure 12 the AC input voltage and current waveforms at the nominal input mains and full load are shown. Figure 11. Input voltage and current at 115 V ac Figure 12. Input voltage and current at 230 V ac - full load - full load CH3: AC input voltage CH4: AC input current CH3: AC input voltage CH4: AC input current In Table 4 power factor (PF) and total harmonic distortion (THD) are shown for nominal input voltages. Table 4. PFC PF and THD 16/59 115 V ac PF THD [%] 100% 0.995 2.4 75% 0.994 2.6 50% 0.987 3.3 25% 0.959 5.5 230 V ac PF THD [%] 100% 0.972 3.2 75% 0.952 3.6 50% 0.906 5.3 25% 0.754 11.3 DocID025038 Rev 2 AN4338 Functional checks 4 Functional checks 4.1 Power factor corrector stage Figure 13 shows the PFC MOSFET's drain voltage, choke current and voltages on the current sense pin along a line half period at 115 V ac. Low current distortion and high power factor are achieved thanks to the enhanced constant on-time technique. Moreover, this control methodology guarantees a considerable reduction of THD (total harmonic distortion). In Figure 14 the same signals are captured at the top of the input sine wave. Transition mode control makes the inductor work on the boundary between the continuous and discontinuous conduction mode. ZCD transition (Figure 17) is detected by SMED1 and used as a start signal for a new switching cycle. Figure 15 and Figure 16 show the same waveforms at 230 V ac. A significant plus of TM operation is the possibility to work in ZVS: if the converter instantaneous input voltage is lower than Vout/2, the ZVS (zero voltage switching) condition is achieved, decreasing MOSFET switching losses. As displayed in Figure 16, if the instantaneous input voltage is higher than Vout/2, the MOSFET is turned on just on the valley of the drain voltage. In other words, valley switching guarantees transition losses minimization. Figure 13. PFC Vds and inductor current at 115 V ac - 60 Hz - full load CH1: Q1 drain voltage CH2: current sense CH4: choke current Figure 14. PFC Vds and inductor current at 115 V ac - 60 Hz - full load - detail CH1: Q1 drain voltage DocID025038 Rev 2 CH2: current sense CH4: choke current 17/59 59 Functional checks AN4338 Figure 15. PFC Vds and inductor current at 230 V ac - 50 Hz - full load CH1: Q1 drain voltage CH2: current sense CH4: choke current Figure 16. PFC Vds and inductor current at 230 V ac - 50 Hz - full load - detail CH1: Q1 drain voltage CH2: current sense CH4: choke current Figure 18 shows PFC reaction to a line transient from 115 V ac to 230 V ac. In this condition, a predictive algorithm detects the input voltage step and forces an immediate recalculation of the PFC compensation algorithm. As a consequence, on-time is updated without waiting for zero crossing condition. Figure 17. PFC signals at 115 V ac - 60 Hz - full load CH3: ZCD 18/59 CH2: current sense CH4: gate drive Figure 18. PFC signals - line transient 115 V ac to 230 V ac - 60 Hz - full load CH1: output voltage DocID025038 Rev 2 CH2: input voltage CH4: choke current AN4338 4.2 Functional checks Resonant stage Hereafter are shown some waveforms related to the resonant stage during steady-state operation. The switching frequency at the full load and nominal input voltage is around 75 KHz, in order to achieve a good trade-off between transformer losses and size. Figure 19 shows the resonant ZVS operation. Since the converter operates slightly below resonance, the resonant current lags behind the voltage applied, as the input impedance of the resonant network is inductive. The current is negative during the rising edge of half bridge voltage and positive during the falling edge, providing, in both cases, the energy to allow the node HB to swing. Figure 19. Resonant stage waveforms, full load CH1: HB voltage CH2: LS gate CH3: HS gate CH4: resonant current In Figure 20 the adaptive dead time feature is represented. Figure 20. Adaptive dead time CH1: HB voltage CH2: HS gate CH3: LS gate CH4: HB dead time DocID025038 Rev 2 19/59 59 Functional checks AN4338 Figure 21. Adaptive dead time - HB rising edge Figure 22. Adaptive dead time - HB falling edge CH1: HB voltage CH3: LS gate CH2: HS gate CH4: HB dead time CH1: HB voltage CH3: LS gate CH2: HS gate CH4: HB dead time Adaptive dead time is implemented through a dedicated external sensing circuitry. As shown in Figure 21 and Figure 21, the MOSFETs are turned on after the rising edge of HB_deadt signal. 4.3 Dynamic load operation and output voltage regulation Figure 23 and Figure 25 show the output voltage regulation in case of load transients on both the resonant stage outputs. The waveforms have been captured applying to one output a load transient from 0 to the full load, while the other is delivering the full load. Time-shift control allows a dramatic improvement in resonant stage transient response. The output voltage reaches the steady-state condition in less than 1 ms. It can also be noted that 12 V output has a very tight variation (within ± 3%) even considering the spikes at the current edges (see Figure 24). Likewise, in Figure 26, it is possible to see that the 24 V output has a tight variation (within ± 4%). 20/59 DocID025038 Rev 2 AN4338 Functional checks Figure 23. 12 V load transition at 115 V ac - 60 Hz Figure 24. 12 V transition no-load to full load at 115 V ac - 60 Hz CH2: 12 V output voltage CH4: 12 V output current Figure 25. 24 V load transition at 115 V ac - 60 Hz CH2: 12 V output voltage CH4: 12 V output current Figure 26. 24 V transition no-load to full load at 115 V ac - 60 Hz CH2: 24 V output voltage CH4: 24 V output current DocID025038 Rev 2 CH2: 24 V output voltage CH4: 24 V output current 21/59 59 Functional checks 4.4 AN4338 Cross regulation Figure 27 and Figure 28 show the output voltage cross regulation with transient conditions similar to those of the test described above apart from the load step frequency, which is 300 Hz on one output, with the other one delivering the rated load. The transient response is so good that both outputs are able to reach the steady-state condition well before another load transition takes place. s Figure 27. 24 V load transition at 115 V ac - 60 Hz - cross regulation on 12 V CH3: 24 V output voltage 22/59 CH2: 12 V output voltage CH4: output current Figure 28. 