IRFB7545 Data Sheet (535 KB, EN)

StrongIRFET™
IRFB7545PbF
HEXFET® Power MOSFET
Application
 Brushed motor drive applications
 BLDC motor drive applications
 Battery powered circuits
 Half-bridge and full-bridge topologies
 Synchronous rectifier applications
 Resonant mode power supplies
 OR-ing and redundant power switches
 DC/DC and AC/DC converters
 DC/AC inverters
TO-220
max
5.9m
ID
95A
TO-220AB
D
Drain
Standard Pack
Form
Quantity
Tube
50
S
Source
Orderable Part Number
IRFB7545PbF
100
14
ID = 57A
12
80
T J = 125°C
10
8
6
60
40
20
4
T J = 25°C
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
4.9m
S
D
G
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m )
IRFB7545PbF
RDS(on) typ.
S
G
Gate
Package Type
60V
G
Benefits
 Improved gate, avalanche and dynamic dV/dt ruggedness
 Fully characterized capacitance and avalanche SOA
 Enhanced body diode dV/dt and dI/dt capability
 Lead-free, RoHS compliant
Base part number
VDSS
D
www.irf.com
© 2014 International Rectifier
25
50
75
100
125
150
175
TC , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
Absolute Maximum Rating
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
Parameter
Max.
Continuous Drain Current, VGS @ 10V
95
Continuous Drain Current, VGS @ 10V
67
Pulsed Drain Current 
380
Maximum Power Dissipation
125
Linear Derating Factor
0.83
VGS
Gate-to-Source Voltage
± 20
TJ
Operating Junction and
-55 to + 175 TSTG
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Avalanche Characteristics Symbol
Max.
Parameter
140
EAS (Thermally limited)
Single Pulse Avalanche Energy 
EAS (Thermally limited)
235
Single Pulse Avalanche Energy 
IAR
Avalanche Current 
See Fig 15, 16, 23a, 23b
Repetitive Avalanche Energy 
EAR
Thermal Resistance Symbol
Parameter
Typ.
Max.
Junction-to-Case 
RJC
–––
1.21
Case-to-Sink,
Flat
Greased
Surface
RCS
0.50
–––
Junction-to-Ambient
RJA
–––
62
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
RG
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Resistance
Min.
60
–––
–––
–––
2.1
–––
–––
–––
–––
–––
Units
A
W
W/°C
V
°C Units
mJ
A
mJ
Units
°C/W Typ. Max. Units
Conditions
––– –––
V VGS = 0V, ID = 250µA
46
––– mV/°C Reference to 25°C, ID = 1mA
4.9
5.9
m VGS = 10V, ID = 57A 
6.3
–––
VGS = 6.0V, ID = 29A 

–––
3.7
V VDS = VGS, ID = 100µA
–––
1.0
VDS = 60V, VGS = 0V
µA
––– 150
VDS = 60V,VGS = 0V,TJ =125°C
––– 100
VGS = 20V
nA
––– -100
VGS = -20V
2.3
–––

Notes:

Repetitive rating; pulse width limited by max. junction temperature.
 Limited by TJmax, starting TJ = 25°C, L = 88µH, RG = 50, IAS = 57A, VGS =10V.

ISD  57A, di/dt  810A/µs, VDD  V(BR)DSS, TJ 175°C.

