IRGP4640PbF IRGP4640-EPbF INSULATED GATE BIPOLAR TRANSISTOR VCES = 600V C IC = 40A, TC = 100°C tSC ≥ 5µs, TJ(max) = 175°C C C G GC E VCE(on) typ. = 1.60V @ IC = 24A n-channel G Gate Applications • Inverters • UPS • Welding E E GC TO-247AD IRGP4640-EP TO-247AC IRGP4640PbF C Collector Features E Emitter Benefits High efficiency in a wide range of applications and switching frequencies Improved reliability due to rugged hard switching performance and higher power capability Excellent current sharing in parallel operation Enables short circuit protection scheme Environmentally friendly Low V CE(ON) and Switching Losses Square RBSOA and Maximum Junction Temperature 175°C Positive VCE (ON) Temperature Coefficient 5µs short circuit SOA Lead-Free, RoHS compliant Base part number Package Type IRGP4640PbF IRGP4640-EPbF TO-247AC TO-247AD Standard Pack Form Quantity Tube 25 Tube 25 Orderable part number IRGP4640PbF IRGP4640-EPbF Absolute Maximum Ratings Parameter Max. Units V V CES Collector-to-Emitter Voltage 600 IC @ TC = 25°C Continuous Collector Current 65 IC @ TC = 100°C ICM Continuous Collector Current ILM Clamped Inductive Load Current, VGE = 20V V GE Pulse Collector Current, VGE = 15V c 40 72 d 96 A Continuous Gate-to-Emitter Voltage ±20 V Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 250 PD @ TC = 100°C Maximum Power Dissipation 125 TJ Operating Junction and TST G Storage Temperature Range W -40 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter Min. Typ. Max. Units ––– ––– 0.60 °C/W RθJC Junction-to-Case e RθCS Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Junction-to-Ambient (typical socket mount) ––– ––– 40 1 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆ V(B R )CES /∆T J Collector-to-Emitter Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage VGE(th) Temperature Coeff. of Breakdown Voltage Gate Threshold Voltage Min. Typ. Max. Units 600 — — V — 0.30 — V/°C — 1.60 1.90 — 2.00 — 4.0 — 6.5 Conditions VGE = 0V, IC = 100µA f VGE = 0V, IC = 1mA (25°C-175°C) V IC = 24A, VGE = 15V, TJ = 25°C V VCE = VGE , IC = 700µA IC = 24A, VGE = 15V, TJ = 175°C ∆VGE(th) /∆T J Threshold Voltage temp. coefficient — -18 — gfe Forward Transconductance — 17 — S VCE = 50V, IC = 24A, PW = 80µs ICES Collector-to-Emitter Leakage Current — 1.0 20 µA VGE = 0V, VCE = 600V — 600 — IGES Gate-to-Emitter Leakage Current — — ±100 mV/°C VCE = VGE , IC = 1.0mA (25°C - 175°C) VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. g Typ. Max. Qg Total Gate Charge (turn-on) — 50 75 Q ge Gate-to-Emitter Charge (turn-on) — 15 20 Q gc Gate-to-Collector Charge (turn-on) — 20 30 Eon Turn-On Switching Loss — 0.1 0.2 Eoff Turn-Off Switching Loss — 0.6 0.7 Etotal Total Switching Loss — 0.7 0.9 td(on) Turn-On delay time — 40 55 tr Rise time — 20 30 td(off) Turn-Off delay time — 105 115 tf Fall time — 30 40 Eon Turn-On Switching Loss — 0.4 — Eoff Turn-Off Switching Loss — 0.85 — Etotal Total Switching Loss — 1.25 — Units Conditions IC = 24A nC VGE = 15V VCC = 400V mJ IC = 24A, VCC = 400V, VGE = 15V h RG = 10Ω, TJ = 25°C ns E nergy los s es include tail & diode revers e recovery mJ IC = 24A, VCC = 400V, VGE=15V td(on) Turn-On delay time — 40 — tr Rise time — 25 — td(off) Turn-Off delay time — 125 — tf Fall time — 40 — Cies Input Capacitance — 1490 — Coes Output Capacitance — 130 — VCC = 30V Cres Reverse Transfer Capacitance — 45 — f = 1.0Mhz RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 h RG=10Ω, T J = 175°C ns pF E nergy los s es include tail & diode revers e recovery VGE = 0V TJ = 175°C, IC = 96A VCC = 480V, Vp =600V Rg = 10Ω, VGE = +20V to 0V — — µs VCC = 400V, Vp =600V Rg = 10Ω, VGE = +15V to 0V Notes: Pulse width limited by max. junction temperature. VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω. Rθ is measured at TJ of approximately 90°C. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Maximum limits are based on statistical sample size characterization. Values are influenced by parasitic L and C in measurement. 