12 V load transition at 115 V ac - 60 Hz - cross regulation on 24 V CH3: 24 V output voltage DocID025038 Rev 2 CH2: 12 V output voltage CH4: output current AN4338 4.5 Functional checks Startup Figure 29 and Figure 30 show waveforms during the startup at nominal voltages and the full load of the PFC and resonant stages. It is possible to note the sequence of the two stages; once the ON/OFF signal is asserted high, the voltage on C42 increases up to the Vcc turnon threshold of the L6382D. The driver, then, generates the supply voltage for the STNRG388A. At first the PFC is enabled, hereafter its output voltage starts increasing from the mains rectified peak voltage to its nominal value. Meanwhile the resonant stage is kept disabled. As soon as the PFC voltage reaches 380 V, the resonant starts to operate. Hence both the output voltages rise according to the soft-start and reach their nominal levels. Figure 29. Startup at full load and 115 V ac - 60 Hz by ON/OFF signal CH1: PFC output voltage CH3: 24 V output voltage CH2: ON/OFF signal CH4: 12 V output voltage Figure 30. Startup at full load and 230 V ac - 50 Hz by ON/OFF signal - detail CH1: PFC output voltage CH3: 24 V output voltage DocID025038 Rev 2 CH2: ON/OFF signal CH4: 12 V output voltage 23/59 59 Functional checks AN4338 Figure 31 shows the details of the half bridge startup. It can be noted that the low-side gate drive starts first with a pulse of about 10 s, used to pre-charge the bootstrap capacitor. After a fixed delay of 40 s (used to let any possible oscillations to be completely damped), the half bridge starts its switching activity. The initial HB pulse is asymmetric as the duration of the high-side pulse is half that of the low-side one. The purpose of this operation is to prevent hard switching operation and flux imbalance. This startup sequence is implemented by means of a proper configuration of resonant SMEDs' timings that can be dynamically adjusted depending on the operating conditions of the resonant stage. As soon as the startup sequence is completed, SMEDs are immediately reconfigured to manage normal operation. Figure 32 and Figure 33 show the PFC and resonant converter turn-off. Figure 31. Resonant stage safe startup at full load CH1: HB voltage CH3: HS gate CH2: LS gate CH4: resonant current Figure 32. Turn-off at full load and 115 V ac - 60 Hz by ON/OFF signal CH1: PFC output voltage CH3: 24 V output voltage 24/59 CH2: ON/OFF signal CH4: 12 V output voltage Figure 33. Turn-off at full load and 230 V ac - 50 Hz by ON/OFF signal - detail CH1: PFC output voltage CH3: 24 V output voltage DocID025038 Rev 2 CH2: ON/OFF signal CH4:12 V output voltage AN4338 4.6 Functional checks Mains dips Figure 34 and Figure 35 show the converter behavior in the case of one cycle and a half (25 ms at 60 Hz or 30 ms at 50 Hz) mains dip at 115 V ac and 230 V ac. Even if the PFC output voltage slightly drops, the output voltage is kept regulated without any disturbance, therefore demonstrating a good immunity of the circuit against mains dips. Figure 34. One and half cycle (25 ms) mains dip at full load and 115 V ac - 60Hz CH1: PFC output voltage CH3: 24 V output voltage CH2: HB voltage CH4: PFC input voltage Figure 35. One and half cycle (30 ms) mains dip at full load and 230 V ac - 50 Hz CH1: PFC output voltage CH3: 24 V output voltage DocID025038 Rev 2 CH2: HB voltage CH4: PFC input voltage 25/59 59 Functional checks 4.7 AN4338 Mains ripple rejection Another of the benefits introduced by the time-shift control method is the high rejection against input voltage variations of the LLC stage. This is obtained thanks to a high gain in the Gloop at mains frequency. During normal operation, the PFC output voltage has a ripple at twice of the mains frequency. On the two LLC output voltages the amount of the remaining ripple is very small. Figure 36. LLC input voltage ripple rejection at full load - +12 Vout measurement(1) CH1: PFC output voltage CH2: 12 V output voltage CH3: 24 V output voltage Figure 37. LLC input voltage ripple rejection at full load - +24 Vout measurement(1) CH1: PFC output voltage CH3 : 24 V output voltage CH2: 12 V output voltage 1. All signals are ac coupled. Looking at Figure 36 and Figure 37 it is possible to calculate the rejection ratio for the two outputs. The PFC output ripple is 6.22 V while the remaining ripple is 4.97 mV on the +12 Vout and 9.97 mV on the +24 Vout. This means the two rejection ratios are -61.9 dB and -55.9 dB respectively for +12 Vout and +24 Vout. 26/59 DocID025038 Rev 2 AN4338 Functional checks Figure 38 and Figure 39 show the two LLC output voltages ripple and noise. In Figure 38 the image is taken with infinite persistence and no synchronization while in Figure 39 the signal are synchronized with input voltage mains and taken with the maximum resolution allowed by the scope (2 ns/pt). In both cases the channels bandwidth is set to 20 MHz. The ripple and noise measured is about 65 mV on the +12 V output and about 70 mV on the +24 V output. The second figure is useful to check which is the contribution of the residual mains ripple. Figure 38. Output voltages ripple and noise Figure 39. Output voltages ripple and noise with with infinite persistence(1) maximum resolution (2 ns/pt - sync. with mains)(1) CH2: 12 V output voltage CH3: 24 V output voltage CH2: 12 V output voltage CH3: 24 V output voltage 1. All signals are ac coupled. DocID025038 Rev 2 27/59 59 Conducted emission pre-compliance test 5 AN4338 Conducted emission pre-compliance test Figure 40 and Figure 41 show the peak and average measurements of the conducted emission noise at the full load and nominal mains voltages. The limits shown in the diagrams are EN55022 Class-B, which is the most popular norm for domestic equipment and has more severe limits compared to Class-A, dedicated to IT technology equipment. As visible in the diagrams, in all test conditions the measurements are far below the limits. Figure 40. CE peak and average measurement 230 V - phase wire Figure 41. CE peak and average measurement 115 V - phase wire 28/59 DocID025038 Rev 2 BD@JO@M 3 . 3 , 3 . 3 , 3 . 3 . $ O' 3 , 3 , 3 . 3 . 3 , 3 . +1 % 4. 3 , 3 . % 4. $ O' $ O' 3 . 3 . 3 , 3 . 3 . 7BD BD@JO@O 3 ON 3 ON 3 ON $ O' BD@JO@O $ V'9 $ Q' $ Q' @ $ O'7 )0-& )0-& )0-& NN NN NN 3 3 % #"587 % #;7$W 7@7 % #"587 37 7BD 3 ON 3 , 3 3 )4 )&"54*/, $ O'7 7@1'$@PVU + 7@SFDU 7@BD@JO % %9#) (/%@" 45'/./ 3 3 3 3 3 , $ O' 3 , 3 3 , 3 , 3 3 - 3 2 1'$@PDQ - 1'$@[DE O' O' 3 , 3 3 $ $ V'7 % /84 3 39 $ 2 ..#5" 3 3 $ O' % /84 $ V'7 2 ..#5" % #;7$ 3 ON % 455)- $ V'9 (/%*0 )#@[DE .5" )#@EFEU $ O' BVY@QXS@IW 73&' $4* $40 )&( OD )746 OD 065 )4( #005 O' $ + $0/" $ O' % #"587 CPPU ON 39 3 ON $ SFWV'7 SFWV'7 455)" % 7$$@" IWTV -% 1'* -4* )4* )&* 1'( OD 513 (/% -4( 7$$ 6 V'7 $ ON 39 +19 +19 *PVU@1'$"NBY 1'* -4* )#@PDQ 3 /5$34 7@7 % / (/%*0 +19 7$$@" +19 3 3 3 L 7$$ 3 3 7@W O' $ )#@%FBE5 513 )#@EFEU 7@7 )#@%FBE5 $ O' % #;7$ 3 3 3 3 6" 54 $1@JO 7$$@PL $ O' 3 , +19 +1 3 ON $ O' 39 3 % ON $ O' 7@7 3 3 3 ON 7@W $ Q' +19 #3 %3"*/ %3"*/ 6 7*1&3-/ $ V'7 $0/5 7%% 3 , BVY@QXS@IW 4063$& '# % #"587 3 , 2 ..#5" 2 ..