Document Number: AFT18S290−13S Rev. 0, 5/2013 Freescale Semiconductor Technical Data RF Power LDMOS Transistor N−Channel Enhancement−Mode Lateral MOSFET This 63 watt RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 1805 to 1995 MHz. • Typical Single−Carrier W−CDMA Performance: VDD = 28 Volts, IDQ = 2000 mA, Pout = 63 Watts Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) hD (%) Output PAR (dB) ACPR (dBc) IRL (dB) 1930 MHz 18.0 31.2 7.1 −36.0 −19 1960 MHz 18.2 31.2 7.1 −35.0 −19 1995 MHz 18.2 31.8 6.9 −35.0 −12 AFT18S290−13SR3 1805−1995 MHz, 63 W AVG., 28 V 1800 MHz • Typical Single−Carrier W−CDMA Performance: VDD = 28 Volts, IDQ = 2000 mA, Pout = 63 Watts Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) hD (%) Output PAR (dB) ACPR (dBc) IRL (dB) 1805 MHz 18.0 33.3 7.1 −35.0 −13 1840 MHz 18.2 32.7 7.1 −35.0 −16 1880 MHz 18.3 32.6 7.1 −34.0 −13 NI−880XS−2L4S 6 VBW(1) N.C. 1 RFin/VGS 2 5 RFout/VDS Features • Greater Negative Gate−Source Voltage Range for Improved Class C Operation • Designed for Digital Predistortion Error Correction Systems • Optimized for Doherty Applications • In Tape and Reel. R3 Suffix = 250 Units, 44 mm Tape Width, 13−inch Reel. 4 VBW(1) N.C. 3 (Top View) Figure 1. Pin Connections 1. Device cannot operate with the VDD current supplied through pin 4 and pin 6. © Freescale Semiconductor, Inc., 2013. All rights reserved. RF Device Data Freescale Semiconductor, Inc. AFT18S290−13SR3 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain−Source Voltage VDSS −0.5, +65 Vdc Gate−Source Voltage VGS −6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg −65 to +150 °C Case Operating Temperature Range TC −40 to +150 °C Operating Junction Temperature Range (1,2) TJ −40 to +225 °C CW 245 1.6 W W/°C Symbol Value (2,3) Unit RθJC 0.42 °C/W CW Operation @ TC = 25°C Derate above 25°C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 66 W CW, 28 Vdc, IDQ = 2000 mA, 1960 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22−A114) 2 Machine Model (per EIA/JESD22−A115) B Charge Device Model (per JESD22−C101) IV Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate−Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 389 μAdc) VGS(th) 1.5 2.0 2.5 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 2000 mAdc, Measured in Functional Test) VGS(Q) 2.3 2.8 3.3 Vdc Drain−Source On−Voltage (VGS = 10 Vdc, ID = 5.0 Adc) VDS(on) 0.1 0.2 0.3 Vdc Off Characteristics On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes − AN1955. (continued) AFT18S290−13SR3 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 2000 mA, Pout = 63 W Avg., f = 1960 MHz, Single−Carrier W−CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps 17.2 18.2 20.2 dB Drain Efficiency ηD 29.5 31.2 — % PAR 6.6 7.1 — dB ACPR — −35.0 −34.0 dBc IRL — −19 −6 dB Output Peak−to−Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ = 2000 mA, f = 1960 MHz VSWR 10:1 at 32 Vdc, 363 W CW (2) Output Power (3 dB Input Overdrive from 263 W CW (2) Rated Power) No Device Degradation Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 2000 mA, 1930−1995 MHz Bandwidth P1dB — 263 (2) — W Φ — 15 — ° VBWres — 85 — MHz Gain Flatness in 65 MHz Bandwidth @ Pout = 63 W Avg. GF — 0.2 — dB Gain Variation over Temperature (−30°C to +85°C) ΔG — 0.01 — dB/°C ΔP1dB — 0.003 — dB/°C Pout @ 1 dB Compression Point, CW AM/PM (Maximum value measured at the P3dB compression point across the 1930−1995 MHz bandwidth) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (−30°C to +85°C) (2) 1. Part internally matched both on input and output. 2. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table. AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 3 VDD C24 VGG C19 C20 R1 C14 C18 C7 C15 C1* C3* C11* C4* C5* C2* C17 C21 C16 C13* C9* C10* CUT OUT AREA C6* C12* C8 C22 R2 C23 VGG VDD C25 AFT18S290-13S Rev. 0 *C1, C2, C3, C4, C5, C6, C9, C10, C11, C12 and C13 are mounted vertically. Figure 2. AFT18S290−13SR3 Test Circuit Component Layout — 1930−1995 MHz Table 5. AFT18S290−13SR3 Test Circuit Component Designations and Values — 1930−1995 MHz Part Description Part Number Manufacturer C1, C2, C3, C7 C8 8.2 pF Chip Capacitors ATC100B8R2BT500XT ATC C4 0.8 pF Chip Capacitor ATC100B0R8BT500XT ATC C5 1.1 pF Chip Capacitor ATC100B1R1BT500XT ATC C6 0.7 pF Chip Capacitor ATC100B0R7BT500XT ATC C9, C10 8.2 pF Chip Capacitors ATC800B8R2BT500XT ATC C11, C12 0.4 pF Chip Capacitors ATC100B0R4BT500XT ATC C13 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C14, C15, C16, C17, C18, C19, C20, C21, C22, C23 10 μF Chip Capacitors C5750X7S2A106M230KB TDK C24, C25 470 μF, 63 V Electrolytic Capacitors UVZ1J471MHD Nichicon R1, R2 2 Ω, 1/4 W Chip Resistors CRCW12062R00FKEA Vishay PCB 0.020², er = 3.5 RO4350B Rogers AFT18S290−13SR3 4 RF Device Data Freescale Semiconductor, Inc. 32 ηD 19 31.5 Gps 18.5 31 18 PARC 17.5 17 -33 -4 -33.5 -8 -34 IRL -34.5 16.5 ACPR 16 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 15.5 1880 1900 1920 1940 1960 1980 2000 2020 ACPR (dBc) Gps, POWER GAIN (dB) 19.5 32.5 -12 -16 -20 -35 -24 -35.5 2040 -2.7 -2.9 -3.1 -3.3 PARC (dB) 33 VDD = 28 Vdc, Pout = 63 W (Avg.), IDQ = 2000 mA Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth 20 IRL, INPUT RETURN LOSS (dB) 20.5 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS — 1930−1995 MHz -3.5 -3.7 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single−Carrier Output Peak−to−Average Ratio Compression (PARC) Broadband Performance @ Pout = 63 Watts Avg. -10 VDD = 28 Vdc, Pout = 100 W (PEP), IDQ = 2000 mA Two-Tone Measurements, (f1 + f2)/2 = Center -20 Frequency of 1960 MHz IM3-U -30 IM3-L IM5-U -40 IM5-L IM7-U -50 IM7-L -60 1 10 100 TWO-TONE SPACING (MHz) 18.5 0 18 17.5 17 16.5 16 VDD = 28 Vdc, IDQ = 2000 mA, f = 1960 MHz Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth ηD Gps -1 40 -20 35 -25 30 -2 dB = 47 W -1 dB = 34 W -2 ACPR 25 -3 20 -4 -3 dB = 64 W 10 25 40 55 70 -35 -40 15 -45 10 85 -50 PARC Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF -5 -30 ACPR (dBc) 1 ηD, DRAIN EFFICIENCY (%) 19 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two−Tone Spacing Pout, OUTPUT POWER (WATTS) Figure 5. Output Peak−to−Average Ratio Compression (PARC) versus Output Power AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS — 1930−1995 MHz 0 50 -10 40 30 20 1930 MHz 1995 MHz 1960 MHz ACPR 10 16 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 15 1 10 100 -20 -30 -40 ACPR (dBc) 17 60 ηD VDD = 28 Vdc, IDQ = 2000 mA, Single-Carrier W-CDMA 3.84 MHz Channel Bandwidth 1995 MHz 20 1960 MHz 1930 MHz 19 1930 MHz 1995 MHz Gps 1960 MHz 18 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 