StrongIRFET IRFS7437-7PPbF Applications l Brushed Motor drive applications l BLDC Motor drive applications l PWM Inverterized topologies l Battery powered circuits l Half-bridge and full-bridge topologies l Electronic ballast applications l Synchronous rectifier applications l Resonant mode power supplies l OR-ing and redundant power switches l DC/DC and AC/DC converters HEXFET® Power MOSFET D G S IRFS7437-7PPbF D2Pak-7PIN 195A S G c S S S D2Pak 7 Pin G D S Gate Drain Source Standard Pack Orderable Part Number Form Quantity Tube 50 IRFS7437-7PPbF Tape and Reel Left 800 IRFS7437TRL7PP 4.0 300 ID = 100A Limited By Package 250 3.0 TJ = 125°C 2.0 200 150 100 50 T J = 25°C 1.0 0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 ID (Package Limited) S ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m Ω) Package Type 40V 1.1mΩ 1.4mΩ 295A D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen Free Base Part Number VDSS RDS(on) typ. max. ID (Silicon Limited) www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF Absolute Maximum Ratings Symbol ID @ TC = 25°C Parameter Units Max. 295 c 208c Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 195 IDM Pulsed Drain Current 1040 PD @TC = 25°C Maximum Power Dissipation 231 W Linear Derating Factor 1.5 W/°C Gate-to-Source Voltage ± 20 V 3.5 V/ns VGS d f dv/dt Peak Diode Recovery TJ Operating Junction and TSTG Storage Temperature Range A -55 to + 175 °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) Avalanche Characteristics Single Pulse Avalanche Energy EAS (Thermally limited) EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy d e l 344 mJ 796 A See Fig. 14, 15, 22a, 22b d mJ Thermal Resistance Symbol k Parameter RθJC Junction-to-Case RθJA Junction-to-Ambient (PCB Mount) Typ. j ––– Max. 0.65 ––– 40 Units °C/W Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.035 ––– V/°C RDS(on) Static Drain-to-Source On-Resistance ––– 1.1 1.4 mΩ VGS = 10V, ID = 100A 1.7 ––– mΩ VGS = 6.0V, ID = 50A 2.2 ––– 3.9 V ––– ––– 1.0 μA ––– ––– 150 VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 2.2 ––– Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.069mH RG = 50Ω, IAS = 100A, VGS =10V. ISD ≤ 100A, di/dt ≤ 1288A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 www.irf.com © 2015 International Rectifier VGS = 0V, ID = 250μA Reference to 25°C, ID = 1.0mA g g d VDS = VGS, ID = 150μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 0.069mH,RG = 50Ω, IAS = 40A, VGS =10V. Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 122 ––– ––– S VDS = 10V, ID = 100A Qg Total Gate Charge ––– 150 225 nC ID = 100A Qgs Gate-to-Source Charge ––– 41 ––– VDS = 20V Qgd Gate-to-Drain ("Miller") Charge ––– 51 ––– VGS = 10V Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 99 ––– td(on) Turn-On Delay Time ––– 18 ––– tr Rise Time ––– 62 ––– ID = 30A td(off) Turn-Off Delay Time ––– 78 ––– RG = 2.7Ω tf Fall Time ––– 51 ––– Ciss Input Capacitance ––– 7437 ––– Coss Output Capacitance ––– 1097 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 748 ––– ƒ = 1.0 MHz Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 1314 ––– VGS = 0V, VDS = 0V to 32V Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 1735 ––– VGS = 0V, VDS Min. Typ. ––– Max. 285 Units ––– ––– ––– 1040 A h i g ID = 100A, VDS = 20V, VGS = 10V ns VDD = 20V VGS = 10V pF g VGS = 0V i = 0V to 32V h Diode Characteristics Symbol IS Parameter Continuous Source Current c A Pulsed Source Current (Body Diode) D showing the (Body Diode) ISM Conditions MOSFET symbol d G integral reverse S p-n junction diode. VSD Diode Forward Voltage ––– 1.0 1.3 V TJ = 25°C, IS = 100A, VGS = 0V trr Reverse Recovery Time ––– 37 ––– ns TJ = 25°C VR = 34V, ––– 38 ––– TJ = 125°C IF = 100A Qrr Reverse Recovery Charge ––– 34 ––– nC TJ = 25°C di/dt = 100A/μs ––– 36 ––– IRRM Reverse Recovery Current ––– 1.8 ––– A TJ = 25°C ton Forward Turn-On Time 3 www.irf.com © 2015 International Rectifier g g TJ = 125°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF 10000 10000 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V 1000 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1000 100 5.0V 10 ≤60μs PULSE WIDTH BOTTOM 100 5.0V ≤60μs PULSE WIDTH Tj = 25°C Tj = 175°C 1 10 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 10000 1000 100 TJ = 175°C T J = 25°C 10 VDS = 10V ≤60μs PULSE WIDTH 1.0 ID = 100A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 2 3 4 5 6 7 8 9 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Ciss 10000 Coss Crss 1000 100 ID= 100A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 0 Fig 7. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com © 2015 International Rectifier 20 40 60 80 100 120 140 160 180 200 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 4 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10000 1000 T J = 175°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 1msec 100 10msec Limited by package 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1 100 Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.0 49 Id = 1.0mA 0.9 0.8 47 0.7 46 0.6 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 10 V DS, Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) 48 100μsec 45 44 0.5 0.4 0.3 43 0.2 42 0.1 41 0.0 -0.1 40 -5 -60 -40 -20 0 20 40 60 80 100120140160180 0 T J , Temperature ( °C ) 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( mΩ) 5 Fig 12. Typical COSS Stored Energy 10.0 VGS = 6.0V VGS = 7.0V 8.0 VGS = 8.0V VGS =10V 6.0 4.0 2.0 0.0 0 200 400 600 800 1000 1200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 350 300 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF 12 10 IF = 60A V R = 34V 8 TJ = 25°C TJ = 125°C 4.0 IRRM (A) VGS(th) , Gate threshold Voltage (V) 5.0 3.0 ID = 150μA ID = 1.0mA 2.0 6 4 ID = 1.0A 2 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 12 300 10 IF = 100A V R = 34V 8 TJ = 25°C TJ = 125°C QRR (nC) IRRM (A) 400 diF /dt (A/μs) 6 250 IF = 60A V R = 34V 200 TJ = 25°C TJ = 125°C 150 4 100 2 50 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt QRR (nC) 300 250 IF = 100A V R = 34V 200 TJ = 25°C TJ = 125°C 150 100 50 0 0 200 400 600 800 1000 diF /dt (A/μs) 7 Fig. 21 - Typical Stored Charge vs. dif/dt www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF D2Pak - 7 Pin Part Marking Information INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFS7437-7P YWWP LC LC DATE CODE Y = LAST DIGIT OF YEAR WW = WORK WEEK P = LEAD-FREE D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFS7437-7PPbF Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Industrial†† (per JEDEC JESD47F††† guidelines) MS L1 D2Pak-7PIN (per JE DE C J-S TD-020D†††) Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Revision History Date Comment 4/30/2014 2/19/2015 • Updated data sheet based on corporate template. • Updated package outline and part marking on page 9 & 10. • Updated EAS (L =1mH) = 796mJ on page 2 • Updated note 10 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 40A, VGS =10V”. on page 2 IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015