#5" 3 3 455)" 3 ON 3 3 SFWV'7 SFWV'7 $ 3 3 % +19 +19 6 4')" 3 ON 6 5-"$; 3 3 % 455)" % #"7 $ ON 2 #$$ 2 #$$ 3 , $ O' 5 $ O' 3 , $ O' $ ON 3 3 6 4')" $ V'7 % 4514-$'1 $ O' $ O' 3 , 6 54"; $ O' $ ON 3 , 3 , 3 , 3 ON 3 ON 3 , 3 , $ V'7 3 , % ..4;7 $ O' $ ON 3 ON - % /84 $ SFWV'7 SFWON % /84 )4 )&"54*/, $ V'7 3 ON $ O' 3 , 3 , $ V'7 3 3 % 4514-" % ..4;7 3 ON 3 ON )4 )&"54*/, 3 , % 4514)$'1 3 , 2 #$$ 3 , 3 , 3 , 3 , $ V'7 $ V'7 % 4514)$'1 % 4514-$'1 )4 )&"54*/, +19 5 $ V'7 +19 $ O' 3 3 % #"587 $ Q' 3 , )4 6 4')" $ ON 3 ON 3 , +19 3 3 3 3 3 , 2 45'/./ O' 2 45'/./ $ 3 3 3 3 % 1,&" 2 SFW#$$ SFW1#44/5 $ ON 3 , 2 ..#5" 3 , 2 ..#5" $ O' 7$$@" 3 3 3 3 $ SFWV'7 SFWV'7 3 3 , 3 3 3 3 O' $ , % #;7$7 $ V'7 6# 54 3 , 3 3 )#@OPEF 3 , CPPU )0-& NN - (/%@" )0-& NN )#@*@BWH )0-& NN )#@WGC )&"54*/, BD@JO@M 7$$ $ O' ' '64&5" )4* DocID025038 Rev 2 +19 3 , 3 , $ V'7 0/0'' 7 45#: 7 45#: (/% 7 45#: (/% (/% 0/ 0'' + 7 7 7 7 (/% (/% (/% (/% (/% (/% (/% (/% 7 7 7 7 + ".7 $ O' 7$$@" $ O' $ V'7 - 7!" $ O' $ V'7 7!" 3 , 7!" - Appendix A AN4338 Electrical diagrams Electrical diagrams Figure 42. Main board electrical diagram 29/59 59 DocID025038 Rev 2 513 )#@EFEU 3 3 O' $ 6 -$7( 6" 54 6# 54 $ O' $ O' 3 , 3 , 3 , 3 , 3 , 30/59 % #"58 7 % #"58 7 3 3 7@7 % ON 3 3 $ O' % 455)3" 3 3 O'L7 $ 3 3 3 ON Q'L7$( $ ". $1@JO )#@OPEF Electrical diagrams AN4338 Figure 43. Electrical diagram of dead time block &2113&% - &2113&% - *3,2BB8$577; *3,2BB8$575;B2% *3,2B *3,2B *3,2BB'$/,7;B2% *3,2BB'$/,5;B2% 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 9'',2 5 QP 5 QP 9'',2 6: ,0B5/,1. 6: ,0B567 *1',2 5 QP 5 QP *1',2 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 QP 5 5 & S) 5 5 S) *1',2 ,2BB3: 0B2% ,2BB3: 0 ,2BB3: 0 ,2BB3: 0B&. ,2BB3: 0 ,2BB3: 0 9287B,& 6715*$ 5 5 *1',2 5 5 *1'$ *1',2 X) Q) *1',2 5 5 *1'$ ',1B&&2 ',1B,2B ',1B,2B ',1B2% ',1B,2B ',1B2% 5 &33 &33 &30 &33 &33 $'& $'& $'& $'& $'& $'& $'& $'& ',1B&&2 ',1B,2B ',1B,2B ',1B2% ',1B,2B ',1B2% *1'$ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ &33>@ &33>@ &30 &33>@ &33>@ 5 9''$ 9''$ ',*,1>@&&2BFON ',*,1>@ ',*,1>@ ',*,1>@ ',*,1>@ ',*,1>@ & & *1'$ *3,2>@8$57B7; *3,2>@8$57B5; *3,2>@,&BVGD+6(2VF2XW *3,2>@,&BVFO+6(2VF,Q *3,2>@'$/,BW[ *3,2>@'$/,BU[ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ 6:,0 1567 9287 8 Q) & 62&.(7(13/$6276 *3,2BB8$577; *3,2BB8$575;B2% *3,2BB6'$B+6(287 *3,2BB6&/B+6(,1 *3,2BB'$/,7;B2% *3,2BB'$/,5;B2% & < QP ,2BB3: 0B2% ,2BB3: 0 ,2BB3: 0 ,2BB3: 0B&. ,2BB3: 0 ,2BB3: 0 5 5 5 5 6: ,0B5/,1. 6: ,0B567 9287B,& X) 9'',2 & X) 9'',2 & *1',2 9''$ *1'$ 9'',2 *1',2 DocID025038 Rev 2 &33 &30 &33 &33 &33 $'& $'& $'& $'& $'& $'& $'& $'& &33 &33 &30 &33 &33 & & & & & *1'$ & & S) S) S) S) & 5 & & & $'& $'& $'& $'& $'& $'& $'& $'& *1'$ 5 QP 5 QP 5 5 5 5 5 5 5 5 5 5 5 5 5 ,2BB3: 0B&. *1',2 5 QP 5 QP S) S) S) S) S) S) S) S) & QP & 5 5 QP 5 QP 9'',2 5 QP 5 QP 5 5 5 5 5 5 5 5 5 5 5 5 5 5 QP 5 QP - - - &2113&% $0 *1'$ &2113&% - *1'$ &2113&% - &2113&% &2113&% 5 QP 5 QP AN4338 Electrical diagrams Figure 44. Electrical diagram of debug control board - controller 31/59 59 DocID025038 Rev 2 "%$ "%$ 51 "%$ 51 "%$ $1. 51 + +6.1&3 3 , *0@@18 . *0@@18 . *0@@18 . *0@@18 .@0# (/%*0 0651654 EJTBCMF *0@@18 .@$, "%$ %*/@*0@ 7%%*0 7%%*0 (/%*0 7%%*0 (/%*0 (/%*0 3 3 (/%*0 3 , 3 3 $ O' 3 L 3 , (/%*0 (/%*0 $ O' 3 , 3 , $ O' 3 , 3 3 3 7%%*0 O' $ (/%*0 3 3 , -7$40 6$ -7$40 6" -7$40 6# -7$40 6% (/%*0 32/59 %*/@$$0 $ O' (/%" (/%@" 7@7 *0@@18 . "%$ "%$ %*/@0# %*/@*0@ %*/@*0@ %*/@0# $11 $11 $11 "%$ $11 "%$ "%$ (/%" (/%" (/%*0 (/%*0 (/%" $ $ $ 3 $ $ O' O' O' 3 Q' O' (/%" (/%" (/%" $ V' 51 51 7%%" 3 3 3 3 3 3 3 3 3 3 (/%*0 (/%*0 3 3 3 , , 3 3 3 3 3 3 3 , 3 3 3 3 3 3 3 51 51 7$$ (/%" (/%*0 7@7 (/%*0 (/%" 7$$@PL )#@*@BWH )#@WGC )#@[DE )#@PDQ )4* 1'* -4* )#@EFEU 1'$@PDQ 1'$@[DE 7@1'$@PVU 7@SFDU 7@BD@JO $0/" + ". (/%" (/%*0 (/%" Electrical diagrams AN4338 Figure 45. Electrical diagram of debug control board - connections 7$$ 7@7 (/%*0 3-*/,DPOOFDUPSWFSU + 7$$ 48*. (/% /345 7$$ + $0//7$$@FYU 7@7 (/%*0 V) - V) - (/%*0 345@48 *. V) - V) - 7065 -%%5 "%+ 7*/ 6 % 3 074 L 7%%*0 (/%*0 + 3 L 453*11. (/%*0 V' $ V'7 $ (/%*0 % 074 3 L 7%%*0 48 *.@3-*/, + )&"%&3 3 3 +6.1&3 + +*6.1&3 3 3 3 3 (/%*0 (/%*0 (/%*0 V' $ V' $ + (/%*0 3 3 51 +6.1&3 + 164)@#9NN15) 48 3 3 3 L V'7 $ (/%" (/%*0 (/%*0 V' $ V' $ 51 + $0//7@7@FYU DocID025038 Rev 2 48 *.@345 7%%*0 7%%*0 (/%*0 3 3 3 48 *.@3-*/, V'7 $ (/%*0 7%%" 7%%*0 7%%*0 6"35*' (/%*0 + L L 6"35@39 + + 6"35@59 (/%*0 7%%*0 (/%*0 7%%*0 +6.1&3 + +6.1&3 + +6.1&3 3 , +6.1&3 +6.1&3 + 3 , + + +6.1&3 + +6.1&3 3 L 7%%*0 +6.1&3 3 L 3 3 .$$ & & & 744 7$$ 8$ 4$4%" 3 L 3 L O' 6 % 074 % 074 % 074 % 074 (/%*0 3 3 3 $ % 074 % 074 ". (1*0@@6"3559 (1*0@@6"3539@0# (1*0@@%"-*39@0# (1*0@@%"-*59@0# (1*0@ (1*0@ AN4338 Electrical diagrams Figure 46. Electrical diagram of debug control board - power and interfaces 33/59 59 *1',2 - +($'(5 - 8$57,) 9&& 6:,0 *1' 1567 - 5/,1.FRQQHFWRUYHUW - +($'(5 5 5 *3,2BB8$575;B2% *3,2BB8$577; *1',2 5 5 5 5 9'',2 X) ,2BB3:0B2% ,2BB3:0 ,2BB3:0 ,2BB3:0B&. ,2BB3:0 ,2BB3:0 *1',2 Q) & *1',2 5 5 *1'$ *1',2 5 5 6715*$ X) Q) *1',2 ',1B&&2 5 5 &33 &33 &30 &33 &33 $'& $'& $'& $'& $'& $'& $'& $'& ',1B&&2 ',1B,2B ',1B,2B ',1B2% ',1B,2B ',1B2% *1'$ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ $'&,1>@ &33>@ &33>@ &30 &33>@ &33>@ ',1B,2B ',1B,2B ',1B2% ',1B,2B ',1B2% 5 5 *1'$ 9''$ 9''$ ',*,1>@&&2BFON ',*,1>@ ',*,1>@ ',*,1>@ ',*,1>@ ',*,1>@ & & *1'$ *3,2>@8$57B7; *3,2>@8$57B5; *3,2>@,&BVGD+6(2VF2XW *3,2>@,&BVFO+6(2VF,Q *3,2>@'$/,BW[ *3,2>@'$/,BU[ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ *3,2>@3:0>@ 6:,0 1567 9287 ,2BB3:0B2% ,2BB3:0 ,2BB3:0 ,2BB3:0B&. ,2BB3:0 ,2BB3:0 *3,2BB6'$B+6(287 *3,2BB6&/B+6(,1 6:,0B5/,1. 6:,0B567 8 9'',2 & X) 5 & 9287B,& 9287B,& *1',2 X) 5 6:,0B567 & 6:,0B5/,1. 567B6:,0 5 N 9'',2 6:,0B5/,1. 5 N 9''$ *1'$ 9'',2 *1',2 DocID025038 Rev 2 &33 &30 &33 &33 &33 $'& $'& $'& $'& &33 &33 &30 &33 &33 5 9B9 5 *1',2 - QP & & & & $'& $'& $'& $'& $'& $'& $'& $'& S) & *1'$ S) & *1'$ S) & S) S) S) S) *1',2 -803(5 / X+ S) & & X)9 X+ *1'$ & X) & X) - *1',2 -803(5 / & X) - *1',2 ,2BB3:0B&. X+ & 675,330 / 73 73 34/59 9'',2 $0 9''$ 9'',2 Electrical diagrams AN4338 Figure 47. Electrical diagram of slim control board - controller DocID025038 Rev 2 "%$ "%$ 51 "%$ 51 "%$ 51 $1. *0@@18 . *0@@18 . *0@@18 . *0@@18 .@0# (/%*0 0651654 EJTB CMF *0@@18 .