StrongIRFET IRFB7437PbF Applications l Brushed Motor drive applications l BLDC Motor drive applications l Battery powered circuits l Half-bridge and full-bridge topologies l Synchronous rectifier applications l Resonant mode power supplies l OR-ing and redundant power switches l DC/DC and AC/DC converters l DC/AC Inverters HEXFET® Power MOSFET D G S VDSS RDS(on) typ. max. ID (Silicon Limited) 40V 1.5mΩ 2.0mΩ 250A ID (Package Limited) 195A D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l RoHS Compliant, Halogen-Free* Package Type IRFB7437PbF TO-220 D S TO-220AB IRFB7437PbF G D S Gate Drain Source Standard Pack Form Quantity Tube 50 6 Orderable Part Number IRFB7437PbF 250 LIMITED BY PACKAGE ID = 100A 5 200 4 3 TJ = 125°C 2 TJ = 25°C 1 0 150 100 50 0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 G ID , Drain Current (A) ( Ω) RDS (on), Drain-to -Source On Resistance m Base Part Number c www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback January 6, 2015 IRFB7437PbF Absolute Maximum Ratings Symbol Max. Parameter Units c 250 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 180 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 195 IDM Pulsed Drain Current 1000 PD @TC = 25°C Maximum Power Dissipation d A 230 W Linear Derating Factor 1.5 W/°C VGS Gate-to-Source Voltage ± 20 V TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds (1.6mm from case) x 300 x 10lbf in (1.1N m) Mounting torque, 6-32 or M3 screw Avalanche Characteristics EAS (Thermally limited) EAS (Thermally limited) IAR EAR Thermal Resistance Symbol e Single Pulse Avalanche Energy k Avalanche Currentd Repetitive Avalanche Energy d 350 Single Pulse Avalanche Energy mJ 802 See Fig. 14, 15, 22a, 22b A mJ Parameter j Typ. Max. ––– 0.65 RθJC Junction-to-Case RθCS Case-to-Sink, Flat Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 j Units °C/W Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Typ. Max. Units 40 ––– ––– V Breakdown Voltage Temp. Coefficient ––– 0.029 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 1.5 2.0 mΩ VGS = 10V, ID = 100A ––– 1.8 ––– 2.2 3.0 3.9 V VDS = VGS, ID = 150μA ––– ––– 1.0 μA VDS = 40V, VGS = 0V ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 2.2 ––– Drain-to-Source Breakdown Voltage ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.069mH RG = 50Ω, IAS = 100A, VGS =10V. ISD ≤ 100A, di/dt ≤ 1166A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 Conditions Min. V(BR)DSS www.irf.com © 2015 International Rectifier VGS = 0V, ID = 250μA d VGS = 6.0V, ID = 50A VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C. Limited by TJmax starting TJ = 25°C, L= 1mH, RG = 50Ω, IAS = 40A, VGS =10V. * Halogen -Free since April 30, 2014 Submit Datasheet Feedback January 6, 2015 IRFB7437PbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i 160 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 150 41 51 99 19 70 78 53 7330 1095 745 1310 1735 ––– 225 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 100A ID = 100A VDS =20V VGS = 10V ID = 100A, VDS =20V, VGS = 10V VDD = 20V ID = 30A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 32V , See Fig. 11 VGS = 0V, VDS = 0V to 32V g ns pF g i h Diode Characteristics Symbol Parameter Min. Typ. Max. Units IS Continuous Source Current ISM (Body Diode) Pulsed Source Current d VSD (Body Diode) Diode Forward Voltage dv/dt trr Peak Diode Recovery Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current f 3 www.irf.com © 2015 International Rectifier ––– ––– ––– ––– ––– ––– ––– ––– ––– c A MOSFET symbol 1000 A showing the integral reverse ––– 250 ––– 1.0 3.1 30 30 24 25 1.3 Conditions 1.3 ––– ––– ––– ––– ––– ––– D G p-n junction diode. V TJ = 25°C, IS = 100A, VGS = 0V V/ns TJ = 175°C, IS = 100A, VDS = 40V VR = 34V, ns TJ = 25°C IF = 100A TJ = 125°C di/dt = 100A/μs nC TJ = 25°C TJ = 125°C A TJ = 25°C Submit Datasheet Feedback S g g g January 6, 2015 IRFB7437PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V BOTTOM 100 4.5V ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 25°C 1 1 10 100 0.1 10 100 VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(A) 1 VDS, Drain-to-Source Voltage (V) 1000 TJ = 175°C 100 TJ = 25°C 10 VDS = 10V ≤60μs PULSE WIDTH 1.0 3 4 5 6 7 1.2 1.0 0.8 -60 -40 -20 0 20 40 60 80 100120140160180 Fig 6. Normalized On-Resistance vs. Temperature 14 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss Coss Crss 1000 1.4 TJ , Junction Temperature (°C) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 1.6 0.6 Fig 5. Typical Transfer Characteristics 100000 ID = 100A VGS = 10V 1.8 8 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) Tj = 175°C 10 0.1 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V ID= 100A 12 VDS = 32V VDS = 20V 10 8 6 4 2 0 100 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 www.irf.com © 2015 International Rectifier 40 80 120 160 200 QG Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback January 6, 2015 IRFB7437PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C 100 TJ = 25°C 10 1 100μsec 100 1msec Limited by Package 10 10msec OPERATION IN THIS AREA LIMITED BY R (on) DS DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 2.0 0.1 2.5 VSD , Source-to-Drain Voltage (V) 10 Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.2 50 Id = 1.0mA 1.0 48 0.8 Energy (μJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) 1 VDS, Drain-toSource Voltage (V) 46 44 0.6 0.4 42 0.2 0.0 40 0 -60 -40 -20 0 20 40 60 80 100120140160180 20 30 40 50 VDS, Drain-to-Source Voltage (V) TJ , Temperature ( °C ) Fig 11. Drain-to-Source Breakdown Voltage RDS (on) , Drain-to-Source On Resistance (mΩ) 10 Fig 12. Typical COSS Stored Energy 8 VGS = 5.5V 7 VGS = 6.0V 6 5 VGS = 7.0V VGS = 8.0V VGS = 10V 4 3 2 1 0 100 200 300 400 500 ID , Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback January 6, 2015 IRFB7437PbF 1 Thermal Response ( ZthJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. (Single Pulse) 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) EAR , Avalanche Energy (mJ) 350 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 100A 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback January 6, 2015 IRFB7437PbF 10 IF = 60A VR = 34V 4.0 8 TJ = 25°C TJ = 125°C 3.5 3.0 IRR (A) VGS(th), Gate threshold Voltage (V) 4.5 ID = 150μA 2.5 ID = 1.0mA ID = 1.0A 2.0 6 4 2 1.5 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 TJ , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 140 10 8 IF = 100A VR = 34V 120 IF = 60A VR = 34V TJ = 25°C TJ = 125°C 100 TJ = 25°C TJ = 125°C 6 QRR (nC) IRR (A) 400 diF /dt (A/μs) 4 80 60 40 2 20 0 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/μs) diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt QRR (nC) 140 120 IF = 100A VR = 34V 100 TJ = 25°C TJ = 125°C 80 60 40 20 0 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 21 - Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback January 6, 2015 IRFB7437PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp I AS Fig 23a. Unclamped Inductive Test Circuit RD VDS Fig 23b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 24a. Switching Time Test Circuit tr t d(off) Fig 24b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgs1 Qgs2 Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback January 6, 2015 IRFB7437PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback January 6, 2015 IRFB7437PbF Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Industrial (per JEDEC JESD47F††guidelines) TO-220 Not applicable Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Applicable version of JEDEC standard at the time of product release. Revision History Date Comment 4/22/2014 • Updated data sheet with new IR corporate template. • Updated typo on the fig.19 and fig.21, unit of y-axis from "A" to "nC" on page7. • Updated package outline and part marking on page 9. • Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1. 1/6/2015 • Updated EAS (L =1mH) = 802mJ on page 2 • Updated note 9 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 40A, VGS =10V”. on page 2 IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback January 6, 2015