Pulse width  400µs; duty cycle  2%.
 Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
 Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
 R is measured at TJ approximately 90°C.
 Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 22A, VGS =10V.
2
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Total Gate Charge Sync. (Qg – Qgd)
Turn-On Delay Time
Rise Time
Min.
90
–––
–––
–––
–––
–––
–––
Typ.
–––
75
19
24
32
12
72
td(off)
Turn-Off Delay Time
–––
44
tf
Ciss
Coss
Crss
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance
(Energy Related)
Output Capacitance (Time Related)
–––
–––
–––
–––
43
4010
370
230
–––
370
–––
VGS = 0V, VDS = 0V to 48V
–––
470
–––
VGS = 0V, VDS = 0V to 48V
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Min.
Typ.
Max. Units
–––
–––
95
–––
–––
380
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
VSD
Diode Forward Voltage
–––
–––
1.2
dv/dt
Peak Diode Recovery dv/dt
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
–––
–––
–––
–––
–––
–––
12
33
37
36
48
2.0
–––
–––
–––
–––
–––
–––
Coss eff.(ER)
Coss eff.(TR)
Max. Units
Conditions
–––
S VDS = 25V, ID = 57A
110
ID = 57A
–––
VDS = 30V
nC –––
VGS = 10V
–––
–––
VDD = 30V
–––
ID = 57A
ns
–––
RG= 2.7
VGS = 10V 
–––
–––
–––
–––
pF VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig.7
Diode Characteristics Symbol
IS
ISM
3
www.irf.com
© 2014 International Rectifier
A
V
D
G
S
TJ = 25°C,IS = 57A,VGS = 0V 
V/ns TJ = 175°C,IS = 57A,VDS = 60V
TJ = 25°C
VDD = 51V
ns
TJ = 125°C
IF = 57A,
TJ = 25°C di/dt = 100A/µs 
nC
TJ = 125°C
A TJ = 25°C 
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
1000
1000
100
BOTTOM
10
4.5V
1
60µs PULSE WIDTH
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
4.5V
10
60µs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.1
1
0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
100
1000
2.4
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
100
TJ = 175°C
10
TJ = 25°C
1
V DS = 25V
60µs PULSE WIDTH
0.1
ID = 57A
V GS = 10V
2.0
1.6
1.2
0.8
0.4
2.0
3.0
4.0
5.0
6.0
7.0
8.0
-60 -40 -20 0 20 40 60 80 100120140160180
V GS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 5. Typical Transfer Characteristics
Fig 6. Normalized On-Resistance vs. Temperature
100000
14.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
V GS, Gate-to-Source Voltage (V)
ID = 57A
Coss = Cds + Cgd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
10000
Ciss
Coss
1000
Crss
12.0
V DS= 48V
V DS= 30V
10.0
V DS= 12V
8.0
6.0
4.0
2.0
0.0
100
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com
© 2014 International Rectifier
0
10 20 30 40 50 60 70 80 90 100
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs.
Gate-to-Source Voltage
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100µsec
TJ = 175°C
100
TJ = 25°C
10
1msec
100
10
OPERATION
IN THIS
AREA
LIMITED BY
RDS(on)
1
DC
Tc = 25°C
Tj = 175°C
Single Pulse
V GS = 0V
0.1
1.0
0.2
0.6
1.0
1.4
0.1
1.8
1
10
VDS, Drain-to-Source Voltage (V)
V SD, Source-to-Drain Voltage (V)
Fig 9. Typical Source-Drain Diode Forward Voltage
Fig 10. Maximum Safe Operating Area
0.6
80
Id = 1.0mA
78
0.5
76
0.4
Energy (µJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
10msec
74
72
0.3
0.2
70
0.1
68
0.0
66
-10
-60 -40 -20 0 20 40 60 80 100120140160180
0
T J , Temperature ( °C )
20
30
40
50
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( m)
10
Fig 12. Typical Coss Stored Energy
16
Vgs = 5.5V
Vgs = 6.0V
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
14
12
10
8
6
4
0
40
80
120
160
200
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
tav (sec)
Fig 15. Avalanche Current vs. Pulse Width
EAR , Avalanche Energy (mJ)
150
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 57A
125
100
75
50
25
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com
© 2014 International Rectifier
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
12
3.5
3.0
TJ = 25°C
TJ = 125°C
8
2.5
2.0
ID = 100µA
ID = 250µA
1.5
ID = 1.0mA
ID = 1.0A
6
4
2
1.0
0.5
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
400
600
800
1000
TJ , Temperature ( °C )
diF /dt (A/µs)
Fig 17. Threshold Voltage vs. Temperature
Fig 18. Typical Recovery Current vs. dif/dt
200
12
IF = 38A
V R = 51V
IF = 57A
V R = 51V
10
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
150
QRR (nC)
8
IRRM (A)
IF = 38A
V R = 51V
10
IRRM (A)
V GS(th) , Gate threshold Voltage (V)
4.0
6
100
4
50
2
0
0
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig 19. Typical Recovery Current vs. dif/dt
Fig 20. Typical Stored Charge vs. dif/dt
200
IF = 57A
V R = 51V
TJ = 25°C
TJ = 125°C
QRR (nC)
150
100
50
0
0
200
400
600
800
1000
diF /dt (A/µs)
Fig 21. Typical Stored Charge vs. dif/dt
7
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
IAS
20V
tp
+
V
- DD
A
I AS
0.01
Fig 23a. Unclamped Inductive Test Circuit
Fig 23b. Unclamped Inductive Waveforms
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Id
Vds
Vgs
VDD Vgs(th)
Qgs1 Qgs2
Fig 25a. Gate Charge Test Circuit
8
www.irf.com
© 2014 International Rectifier
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAM PLE:
T H IS IS A N IR F 1 0 1 0
LO T C O D E 1789
ASSEM BLED O N W W 19, 2000
IN T H E A S S E M B L Y L IN E "C "
N o t e : "P " in a s s e m b ly lin e p o s it io n
in d ic a t e s "L e a d - F r e e "
IN T E R N A T IO N A L
R E C T IF IE R
LO G O
ASSEM BLY
LO T C O D E
PART NUM BER
D ATE C O D E
YEA R 0 = 2000
W EEK 19
L IN E C
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
November 5, 2014
IRFB7545PbF
Qualification Information† Industrial
(per JEDEC JESD47F) ††
Qualification Level Moisture Sensitivity Level
TO-220
N/A
RoHS Compliant
Yes
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
††
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
11/5/2014
Comment
Updated EAS (L =1mH) = 235mJ on page 2
Updated note 8 “Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 22A, VGS =10V”. on page 2
Updated package outline on page 9
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
November 5, 2014