@$, "%$ %*/@*0@ 3 3 , $ O' 3 L $ O' 3 , 3 , (/%*0 $ O' 3 3 3 (/%" 7@7 (/%" (/%*0 O' $ 3 3 3 7%%*0 , (/%*0 O' $ 3 3 -7$40 6$ -7$40 6# -7$40 6" , (/%*0 (/%*0 (/%*0 (/%*0 -7$40 6% 3 , 3 (/%*0 7%%*0 7%%*0 7%%*0 + +6.1&3 , 3 %*/@$$0 $11 "%$ "%$ %*/@0# %*/@*0@ %*/@*0@ %*/@0# $11 $11 *0@@18 . $11 "%$ "%$ "%$ (/%" (/%" (/%*0 (/%*0 (/%" 3 $ $ $ $ $ O' O' O' 3 Q' O' (/%" (/%" (/%" $ V' 51 51 7%%" 3 3 3 3 3 3 3 3 3 3 3 3 (/%*0 (/%*0 3 3 3 , , 3 3 3 3 3 , 3 3 3 3 3 3 3 51 51 7$$ (/%" (/%*0 7@7 (/%*0 (/%" 7$$@PL )#@*@BWH )#@WGC )#@[DE )#@PDQ )4* 1'* -4* )#@EFEU 1'$@PDQ 1'$@[DE 7@1'$@PVU 7@SFDU 7@BD@JO $0/" + ". (/%" (/%*0 (/%" AN4338 Electrical diagrams Figure 48. Electrical diagram of slim control board - connections 35/59 59 Electrical diagrams AN4338 It is worth highlighting that the aim of this evaluation board is to make the user acquainted the application and to provide a system for learning the use of the STNRG388A IC in power supply applications. As a consequence, this evaluation module is absolutely not optimized and contains many circuits that are disabled or are not actually used. 36/59 DocID025038 Rev 2 AN4338 Bill of materials Appendix B Bill of materials The detailed specifications of the PFC coil, resonant power transformer and auxiliary flyback transformer are available in the application note AN3329 of the EVL170W-FTV evaluation board. The bill of materials of the power board is shown in Table 5, while for the debug and slim control boards these are listed in Table 6 on page 48 and in Table 7 on page 54 respectively. Table 5. Bill of materials EVLSTNRG-170W “power board” Ref. Part Case Description Supplier C1 2.2 nF Dia. 12 p.10 mm Y1 - safety cap. CD12-E2GA222MYGS TDK C2 2.2 nF Dia. 12 p.10 mm Y1 - safety cap. CD12-E2GA222MYGS TDK C3 270 pF 0805 16 V cercap. - general purpose - X7R - 10% KEMET C4 100 F - 450 V Dia. 18 x 35 p.10 mm 450 V - aluminium elcap. - KXG series - 105 °C NIPPON CHEMICON C5 1 F - X2 11 x 26.5 p. 22.5 mm X2 - FLM CAP - B32923C3105K EPCOS C6 1F - X2 11 x 26.5 p. 22.5 mm X2 - FLM CAP - B32923C3105K EPCOS C7 470 nF-630 V 11 x 26.5 p. 22.5 mm 630 V - FLM CAP - B32613A6474K EPCOS C8 470 nF-630 V 11 x 26.5 p. 22.5 mm 630 V - FLM CAP - B32613A6474K EPCOS C9 100 F - 450 V Dia. 18 x 35 p.10 mm 450 V - aluminium elcap. - KXG series - 105 °C NIPPON CHEMICON C10 47 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C11 100 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C12 100 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C13 1000 F - 35 V Dia. 12 x 25 p. 5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C14 1000 F - 35 V Dia. 12 x 25 p. 5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C15 100 F - 50 V Dia. 8 x 11 p. 3.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C16 100 nF 0603 50 V cercap. - general purpose - X7R - 10% KEMET C17 2.2 nF Dia. 12 p.10 mm Y1 - safety cap. CD12-E2GA222MYGS TDK C18 4.7 nF 1206 500 V cercap. - 12067A221JAT2A - C0G - 5% AVX C19 47 F - 50 V Dia. 6.3 x 11 p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C21 1000 F - 25 V Dia.12 x 20 p. 5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C22 100 F - 50 V Dia. 8 x 11 p. 3.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON 50 V cercap. - general purpose - X7R - 10% KEMET C23 100 nF 0805 C24 N. M. 0805 C25 100 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C26 100 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C27 220 pF 1206 500 V cercap. - 12067A221JAT2A - C0G - 5% AVX DocID025038 Rev 2 37/59 59 Bill of materials AN4338 Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. C28 Part Case Rev. 1: 100 F - 50 V Dia. 8 x 11 p. 3.5 mm Rev. 2: N. M. Description Supplier Aluminium elcap. - YXF series - 105 °C RUBYCON C29 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C30 220 nF 0805 16 V cercap. - general purpose - X7R - 10% KEMET C31 N. M. 1206 C32 33 nF 5.0 x 18.0 p.15 mm 1 KV - MKP film capacitor B32652A0333J EPCOS C33 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C34 2.2 nF 0805 50 V cercap. - general purpose - X7R - 10% AVX C35 47 F - 50 V Dia. 6.3 x 11 p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C36 N. M. 0805 C37 N. M. 0805 C38 47 nF 0805 25 V cercap. - general purpose - X7R - 10% KEMET C39 2.2 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C40 47 F - 16 V Dia. 6.3 x 11 p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C41 100 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C42 Rev.1: 47 F 50 V Rev.2: 100 F - 50 V Dia. 6.3 x 11 p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C43 47 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C44 N. M. 0805 C45 10 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C46 100 nF 1206 50 V cercap. - general purpose - X7R - 10% KEMET C47 Rev.1: 10 F - 50 V Rev.2: 100 F - 50 V Dia. 6.3 x 11 p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C48 10 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C49 2.2 nF Dia. 12 p.10 mm Y1 - safety cap. CD12-E2GA222MYGS TDK C50 1 nF 1206 100 V cercap. - general purpose - X7R - 10% KEMET C51 2.2 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C52 10 F - 450 V Dia. 10 P. 5 mm 450 V - aluminium elcap. - TXW series - 105 °C RUBYCON C53 N. M. 5.0 x 13.0 p.10 mm C54 1000 F - 10 V Dia. 10 x 16 p. 5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C55 1000 F-10 V Aluminium elcap. - YXF series - 105 °C RUBYCON 38/59 Dia. 10X16 p. 5 mm DocID025038 Rev 2 AN4338 Bill of materials Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier C56 220 F-16 V Dia. 8 x 11 p. 3.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C57 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C58 10 F - 50 V Dia. 6.3 x 11 p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C59 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C60 Rev.1: 22 F 50 V Rev.2: 47 F 50 V Dia. 5 x 11 p. 2 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C61 N. M. 0805 C62 10 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C63 N. M. 0805 C66 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C67 2.2 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C68 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C69 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C70 10 pF 1 kV C0G 1206 1 KV cercap. - C0G - 5% EPCOS C71 1 nF 1 kV 1206 1 KV cercap. - X7R - 10% EPCOS C72 10 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C73 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET C74 100 nF 0805 50 V cercap. - general purpose - X7R - 10% KEMET D1 1N5406 DO-201 Rectifier - general purpose VISHAY D2 STTH5L06 DO-201 Ultrafast high voltage rectifier STMicroelectronics D3 D10XB60H DWG Single phase bridge rectifier SHINDENGEN D4 STPS20H100 CFP TO-220FP Power Schottky rectifier STMicroelectronics D5 BZV55-C18 MINIMELF Zener diode VISHAY D6 1N4148 WS SOD323 High speed signal diode VISHAY D7 1N4148 WS SOD323 High speed signal diode VISHAY D8 STPS20L45C FP TO-220FP Power Schottky rectifier STMicroelectronics D10 STPS20H100 CFP TO-220FP Power Schottky rectifier STMicroelectronics D11 BAT46W-V SOD123 Schottky diode VISHAY D12 STPS1L60A DO-214 Power Schottky rectifier STMicroelectronics D13 1N4148 WS SOD323 High speed signal diode VISHAY DocID025038 Rev 2 39/59 59 Bill of materials AN4338 Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier D14 BZV55-C3 V3 MINIMELF Zener diode VISHAY D15 BAT46W-V SOD123 Schottky diode VISHAY D16 S1M DO-214 Rectifier - general purpose VISHAY D17 S1M DO-214 Rectifier - general purpose