Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFT21S240--12S
Rev. 0, 4/2014
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
This 55 W RF power LDMOS transistor is designed for cellular base station
applications covering the frequency range of 2110 to 2170 MHz.
AFT21S240--12SR3
 Typical Single--Carrier W--CDMA Characterization Performance:
VDD = 28 Vdc, IDQ = 1400 mA, Pout = 55 W Avg., Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
2110 MHz
19.5
32.4
7.2
–34.4
–20
2140 MHz
19.8
32.8
7.2
–33.7
–19
2170 MHz
20.2
33.1
7.1
–33.1
–16
2110–2170 MHz, 55 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
Features
 Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 Designed for Digital Predistortion Error Correction Systems
 Optimized for Doherty Applications
 In Tape and Reel. R3 Suffix = 250 Units, 56 mm Tape Width, 13--inch Reel.
NI--880XS--2L2L
4 VBW (1)
RFin/VGS 1
3 RFout/VDS
2 VBW (1)
(Top View)
Figure 1. Pin Connections
1. Device cannot operate with the VDD current
supplied through pin 2 and pin 4.
 Freescale Semiconductor, Inc., 2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT21S240--12SR3
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +65
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
Symbol
Value (2,3)
Unit
RJC
0.35
C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 75C, 55 W CW, 28 Vdc, IDQ = 1400 mA, 2140 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1C
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
IV
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 280 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 1400 mAdc, Measured in Functional Test)
VGS(Q)
1.4
1.8
2.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 2.8 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Characteristic
Off Characteristics
On Characteristics
Functional Tests (4) (In Freescale Production Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 55 W Avg., f = 2170 MHz,
Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz
Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
19.5
20.4
22.5
dB
Drain Efficiency
D
31.5
33.9
—
%
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
PAR
6.5
6.9
—
dB
ACPR
—
–32.4
–30.0
dBc
IRL
—
--16
--9
dB
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select
Documentation/Application Notes -- AN1955.
4. Part internally matched both on input and output.
(continued)
AFT21S240--12SR3
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Load Mismatch (In Freescale Characterization Test Fixture, 50 ohm system) IDQ = 1400 mA, f = 2140 MHz, 100 sec Pulse Width,
10% Duty Cycle
VSWR 10:1 at 32 Vdc, 300 W Pulse Output Power
(3 dB Input Overdrive from 230 W Pulse Rated Power)
No Device Degradation
Typical Performance (In Freescale Characterization Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 2110–2170 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
230
—
W

—
–20
—

VBWres
—
60
—
MHz
Gain Flatness in 60 MHz Bandwidth @ Pout = 55 W Avg.
GF
—
0.7
—
dB
Gain Variation over Temperature
(–30C to +85C)
G
—
0.0167
—
dB/C
P1dB
—
0.0117
—
dB/C
AM/PM
(Maximum value measured at the P3dB compression point across
the 2110–2170 MHz bandwidth)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(–30C to +85C)
AFT21S240--12SR3
RF Device Data
Freescale Semiconductor, Inc.
3
--
C14
VDD
R1
VGG
C12
C5
AFT21S240_12S
Rev. 1
C1
C8
R2
C2
C4
C3
CUT OUT AREA
C10
C11
C7
C9
C13
C6
VDD
--
C15
D56227
Figure 2. AFT21S240--12SR3 Production Test Circuit Component Layout
Table 5. AFT21S240--12SR3 Production Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C5, C6, C12, C13
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C2, C4
10 pF Chip Capacitors
ATC600F100JT250XT
ATC
C3
0.8 pF Chip Capacitor
ATC600F0R8BT250XT
ATC
C7
0.2 pF Chip Capacitor
ATC600F0R2BT250XT
ATC
C8, C9, C10, C11
8.2 pF Chip Capacitors
ATC600F8R2BT250XT
ATC
C14, C15
220 F, 100 V Chip Capacitors
MCGPR100V227M16X26-RH
Multicomp
R1
5.6 K, 1/4 W Chip Resistor
CRCW12065K60FKEA
Vishay
R2
10 , 1/4 W Chip Resistor
RK73H2ATTD10R0F
KOA Speer
PCB
Rogers RO4350B, 0.030, r = 3.66
D56227
MTL
AFT21S240--12SR3
4
RF Device Data
Freescale Semiconductor, Inc.
--
VDD
C10
R1
VGG
AFT21S240XS
Rev. 0
C8
R2
C16
C1
C17
C2
C3*
C4
C5
C6
C7
R3
VGG
CUT OUT AREA
C12*
C18
C11
C13
C14
C15
C9
VDD
D52160
*C3 and C12 are mounted vertically.
