IRGP4263PbF IRGP4263-EPbF Insulated Gate Bipolar Transistor C VCES = 650V IC = 60A, TC =100°C tSC 5.5µs, TJ(max) = 175°C E G VCE(ON) typ. = 1.7V @ IC = 48A C G IRGP4263PbF TO247AC E n-channel Applications • Industrial Motor Drive • Inverters • UPS • Welding G Gate G E IRGP4263-EPbF TO-247AD C Collector Features C E Emitter Benefits Low VCE(ON) and switching losses Square RBSOA and maximum junction temperature 175°C Positive VCE (ON) temperature coefficient 5.5µs short circuit SOA Lead-free, RoHS compliant Base part number Package Type IRG7P4263PbF IRG7P4263-EPbF TO-247AC TO-247AD High efficiency in a wide range of applications and switching frequencies Improved reliability due to rugged hard switching performance and higher power capability Excellent current sharing in parallel operation Enables short circuit protection scheme Environmentally friendly Standard Pack Form Quantity Tube 25 Tube 25 Orderable Part Number IRGP4263PbF IRGP4263-EPbF Absolute Maximum Ratings Parameter Max. Units V VCES Collector-to-Emitter Voltage 650 IC @ TC = 25°C Continuous Collector Current 90 IC @ TC = 100°C Continuous Collector Current 60 ICM Pulse Collector Current, VGE=20V 192 ILM Clamped Inductive Load Current, VGE=20V 192 VGE Continuous Gate-to-Emitter Voltage ±20 PD @ TC = 25°C Maximum Power Dissipation 300 PD @ TC = 100°C Maximum Power Dissipation 150 TJ Operating Junction and TSTG Storage Temperature Range Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) A V W -40 to +175 C Thermal Resistance RJC (IGBT) RCS RJA 1 Parameter Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) www.irf.com © 2014 International Rectifier Min. ––– ––– ––– Typ. ––– 0.24 40 Submit Datasheet Feedback Max. 0.5 ––– ––– Units °C/W August 21, 2014 IRGP4263PbF/IRGP4263-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES/ Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage VGE(th) VGE(th)/TJ gfe Gate Threshold Voltage Threshold Voltage Temperature Coeff. Forward Transconductance ICES Collector-to-Emitter Leakage Current IGES Gate-to-Emitter Leakage Current V(BR)CES Min. 650 — Typ. — 505 Max. — — — — 5.5 — — — — — 1.7 2.1 — -23 31 1.0 700 — 2.1 V IC = 48A, VGE = 15V, TJ = 25°C — IC = 48A, VGE = 15V, TJ = 175°C 7.7 V VCE = VGE, IC = 1.4mA — mV/°C VCE = VGE, IC = 1.4mA (25°C-175°C) — S VCE = 50V, IC = 48A, PW = 20µs 25 µA VGE = 0V, VCE = 650V — VGE = 0V, VCE = 650V, TJ = 175°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Qg Total Gate Charge (turn-on) — 100 Qge Gate-to-Emitter Charge (turn-on) — 30 Gate-to-Collector Charge (turn-on) — 40 Qgc Eon Turn-On Switching Loss — 1.7 Eoff Turn-Off Switching Loss 1.0 Etotal Total Switching Loss 2.7 td(on) Turn-On delay time — 70 tr Rise time — 60 td(off) Turn-Off delay time — 140 tf Fall time — 30 Eon Turn-On Switching Loss — 2.9 Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA SCSOA — — — — — — — — Max Units Conditions 150 IC = 48A 50 nC VGE = 15V VCC = 600V 60 2.6 1.9 mJ IC = 48A, VCC = 400V, VGE=15V 4.5 RG = 10, L = 210µH, TJ = 25°C 90 Energy losses include tail & diode 80 ns reverse recovery 160 50 — — — — — — — — — mJ IC = 48A, VCC = 400V, VGE=15V RG = 10, L = 210µH, TJ = 175°C Energy losses include tail & diode ns reverse recovery pF 5.5 — — VGE = 0V VCC = 30V f = 1.0Mhz TJ = 175°C, IC = 192A VCC = 520V, Vp ≤ 650V FULL SQUARE Reverse Bias Safe Operating Area Short Circuit Safe Operating Area 1.4 4.3 55 60 145 65 3000 150 80 Units Conditions V VGE = 0V, IC = 100µA mV/°C VGE = 0V, IC = 1mA (25°C-175°C) µs Rg = 10, VGE = +20V to 0V TJ = 150°C,VCC = 400V, Vp ≤ 650V Rg = 10, VGE = +15V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 50µH, RG = 10. R is measured at TJ of approximately 90°C. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Maximum limits are based on statistical sample size characterization. Pulse width limited by max. junction temperature. Values influenced by parasitic L and C in measurement. 2 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF 110 For both: Duty cycle : 50% Tj = 175°C Tcase = 100°C Gate drive as specified Power Dissipation = 150W Load Current ( A ) 90 70 Square Wave: 50 VCC I 30 Diode as specified 10 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 350 300 80 250 IC (A) Ptot (W) 60 40 200 150 100 20 50 0 25 50 75 100 125 150 0 175 25 100 125 150 175 1000 OPERATION IN THIS AREA LIMITED BY V CE(on) 100 1msec 100µsec 100 10 IC (A) IC, Collector-to -Emitter Current (A) 75 Fig. 3 - Power Dissipation vs. Case Temperature Fig. 2 - Maximum DC Collector Current vs. Case Temperature 1000 50 TC (°C) TC (°C) 10msec 1 10 0.1 Tc = 25°C Tj = 175°C Single Pulse DC 1 0.01 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 4 - Forward SOA TC = 25°C, TJ 175°C, VGE =15V 3 www.irf.com © 2014 International Rectifier 10 100 1000 VCE (V) Fig. 5- Reverse Bias SOA TJ = 175°C; VGE = 20V Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF 200 200 180 160 140 160 140 ICE (A) ICE (A) 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 180 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 80 120 100 80 60 60 40 40 20 20 0 0 0 1 2 3 4 5 6 7 8 9 10 0 2 4 V CE (V) 8 10 V CE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 20µs Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 20µs 200 8 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 180 160 140 6 120 VCE (V) ICE (A) 6 100 80 60 ICE = 24A ICE = 48A ICE = 96A 4 2 40 20 0 0 0 1 2 3 4 5 6 7 8 9 10 8 10 12 8 6 6 ICE = 24A ICE = 48A ICE = 96A VCE (V) VCE (V) 8 2 0 0 12 14 16 18 20 V GE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C 4 www.irf.com 20 © 2014 International Rectifier ICE = 24A ICE = 48A ICE = 96A 4 2 10 18 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 20µs 8 16 V GE (V) V CE (V) 4 14 8 10 12 14 16 18 20 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF 10 200 9 IC, Collector-to-Emitter Current (A) 180 TJ = 25°C TJ = 175°C 160 7 Energy (mJ) 140 8 120 100 80 EON 6 5 4 60 3 40 2 20 1 EOFF 0 0 4 6 8 10 12 14 16 18 0 10 20 30 40 50 60 70 80 90 100 110 20 V GE, Gate-to-Emitter Voltage (V) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 0.210mH; VCE = 400V, RG = 10; VGE = 15V Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 20µs 1000 8 6 tdOFF 100 Energy (mJ) Swiching Time (ns) 7 tF tdON EON 5 4 3 EOFF 2 tR 1 10 0 0 10 20 30 40 50 60 70 80 90 100 0 20 40 IC (A) 80 100 120 RG () Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 0.210mH; VCE = 400V, RG = 10; VGE = 15V Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 0.210mH; VCE = 400V, ICE = 48A; VGE = 15V 10000 280 35 30 Time (µs) 100 25 tdON tR tF 200 Isc 20 160 15 120 10 80 Current (A) tdOFF 240 Tsc 1000 Swiching Time (ns) 60 10 1 20 40 60 80 100 RG () Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 0.210mH; VCE = 400V, ICE = 48A; VGE = 15V 5 40 5 0 www.irf.com © 2014 International Rectifier 8 10 12 14 16 18 VGE (V) Fig. 17 - VCE vs. Short Circuit Time Vcc= 400V; TC= 150°C Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF 16 VGE, Gate-to-Emitter Voltage (V) 10000 Capacitance (pF) Cies 1000 100 Coes Cres 14 VCES = 400V VCES = 300V 12 10 8 6 4 2 0 10 0 100 200 300 400 0 500 20 40 60 80 100 Q G, Total Gate Charge (nC) VCE (V) Fig. 19 - Typical Gate Charge vs. VGE ICE = 48A Fig. 18 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz J R1 R1 J 1 R2 R2 R3 R3 R4 R4 C 2 1 2 3 3 4 C 4 Ci= iRi Ci= iRi Ri(°C/W) i (sec) 0.0839 0.00012 0.0626 0.00012 0.2091 0.00425 0.1450 0.02510 Fig. 20 Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 6 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - Switching Loss Circuit Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit C force 100K D1 22K C sense G force DUT 0.0075µF E sense E force BVCES Filter Fig.C.T.5 - Resistive Load Circuit 7 www.irf.com © 2014 International Rectifier Fig.C.T.6 - BVCES Filter Circuit Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF 600 60 800 tf 500 600 400 30 200 20 5% VCE 100 VCE (V) 300 10 5% ICE -100 400 40 300 30 200 20 -2 0 2 10% ICE 4 5% VCE 0 -10 10 0 Eon Loss -100 6 60 50 0 Eoff Loss 70 500 100 0 TEST CURRENT 90% ICE 40 ICE (A) VCE (V) 700 50 90% ICE 80 tr ICE (A) -10 -3 -2 -1 0 1 2 3 4 5 6 7 time(µs) time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 500 500 400 300 300 200 200 Ice (A) Vce (V) VCE 400 ICE 100 100 0 0 -100 -100 -2 0 2 4 6 8 Time (uS) Fig. WF3 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 8 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 135H 57 ASSEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information EXAM PLE: T H IS IS A N IR G P 3 0 B 1 2 0 K D - E W IT H A S S E M B L Y LO T C O D E 5657 ASSEM BLED O N W W 35, 2000 IN T H E A S S E M B L Y L IN E "H " N o te : "P " in a s s e m b ly lin e p o s itio n in d ic a t e s "L e a d - F re e " PART N U M BER IN T E R N A T IO N A L R E C T IF IE R LO G O 56 035H 57 ASSEM B LY LO T C O D E D A TE C O D E YE A R 0 = 20 0 0 W EEK 35 L IN E H TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 21, 2014 IRGP4263PbF/IRGP4263-EPbF Qualification Information† Industrial (per JEDEC JESD47F) †† Qualification Level TO-247AC Moisture Sensitivity Level N/A TO-247AD Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. Revision History Date 8/21/2014 Comments Updated IC vs. TC graph Fig.2 to match page1 spec data on page 3. Updated package outline on page9 IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 21, 2014