VISHAY D18 MMSZ4711-V SOD123 27 V Zener diode VISHAY D19 MMSZ4702-V SOD123 15 V Zener diode VISHAY D20 1N4148 WS SOD323 High speed signal diode VISHAY D21 N. M. SOD123 D22 BAT46W-V SOD123 Schottky diode VISHAY D23 P6KE250A DO-15 Transil™ STMicroelectronics D24 BAV103 MINIMELF High speed signal diode VISHAY D25 STPS20L45C FP TO-220FP Power Schottky rectifier STMicroelectronics D26 STTH108A SMA HV ultrafast rectifier STMicroelectronics D27 STTH102A SMA High efficiency ultrafast diode STMicroelectronics D28 BAT46W-V SOD123 Schottky diode VISHAY D29 N. M. MINIMELF D30 STTH1R06A SMA Ultrafast high voltage rectifier STMicroelectronics D31 BZV55-C13 MINIMELF Zener diode VISHAY D32 BZV55-C3 V3 MINIMELF Zener diode VISHAY D33 BAT46W-V SOD123 Schottky diode VISHAY D34 STTH108A SMA HV ultrafast rectifier STMicroelectronics D35 BAT46W-V SOD123 Schottky diode VISHAY D36 BAT46W-V SOD123 Schottky diode VISHAY F1 Fuse T4A 8.5 x 4 p. 5.08 mm Fuse 4 A - time LAG - 3921400 LITTLEFUSE HOLE1 3 mm Threaded stand-off HOLE2 3 mm Threaded stand-off HOLE3 3 mm Threaded stand-off HOLE4 3 mm Threaded stand-off HOLE5 3 mm Threaded stand-off HOLE6 3 mm Threaded stand-off HS1 Heatsink DWG Heatsink for D4 and D10 HS2 Heatsink DWG Heatsink for Q4 and Q5 HS3 Heatsink DWG Heatsink for D3 and Q7 HS4 Heatsink DWG Heatsink for D8 40/59 DocID025038 Rev 2 AN4338 Bill of materials Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description HS5 Heatsink DWG Heatsink for D25 J1 MTA396-5 Connector - p. 3.96 mm - 5 pins (2 removed) KK J2 CON50A Connector-FLAT P. 2.54 mm 25 x 2 rows 90 M J3 280385-2 Connector - P. 2.54 mm - 8 x 2 rows - MODU-II AMP J4 280384-2 Connector - P. 2.54 mm - 4 x 2 rows - MODU-II AMP JP1 N. M. Wire jumper JP2 Shorted Wire jumper JPX1 Shorted Wire jumper JPX2 Shorted Wire jumper JPX3 Shorted Wire jumper JPX4 Shorted Wire jumper JPX5 Shorted Wire jumper JPX6 Shorted Wire jumper JPX7 Shorted Wire jumper JPX8 Shorted Wire jumper JPX9 Shorted Wire jumper JPX10 Shorted Wire jumper JPX11 Shorted Wire jumper JPX12 Shorted Wire jumper L1 1606.001 DWG 1606.0010 EMI filter 2 x 4 mH 3.3 A MAGNETICA L2 2190.0001 26 x 13 mm 2190.0001 DM inductor 100 H 2.5 A MAGNETICA L3 2086.0001 DWG 2086.0001 PFC inductor 240 H 2.65 A MAGNETICA L4 1061.0014 Dia.12 p. 5 mm 1061.0041 inductor 2.9 H 11 A MAGNETICA L5 1071.0083 Dia. 8 p. 5 mm 1071.0083 inductor 1 H 5 A MAGNETICA L6 1071.0083 Dia. 8 p. 5 mm 1071.0083 inductor 1 H 5 A MAGNETICA PCB1 PCB rev. 1.0.1 Supplier MOLEX Dual layer - 2 OZ. - CEM-1 Q1 MMBT2222A SOT-23 NPN small signal BJT STMicroelectronics Q2 MMBT2907A SOT-23 PNP small signal BJT STMicroelectronics Q3 MMBT2222A SOT-23 NPN small signal BJT STMicroelectronics Q4 STF14NM50N TO-220FP N-channel power MOSFET STMicroelectronics Q5 STF14NM50N TO-220FP N-channel power MOSFET STMicroelectronics Q6 MMBT2907A SOT-23 PNP small signal BJT STMicroelectronics Q7 STF14NM50N TO-220FP N-channel power MOSFET STMicroelectronics Q8 MMBT2222A SOT-23 NPN small signal BJT STMicroelectronics DocID025038 Rev 2 41/59 59 Bill of materials AN4338 Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier Q9 MMBT2907A SOT-23 PNP small signal BJT STMicroelectronics Q10 Rev.1: BC847C Rev. 2: PBSS4041NT SOT-23 NPN small signal BJT Rev.1: VISHAY Rev.2: NXP Q11 BC857C SOT-23 PNP small signal BJT VISHAY Q12 BC847C SOT-23 NPN small signal BJT VISHAY Q13 BC847C SOT-23 NPN small signal BJT VISHAY R1 2.2 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R2 NTC 2R5S237 DWG NTC resistor P/N B57237S0259M000 EPCOS R3 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R4 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R5 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R6 100 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R7 N. M. 0805 R8 2.7 K 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R9 56 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R10 3.3 K 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY R11 2.2 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R12 3.9 K 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY R13 N. M. 0805 R14 4.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R15 2.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R16 2.2 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R17 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY 42/59 DocID025038 Rev 2 AN4338 Bill of materials Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier R18 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R19 56 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R20 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R21 4.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R22 2.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R23 100 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R24 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R25 3.3 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R26 2.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R27 22 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R28 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R29 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R30 22 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R31 75 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY R32 100 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R33 470 K 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R34 220 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY R35 100 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R36 680 K 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R37 75 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R38 N. M. 1206 R39 0.47 PTH PR01 - metal film res. - 1 W - 5% - 250 ppm/°C VISHAY DocID025038 Rev 2 43/59 59 Bill of materials AN4338 Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier R40 0.47 PTH PR01 - metal film res. - 1 W - 5% - 250 ppm/°C VISHAY R41 0.47 PTH PR01 - metal film res. - 1 W - 5% - 250 ppm/°C VISHAY R42 22 K 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R43 N. M. 0805 R44 N. M. 0805 R45 N. M. 0805 R46 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R47 5.6 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R48 180 K 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R49 51 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R50 N. M. 0805 R51 33 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R52 180 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R53 N. M. 0805 R54 N. M. 0805 R55 10 k 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R56 1.5 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R57 2.2 R 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY R58 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R59 10 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R60 750 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R61 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R62 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R63 N. M. 0805 44/59 DocID025038 Rev 2 AN4338 Bill of materials Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier R64 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R65 4.