2 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF 80 For both: Duty cycle : 50% Tj = 175°C Tsink = 100°C Gate drive as specified Power Dissipation = 125W 70 Load Current ( A ) 60 50 Squa re Wave: 40 VCC 30 I 20 D io de as specified 10 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 70 300 60 250 200 40 Ptot (W) IC (A) 50 30 150 100 20 50 10 0 0 25 50 75 100 125 150 175 25 50 75 100 125 150 175 T C (°C) T C (°C) Fig. 2 - Maximum DC Collector Current vs. Case Temperature Fig. 3 - Power Dissipation vs. Case Temperature 1000 1000 100 100 IC (A) IC (A) 10µsec 10 100µsec 1 10 1msec Tc = 25°C Tj = 175°C Single Pulse DC 0.1 1 1 10 100 1000 10000 VCE (V) Fig. 4 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V 3 www.irf.com © 2013 International Rectifier 10 100 1000 VCE (V) Fig. 5 - Reverse Bias SOA TJ = 175°C; VGE =20V Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF 90 90 80 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 60 50 70 40 40 30 20 20 10 10 0 0 1 2 3 4 5 6 7 0 8 Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 2 3 4 5 6 7 8 Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 90 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 18 16 14 VCE (V) 60 50 40 30 12 ICE = 12A ICE = 24A 10 ICE = 48A 8 6 20 4 10 2 0 0 0 1 2 3 4 5 6 7 8 5 20 20 18 18 16 16 14 14 VCE (V) ICE = 12A ICE = 24A 10 ICE = 48A 8 15 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 12 10 VGE (V) VCE (V) VCE (V) 1 VCE (V) VCE (V) ICE (A) 50 30 0 12 ICE = 12A ICE = 24A 10 ICE = 48A 8 6 6 4 4 2 2 0 0 5 10 15 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C 4 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 ICE (A) 70 www.irf.com © 2013 International Rectifier 5 10 15 20 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF 1800 120 1600 100 1200 Energy (µJ) 80 ICE (A) 1400 T J = 25°C TJ = 175°C 60 EOFF 1000 800 EON 600 40 400 20 200 0 0 0 5 10 0 15 10 20 30 VGE (V) 40 50 60 IC (A) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V 1600 1000 1400 1200 100 Energy (µJ) Swiching Time (ns) tdOFF tdON tF 10 tR EON 1000 EOFF 800 600 400 200 0 1 10 20 30 40 0 50 25 50 IC (A) 125 Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V 1000 Time (µs) tdOFF 100 tdON tF tR 10 16 280 14 240 12 200 10 160 8 120 6 80 40 4 0 25 50 75 100 125 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V www.irf.com © 2013 International Rectifier Current (A) Swiching Time (ns) 100 Rg (Ω) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V 5 75 8 10 12 14 16 18 VGE (V) Fig. 17 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF 16 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) 10000 Cies 1000 Coes 100 V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 Cres 10 0 0 20 40 60 80 100 0 5 10 15 20 25 30 35 40 45 50 55 VCE (V) Q G, Total Gate Charge (nC) Fig. 19 - Typical Gate Charge vs. VGE ICE = 24A; L = 600µH Fig. 18 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ2 τ Ri (°C/W) τi (sec) 0.2568 0.000311 0.3429 0.006347 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case 6 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF L L DUT 0 VCC 80 V + - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC -5V VCC DUT / DRIVER DUT VCC Rg RSH Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 DUT C sense VCC Rg 22K G force DUT 0.0075µF E sense E force Fig.C.T.5 - Resistive Load Circuit 7 www.irf.com © 2013 International Rectifier Fig.C.T.6 - BVCES Filter Circuit Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF 600 30 600 25 500 60 tf 500 50 90% ICE 400 C 200 15 300 10 5% V CE 5 0 EOFF Loss 30 90% test 200 20 5% V CE 0 10 0 EON -5 0.10 C 100 5% ICE -100 -0.40 40 10% ICE 100 0 tr ICE V CE 300 400 VCE (V) VCE (V) ICE 20 V CE C -100 11.70 0.60 11.90 Time(µs) 12.10 -10 12.30 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 600 300 ICE 500 250 200 V CE 300 150 200 100 100 50 0 I CE (A) V CE (V) 400 0 -100 -5.00 0.00 5.00 -50 10.00 time (µS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 8 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013 IRGP4640PbF/IRGP4640-EPbF Qualification Information† Qualification Level Moisture Sensitivity Level Industrial (per International Rectifier’s internal guidelines) TO-247AC N/A TO-247AD N/A †† ESD Class H1C (+/- 2000V) Human Body Model (per JEDEC JESD22-A114) Class C5 (+/- 1000V)†† Charged Device Model (per JEDEC JESD22-C101) RoHS Compliant Yes † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability †† Highest passing voltage. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013