21 -50 -60 0 300 Pout, OUTPUT POWER (WATTS) AVG. Figure 6. Single−Carrier W−CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 30 21 20 Gain 17 10 15 0 IRL 13 -10 -20 11 9 1500 IRL (dB) GAIN (dB) 19 VDD = 28 Vdc Pin = 0 dBm IDQ = 2000 mA 1600 1700 1800 1900 2000 2100 2200 -30 2300 f, FREQUENCY (MHz) Figure 7. Broadband Frequency Response AFT18S290−13SR3 6 RF Device Data Freescale Semiconductor, Inc. VDD = 28 Vdc, IDQ = 2077 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource (W) Zin (W) Zload (1) (W) Gain (dB) (dBm) (W) hD (%) 1930 4.65 − j5.42 4.26 + j5.36 1.01 − j2.59 17.2 55.4 344 53.8 −11 1960 5.36 − j4.16 6.21 + j4.97 1.07 − j2.68 17.2 55.2 334 53.5 −10 1990 8.71 − j2.52 8.15 + j2.81 1.09 − j2.82 17.2 55.3 338 53.1 −11 AM/PM (5) Max Output Power P3dB Gain (dB) (dBm) (W) hD (%) AM/PM (5) 1.07 − j2.75 15.0 56.2 419 57.1 −15 6.63 + j5.03 1.11 − j2.85 15.0 56.1 407 55.9 −15 8.59 + j2.49 1.16 − j2.99 15.0 56.1 411 55.8 −16 f (MHz) Zsource (W) Zin (W) 1930 4.65 − j5.42 4.49 + j5.53 1960 5.36 − j4.16 1990 8.71 − j2.52 Zload (W) (2) (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 8. Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQ = 2077 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource (W) Zin (W) 1930 4.65 − j5.42 4.89 + j5.31 1960 5.36 − j4.16 6.97 + j4.39 1990 8.71 − j2.52 8.27 + j1.78 Gain (dB) (dBm) (W) hD (%) AM/PM (5) 1.71 − j1.45 19.7 53.5 224 65.3 −16 1.64 − j1.37 19.7 53.1 205 64.5 −15 1.57 − j1.60 19.6 53.4 220 64.0 −16 Zload (W) (1) Max Drain Efficiency P3dB f (MHz) Zsource (W) Zin (W) 1930 4.65 − j5.42 5.07 + j5.44 1960 5.36 − j4.16 7.25 + j4.47 1990 8.71 − j2.52 8.62 + j1.34 Gain (dB) (dBm) (W) hD (%) AM/PM (5) 1.72 − j1.56 17.6 54.4 275 67.3 −23 1.64 − j1.65 17.4 54.4 275 66.3 −22 1.51 − j1.63 17.6 54.2 262 65.9 −24 Zload (W) (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 9. Load Pull Performance — Maximum Drain Efficiency Tuning Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 7 P1dB − TYPICAL LOAD PULL CONTOURS — 1960 MHz -0.5 51 52 E -1 E 52.5 -1.5 IMAGINARY (Ω) -1 IMAGINARY (Ω) -0.5 51.5 53 -2 53.5 -2.5 P -3 54 -3.5 60 -1.5 58 64 -2 62 48 -2.5 P -3 55 54 54.5 54 52 50 -3.5 -4 56 -4 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 10. P1dB Load Pull Output Power Contours (dBm) Figure 11. P1dB Load Pull Efficiency Contours (%) -0.5 -1 -24 -1 20 E 19.5 -1.5 19 IMAGINARY (Ω) IMAGINARY (Ω) -0.5 20.5 -2 18.5 -2.5 P 18 16.5 -3 0.5 1 1.5 2 2.5 -18 -14 E -1.5 -12 -2 -2.5 P -10 -3.5 17 -4 -22 -16 -3 17.5 -3.5 -20 -8 -4 3 3.5 0.5 1 1.5 2 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 12. P1dB Load Pull Gain Contours (dB) Figure 13. P1dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency Power Gain Drain Efficiency Linearity Output Power AFT18S290−13SR3 8 RF Device Data Freescale Semiconductor, Inc. P3dB − TYPICAL LOAD PULL CONTOURS — 1960 MHz -0.5 -0.5 53 -1 52 53.5 -1.5 E IMAGINARY (Ω) IMAGINARY (Ω) -1 52.5 54 -2 -2.5 54.5 P -3 55 55 60 E 58 66 -2 64 -2.5 P -3 56 -3.5 62 -1.5 56 -3.5 55.5 54 50 -4 52 -4 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 14. P3dB Load Pull Output Power Contours (dBm) Figure 15. P3dB Load Pull Efficiency Contours (%) -0.5 -1 -1 18 -28 -26 -24 -22 17.5 -1.5 17 E IMAGINARY (Ω) IMAGINARY (Ω) -0.5 18.5 -2 16.5 -2.5 14.5 -3 P 16 0.5 1 1.5 2 2.5 -18 E -16 -2.5 -14 P -12 -3.5 15 -4 -20 -2 -3 15.5 -3.5 -1.5 -4 3 3.5 0.5 1 1.5 2 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 16. P3dB Load Pull Gain Contours (dB) Figure 17. P3dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency Power Gain Drain Efficiency Linearity Output Power AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 9 ALTERNATIVE CHARACTERIZATION — 1805−1880 MHz VDD C22 C17 VGG C18 C10* R1 C7 C16 C1 C6 C3* C14* CUT OUT AREA C4* C5* C8 C12* C13* C2 C15* C19 C9 R2 C11* C21 VGG C20 VDD C23 AFT18S290-13S Rev. 0 1805-1880 MHz *C3, C4, C5, C10, C11, C12, C13, C14 and C15 are mounted vertically. Figure 18. AFT18S290−13SR3 Test Circuit Component Layout — 1805−1880 MHz Table 6. AFT18S290−13SR3 Test Circuit Component Designations and Values — 1805−1880 MHz Part Description Part Number Manufacturer C1, C2, C10, C11 12 pF Chip Capacitors ATC100B120JT500XT ATC C3 8.2 pF Chip Capacitor ATC100B8R2CT500XT ATC C4 0.7 pF Chip Capacitor ATC100B0R7BT500XT ATC C5 0.8 pF Chip Capacitor ATC100B0R8BT500XT ATC C6, C7, C8, C9 10 μF Chip Capacitors GRM31CR61H106KA12L Murata C12, C13 8.2 pF Chip Capacitors ATC800B8R2BW500XT ATC C14, C15 0.4 pF Chip Capacitors ATC100B0R4BT500XT ATC C16, C17, C18, C19, C20, C21 10 μF Chip Capacitors C5750X7S2A106M230KB TDK C22, C23 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26−RH Multicomp R1, R2 2 Ω, 1/4 W Chip Resistors CRCW12062R00FKEA Vishay PCB 0.020², er = 3.5 RO4350B Rogers AFT18S290−13SR3 10 RF Device Data Freescale Semiconductor, Inc. ALTERNATIVE CHARACTERIZATION — 1805−1880 MHz 33 32 Gps 18 17.5 31 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF -32.5 PARC -8 -33 17 IRL 16.5 -33.5 -34 16 -10 -12 -14 -16 -34.5 15.5 ACPR 15 1760 1780 1800 1820 1840 1860 1880 1900 -18 -35 1920 -2.8 -2.9 -3 -3.1 PARC (dB) ηD ACPR (dBc) Gps, POWER GAIN (dB) 19 18.5 ηD, DRAIN EFFICIENCY (%) 35 VDD = 28 Vdc, Pout = 63 W (Avg.), IDQ = 2000 mA Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth 34 IRL, INPUT RETURN LOSS (dB) 20 19.5 -3.2 -3.3 f, FREQUENCY (MHz) Figure 19. Single−Carrier Output Peak−to−Average Ratio Compression (PARC) Broadband Performance @ Pout = 63 Watts Avg. Gps, POWER GAIN (dB) 20 ηD 19 1805 MHz 1840 MHz 60 0 50 -10 40 1880 MHz Gps ACPR 18 1805 MHz 1840 MHz 1880 MHz 17 20 1805 MHz 1840 MHz 1880 MHz 16 10 10 100 -30 -40 -50 -60 0 300 15 1 30 -20 ACPR (dBc) VDD = 28 Vdc, IDQ = 2000 mA, Single-Carrier W-CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF ηD, DRAIN EFFICIENCY (%) 21 Pout, OUTPUT POWER (WATTS) AVG. Figure 20. Single−Carrier W−CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 30 21 Gain 20 10 GAIN (dB) 17 0 15 IRL 13 -10 11 -20 9 1500 1600 1700 1800 1900 2000 2100 2200 IRL (dB) 19 VDD = 28 Vdc Pin = 0 dBm IDQ = 2000 mA -30 2300 f, FREQUENCY (MHz) Figure 21. Broadband Frequency Response AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 11 VDD = 28 Vdc, IDQ = 2078 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Output Power P1dB Zin (W) Zload (1) (W) Gain (dB) (dBm) (W) hD (%) AM/PM (5) 1.17 − j3.88 1.11 + j3.95 1.04 − j2.20 17.5 55.1 325 52.8 −9.8 1.50 − j4.53 1.55 + j4.38 1.01 − j2.27 17.4 55.3 339 53.9 −11 2.48 − j5.08 2.36 + j4.86 1.02 − j2.51 17.3 55.3 341 54.2 −11 f (MHz) Zsource (W) 1800 1840 1880 Max Output Power P3dB Gain (dB) (dBm) (W) hD (%) AM/PM (5) 1.03 − j2.36 15.3 56.1 405 57.0 −14 1.56 + j4.47 1.03 − j2.53 15.1 56.2 417 57.3 −15 2.39 + j5.03 1.02 − j2.62 15.1 56.2 418 57.0 −15 f (MHz) Zsource (W) Zin (W) 1800 1.17 − j3.88 1.10 + j4.01 1840 1.50 − j4.53 1880 2.48 − j5.08 Zload (W) (2) (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 22. Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQ = 2078 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource (W) Zin (W) 1800 1.17 − j3.88 1.26 + j4.14 1840 1.50 − j4.53 1.76 + j4.52 1880 2.48 − j5.08 2.70 + j4.93 Gain (dB) (dBm) (W) hD (%) AM/PM (5) 2.57 − j1.57 20.0 53.2 210 64.5 −13 2.26 − j1.49 19.8 53.4 220 64.7 −14 2.21 − j1.55 19.7 53.4 218 65.1 −14 Zload (W) (1) Max Drain Efficiency P3dB f (MHz) Zsource (W) Zin (W) 1800 1.17 − j3.88 1.26 + j4.15 1840 1.50 − j4.53 1.74 + j4.58 1880 2.48 − j5.08 2.70 + j5.11 Gain (dB) (dBm) (W) hD (%) AM/PM (5) 2.45 − j1.87 17.7 54.4 274 67.0 −19 2.14 − j1.76 17.5 54.6 290 67.4 −21 2.04 − j1.73 17.5 54.5 285 67.4 −21 Zload (W) (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 23. Load Pull Performance — Maximum Drain Efficiency Tuning Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT18S290−13SR3 12 RF Device Data Freescale Semiconductor, Inc. P1dB − TYPICAL LOAD PULL CONTOURS — 1840 MHz 51 IMAGINARY (Ω) -1 -0.5 51.5 51.5 52 -1 52 53 53.5 E -1.5 52.5 IMAGINARY (Ω) -0.5 -2 P -2.5 55 -3 64 E -1.5 62 -2 P -2.5 60 -3 58 54.5 -3.5 56 -3.5 54 -4 0.5 1 48 50 54 52 -4 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 24. P1dB Load Pull Output Power Contours (dBm) Figure 25. P1dB Load Pull Efficiency Contours (%) -0.5 -0.5 20.5 -20 -1 20 E -1.5 IMAGINARY (Ω) IMAGINARY (Ω) -1 19.5 -2 P -2.5 19 -3 17 17.5 -16 E -14 -2 -12 P -2.5 -3 18.5 16.5 -18 -1.5 18 -3.5 -3.5 -4 -4 -10 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 26. P1dB Load Pull Gain Contours (dB) Figure 27. P1dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency Power Gain Drain Efficiency Linearity Output Power AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 13 P3dB − TYPICAL LOAD PULL CONTOURS — 1840 MHz -0.5 52 -1 66 53 52.5 -1 53.5 -1.5 E 54 -2 -2.5 IMAGINARY (Ω) IMAGINARY (Ω) -0.5 52.5 P 54.5 56 -3 -1.5 E -2 -2.5 64 P 62 -3 60 55.5 -3.5 -3.5 55 -4 50 -4 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 54 52 2 58 56 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 28. P3dB Load Pull Output Power Contours (dBm) Figure 29. P3dB Load Pull Efficiency Contours (%) -0.5 -0.5 18.5 -1 -28 -1 -26 -24 IMAGINARY (Ω) IMAGINARY (Ω) 18 -1.5 E 17.5 -2 -2.5 17 P -3 16 14.5 -20 -2.5 -18 P -16 -3.5 15.5 15 E -2 -3 16.5 -3.5 -22 -1.5 -14 -12 -4 -4 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5 REAL (Ω) REAL (Ω) Figure 30. P3dB Load Pull Gain Contours (dB) Figure 31. P3dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency Power Gain Drain Efficiency Linearity Output Power AFT18S290−13SR3 14 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 15 AFT18S290−13SR3 16 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 May 2013 Description • Initial Release of Data Sheet AFT18S290−13SR3 RF Device Data Freescale Semiconductor, Inc. 17 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2013 Freescale Semiconductor, Inc. AFT18S290−13SR3 Document Number: AFT18S290−13S Rev. 0, 5/2013 18 RF Device Data Freescale Semiconductor, Inc.