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R66 N. M. 0805 R67 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R68 4.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R69 2.7 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R70 4.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R71 4.7 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R72 4.7 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R73 4.7 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R74 3.3 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R75 3.3 M 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R76 470 K 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R77 470 K 1206 SMD standard film res. - 1/4 W - 1% - 100 ppm/°C VISHAY R78 1 PTH NFR25H - axial fusible res. - 1/2 W - 5% - 100 ppm/°C VISHAY R79 10 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY R80 N. M. 1206 R81 33 K 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R82 N. M 0805 R83 N. M. PTH R84 2.7 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R85 3.9 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY DocID025038 Rev 2 45/59 59 Bill of materials AN4338 Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier R86 1 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R87 12 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R88 390 K PTH AXIAL STD FILM RES - 1/8 W - 5% - 100 ppm/°C VISHAY R89 N. M. 0805 R90 120 K 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R92 82 K 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R93 27 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R96 270 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R97 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R98 39 K 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R99 10 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R100 22 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R101 100 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R102 22 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R103 8.2 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R104 47 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R105 10 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R106 22 K 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R107 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R108 10 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R109 N. M. 0805 R110 10 k 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY 46/59 DocID025038 Rev 2 AN4338 Bill of materials Table 5. Bill of materials EVLSTNRG-170W “power board” (continued) Ref. Part Case Description Supplier R111 10 k 1206 SMD standard film res. - 1/4 W - 5% - 250 ppm/°C VISHAY R113 1.5 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R114 0 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R115 10 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R116 10 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R117 10 k 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY R118 N. M. 0805 R119 75 K 0805 R120 N. M. 1206 RV1 300 V ac RX1 VISHAY SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY Dia. 15 x 5 p. 7.5 mm 300 V metal oxide varistor B72214S0301K101 EPCOS 1.5 k 1206 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY RX2 1.5 k 1206 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY RX3 0 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY RX4 0 0805 SMD standard film res. - 1/8 W - 5% - 250 ppm/°C VISHAY T1 1860.0014 DWG 1860.0014 resonant transformer 520 H MAGNETICA T2 1715.0084 DWG 1715.0084 ST-BY flyback trafo. 2.38 mH MAGNETICA U1 TS3022 SO-8 High speed dual comparator STMicroelectronics U2 SFH610A-2 DIP-4 - 10.16 mm Optocoupler INFINEON U4 SFH610A-2 DIP-4 - 10.16 mm Optocoupler INFINEON U5 SFH610A-2 DIP-4 - 10.16 mm Optocoupler INFINEON U3 TL431ACZ TO-92 Programmable shunt voltage reference STMicroelectronics U6 VIPER27LN DIP-8 Off-line HV converter STMicroelectronics U7 TS431AZ TO-92 Programmable shunt voltage reference STMicroelectronics U8 TS3022 SO-8 High speed dual comparator STMicroelectronics U9 74LCV1G08 SOT353-1 Single 2-input and gate U10 L6382D SO-20 Power management unit DocID025038 Rev 2 STMicroelectronics 47/59 59 Bill of materials AN4338 Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” Ref. Part Case Description Supplier C1 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C2 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C3 4.7 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C4 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C5 560 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C6 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C7 2.7 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C8 47 F - 25 V Dia. 6.3 x 11 (MM) p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C9 10 F -25 V Dia. 6.3 x 11 (MM) p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C10 33 pF 0603 10 V cercap. - general purpose - C0G 5% C11 33 pF 0603 10 V cercap. - general purpose - C0G 5% C12 100 pF 0603 10 V cercap. - general purpose - C0G 5% C13 100 pF 0603 10 V cercap. - general purpose - C0G 5% C14 100 pF 0603 10 V cercap. - general purpose - C0G 5% C15 1 nF 0603 10 V cercap. - general purpose - X7R 10% C16 100 pF 0603 10 V cercap. - general purpose - C0G 5% C17 N. M. 0603 C18 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C19 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C20 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C21 10 F -25 V Dia. 6.3 x 11 (MM) p. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C22 100 pF 0603 10 V cercap. - general purpose - C0G 5% C23 100 pF 0603 10 V cercap. - general purpose - C0G 5% C24 100 pF 0603 10 V cercap. - general purpose - C0G 5% C25 100 pF 0603 10 V cercap. - general purpose - C0G 5% C26 270 pF 0603 10 V cercap. - general purpose - X7R 10% KEMET C27 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C28 100 pF 0603 10 V cercap. - general purpose - C0G 5% C29 100 pF 0603 10 V cercap. - general purpose - C0G 5% C30 100 pF 0603 10 V cercap. - general purpose - C0G 5% C31 1 nF 0603 10 V cercap. - general purpose - X7R 10% C32 100 pF 0603 10 V cercap. - general purpose - C0G 5% C33 1 nF 0603 10 V cercap. - general purpose - X7R 10% 48/59 DocID025038 Rev 2 KEMET KEMET KEMET AN4338 Bill of materials Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued) Ref. Part Case Description Supplier C34 1 F 0603 25 V cercap. - general purpose - X7R 10% KEMET C35 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C36 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C37 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C38 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C39 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C40 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET D1 OVS-0608 0603 LED red D2 OVS-0608 0603 LED red D3 OVS-0608 0603 LED red D4 OVS-0608 0603 LED red D5 OVS-0608 0603 LED red D6 OVS-0608 0603 LED red D7 OVS-0608 0603 LED red D8 OVS-0608 0603 LED red J1 Jumper Strip P 254 mm M 2 J2 Conn. V_3 V3_ext MORSQC508-ADIMPEX-MK159002 J3 Jumper Strip P 254 mm M 2 J4 Conn. PCB 5 Strip P 254 mm M 5 J5 Conn. PCB 5 Strip P 254 mm M 5 J6 Conn. PCB 8 Strip P 254 mm M 8 J7 CON50A CON-FLAT_CABLE P 254 mm 25 x 2 90 F J8 Conn. PCB 8 Strip P 254 mm M 8 J9 Conn. PCB 8 Strip P 254 mm M 8 J10 Jumper Strip P 254 mm M 2 J11 Jumper Strip P 254 mm M 2 J12 Conn. VCC_ext MORSQC508-ADIMPEX-MK159002 J13 Strip254P-M-2 Strip P 254 mm M 2 J14 Conn. PCB 8 Strip P 254 mm M 8 J15 Conn. PCB 8 Strip P 254 mm M 8 J16 UART I/F 3.5 mm JACK SC-35RASMT4BHNTRX J17 Jumper Strip P 254 mm M 2 J18 Jumper Strip P 254 mm M 2 J19 Jumper Strip P 254 mm M 2 J20 Jumper Strip P 254 mm M 2 DocID025038 Rev 2 49/59 59 Bill of materials AN4338 Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued) Ref. Part J21 Jumper Strip P 254 mm M 4 J22 Jumper Strip P 254 mm M 4 J23 Header 4 Strip P 254 mm M 4 J24 Jumper Strip P 254 mm M 2 J25 Jumper Strip P 254 mm M 2 J27 RLink-connectorvert. ERNI_284697 L1 10 H 1206 SMD inductor L2 10 H 1206 SMD inductor L3 10 H 1206 SMD inductor L4 10 H 1206 SMD inductor R1 3.9 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R2 5.6 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R3 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R4 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R5 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R6 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R7 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R8 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R9 1 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R10 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R11 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R12 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R13 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R14 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R15 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R16 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R17 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R18 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R19 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R20 N. M. 0603 R21 N. M. 0603 R22 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R23 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R24 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY 50/59 Case Description DocID025038 Rev 2 Supplier ERNI AN4338 Bill of materials Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued) Ref. Part Case Description Supplier R25 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R26 N. M. 0603 R27 N. M. 0603 R28 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R29 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R30 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R31 N. M. 0603 R32 N. M. 0603 R33 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R34 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R35 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R36 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R37 N. M. 0603 R38 N. M. 0603 R39 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R40 N. M. 0603 R41 N. M. 0603 R42 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R43 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R44 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R45 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R46 N. M. 0603 R47 N. M. 0603 R48 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R49 18 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R50 180 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R51 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R52 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R53 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R54 10 k 0603 SMD standard film res. - 1/8 W - 5% - 100 ppm/°C VISHAY R55 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R56 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R57 N. M. 0603 R58 N. M. 0603 R59 N. M. 0603 DocID025038 Rev 2 51/59 59 Bill of materials AN4338 Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued) Ref. Part Case Description Supplier R60 N. M. 0603 R61 N. M. 0603 R62 N. M. 0603 R63 N. M. 0603 R64 N. M. 0603 R65 N. M. 0603 R66 N. M. 0603 R67 N. M. 0603 R68 N. M. 0603 R69 N. M. 0603 R70 N. M. 0603 R71 N. M. 0603 R72 N. M. 0603 R73 N. M. 0603 R74 N. M. 0603 R75 N. M. 0603 R76 N. M. 0603 R77 N. M. 0603 R78 N. M. 0603 R79 N. M. 0603 R80 N. M. 0603 R81 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R82 1 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R83 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R84 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R85 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R86 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R87 1.2 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R88 1.2 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R89 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R90 10 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R91 10 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R92 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R93 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R94 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY 52/59 DocID025038 Rev 2 AN4338 Bill of materials Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued) Ref. Part Case Description Supplier R95 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R96 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R97 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R98 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R99 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R100 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R101 3.3 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R102 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R103 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R104 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R105 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R106 0 0805 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY SW1 PUSH_B 63 x 45 mm - PTH TP1 Test point TP2 Test point TP3 Test point TP4 Test point TP5 Test point TP6 Test point TP7 Test point TP8 Test point TP9 Test point U1 LD1086D2T33 D2PAK LDO 3.3 V 1.5 A STMicroelectronics U2 STNRG388A TSSOP38 STNRG388A on TSSOP38 socket STMicroelectronics U3 74LVC08/SO TSSOP-14 Quad 2-input and gate U4 MC24C64 SO-8 64 K 2-wire serial EEPROM Y1 N. M. HC49 XTAL 4 mm PTH PUSH_B switch 63 x 45 mm - PTH DocID025038 Rev 2 53/59 59 Bill of materials AN4338 Table 7. Bill of materials EVLSTNRG-170W “STNRG388A slim control board” Ref. Part Case Description Supplier C1 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C2 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C3 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C4 N. M. 0603 C5 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C6 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C7 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C8 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C9 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C10 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C11 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C12 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C13 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C14 47 F - 25 V Dia. 6.3 x 11 (MM) P. 2.5 mm Aluminium elcap. - YXF series - 105 °C RUBYCON C15 100 pF 0603 10 V cercap. - general purpose - NP0 5% KEMET C16 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C17 1 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C18 1 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C19 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C20 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C21 270 pF 0603 10 V cercap. - general purpose - X7R 10% KEMET C22 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C23 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C24 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C25 1 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C26 1 F 0603 10 V cercap. - general purpose - X7R 10% KEMET C27 100 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C28 560 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C29 4.7 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET C30 2.7 nF 0603 10 V cercap. - general purpose - X7R 10% KEMET J1 Jumper Strip P 254 mm M 2 J2 Strip254P-M-2 Strip P 254 mm M 2 J3 Jumper Strip P 254 mm M 2 J4 Header 4 Strip P 254 mm M 4 54/59 DocID025038 Rev 2 AN4338 Bill of materials Table 7. Bill of materials EVLSTNRG-170W “STNRG388A slim control board” (continued) Ref. Part J5 Case Description Supplier RLinkconnector-vert. ERNI_284697 ERNI J6 Header 4 Strip P 254 mm M4 J7 UART I/F 3.5 mm STEREO JACK SC-35RASMT4BHNTRX J9 Jumper Strip P 254 mm M 2 J10 CON50A Strip P254 mm F 25X2 L1 10 H 1206 SMD inductor L2 10 H 1206 SMD inductor L3 10 H 1206 SMD inductor R1 1 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R2 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R3 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R4 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R5 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R6 180 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R7 33 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R8 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R9 18 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R10 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R11 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R12 10 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R13 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R14 10 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R15 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R16 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R17 10 k 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R18 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R19 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R20 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R21 5.6 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R22 3.9 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R23 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R24 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R25 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R26 1 K 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY DocID025038 Rev 2 55/59 59 Bill of materials AN4338 Table 7. Bill of materials EVLSTNRG-170W “STNRG388A slim control board” (continued) Ref. Part Case Description Supplier R27 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R28 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R29 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R30 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R31 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R32 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R33 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R34 100 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R35 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R36 10 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R37 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R38 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY R39 0 0603 SMD standard film res. - 1/8 W - 1% - 100 ppm/°C VISHAY TP1 Test point TP2 Test point TP3 Test point TP4 Test point TP5 Test point TP6 Test point TP7 Test point TP8 Test point TP9 Test point U1 STNRG388A TSSOP38 STNRG388A on TSSOP38 STMicroelectronics U2 74LVC08/SO TSSOP-14 Quad 2-input and gate 56/59 DocID025038 Rev 2 AN4338 Board revision Board revision There are 2 revisions of the EVLSTNRG-170W evaluation board. The following changes apply: Rev.1: all boards manufactured and tested before 2016 are marked with “STEVALDPS170W” or with a white label attached close to the 50-pin connector labeled “EVLSTNRG-170W” Rev.2: all boards manufactured since 2016 are marked “EVLSTNRG-170W PWR rev.2” and feature improved board stability when a transient is applied on the 5 V output bus. The main differences about the two revision are: – C28: rev.1: 100 F - 50 V; rev. 2: N. M. – C42: rev.1: 47 F - 50 V; rev. 2: 100 F - 50 V – C47: rev.1: 10 F - 50 V; rev. 2: 100 F - 50 V – C60: rev.1: 22 F - 50 V; rev. 2: 47 F - 50 V – Q10: rev.1: BC847C; rev. 2: PBSS4041NT. DocID025038 Rev 2 57/59 59 Revision history AN4338 Revision history Table 8. Document revision history Date Revision 22-Jun-2015 1 Initial release. 2 Updated Figure 1 on page 1, Figure 2 on page 7, and Figure 42 on page 29 (replaced by new figures). Updated Table 5 on page 37 (updated C28, C42, C47, C60, and Q10). Added Section : Board revision on page 57 Minor modifications throughout document. 11-Mar-2016 58/59 Changes DocID025038 Rev 2 AN4338 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2016 STMicroelectronics – All rights reserved DocID025038 Rev 2 59/59 59