Figure 3. AFT21S240--12SR3 Characterization Test Circuit Component Layout
Table 6. AFT21S240--12SR3 Characterization Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C7
10 F Chip Capacitors
GRM31CR61H106KA12L
MuRata
C2, C6, C14, C17
9.1 pF Chip Capacitors
ATC100B9R1CT500XT
ATC
C3, C12
7.5 pF Chip Capacitors
ATC100B7R5CT500XT
ATC
C4, C5
1.2 pF Chip Capacitors
ATC100B1R2BT500XT
ATC
C8, C9, C15, C16
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C10
470 F Chip Capacitor
MCGPR63V477M13X26-RH
Multicomp
C11
0.1 pF Chip Capacitor
ATC100B0R1BT500XT
ATC
C13
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
C18
0.4 pF Chip Capacitor
ATC100B0R4BT500XT
ATC
R1
5.6 K, 1/4 W Chip Resistor
CRCW12065K60FKEA
Vishay
R2, R3
6.04 , 1/4 W Chip Resistors
CRCW12066R04FKEA
Vishay
PCB
Rogers RO4350B, 0.030, r = 3.66
D52160
MTL
AFT21S240--12SR3
RF Device Data
Freescale Semiconductor, Inc.
5
33
D
20
19
32
17
31
3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
Gps
18
PARC
16
--15.2
--35
IRL
2080
--32
--34
ACPR
14
--12
--33
15
13
2060
--31
2100
2120
2140
2160
2180
--18.4
--21.6
--24.8
--36
2220
2200
--28
--2
--2.4
--2.8
--3.2
--3.6
PARC (dB)
34
IRL, INPUT RETURN LOSS (dB)
21
Gps, POWER GAIN (dB)
35
VDD = 28 Vdc, Pout = 55 W (Avg.)
IDQ = 1400 mA, Single--Carrier W--CDMA
22
ACPR (dBc)
23
D, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
--4
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 4. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 55 Watts Avg.
--10
VDD = 28 Vdc, Pout = 210 W (PEP), IDQ = 1400 mA
Two--Tone Measurements, (f1 + f2)/2 = Center
--20 Frequency of 2140 MHz
IM3--U
--30
IM3--L
IM5--U
--40
IM5--L
--50
IM7--L
IM7--U
--60
1
10
200
100
TWO--TONE SPACING (MHz)
Figure 5. Intermodulation Distortion Products
versus Two--Tone Spacing
20
18
16
14
VDD = 28 Vdc, IDQ = 1400 mA, f = 2140 MHz
Single--Carrier W--CDMA, 3.84 MHz Channel
Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
0
--1
--3 dB = 58 W
PARC
25
40
55
--10
20
--2 dB = 44 W
10
50
30
Gps
--4
--5
ACPR
--1 dB = 31 W
--3
0
40
D
--2
60
70
--20
--30
ACPR (dBc)
22
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
24
1
D DRAIN EFFICIENCY (%)
26
--40
10
--50
0
--60
85
Pout, OUTPUT POWER (WATTS)
Figure 6. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
AFT21S240--12SR3
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
20
2140 MHz
0
50
--10
D
2170 MHz
40
ACPR
Gps
18
60
30
2170 MHz
16
2110 MHz
2140 MHz
20
2170 MHz
2140 MHz
2110 MHz
14
10
0
300
12
1
10
100
--20
--30
--40
ACPR (dBc)
22
Gps, POWER GAIN (dB)
2110 MHz
VDD = 28 Vdc, IDQ = 1400 mA
Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01%
Probability on CCDF
D, DRAIN EFFICIENCY (%)
24
--50
--60
Pout, OUTPUT POWER (WATTS) AVG.
Figure 7. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
22
2
Gain
20
--2
GAIN (dB)
--10
16
IRL
--14
14
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 1400 mA
12
10
1800
IRL (dB)
--6
18
1900
2000
2100
2200
2300
2400
2500
--18
--22
2600
f, FREQUENCY (MHz)
Figure 8. Broadband Frequency Response
AFT21S240--12SR3
RF Device Data
Freescale Semiconductor, Inc.
7
Table 7. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 1408 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2110
3.33 – j4.79
3.96 + j4.70
1.42 – j2.85
20.3
54.3
268
55.9
–15
2140
4.26 – j4.58
5.09 + j4.19
1.41 – j2.98
20.3
54.4
273
55.8
–15
2170
5.73 – j3.83
6.20 + j2.89
1.44 – j3.19
20.2
54.3
270
54.6
–15
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2110
3.33 – j4.79
4.27 + j4.85
1.45 – j3.07
18.1
55.3
338
58.3
–21
2140
4.26 – j4.58
5.56 + j4.18
1.46 – j3.20
18.1
55.3
339
58.0
–21
2170
5.73 – j3.83
6.72 + j2.56
1.50 – j3.35
18.1
55.3
336
57.1
–21
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 8. Load Pull Performance — Maximum Drain Efficiency Tuning
VDD = 28 Vdc, IDQ = 1408 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2.36 – j1.84
22.1
53.0
199
64.9
–17
5.44 + j3.92
2.24 – j1.84
22.2
53.0
198
65.7
–18
6.50 + j2.50
2.03 – j1.99
22.2
53.0
199
63.5
–18
f
(MHz)
Zsource
()
Zin
()
2110
3.33 – j4.79
4.30 + j4.62
2140
4.26 – j4.58
2170
5.73 – j3.83
Zload
()
(1)
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload
()
(2)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2110
3.33 – j4.79
4.90 + j4.54
2.53 – j1.48
20.4
53.4
218
68.6
–27
2140
4.26 – j4.58
6.03 + j3.73
2.16 – j1.80
20.2
53.8
242
68.6
–27
2170
5.73 – j3.83
6.84 + j1.60
2.03 – j1.65
20.5
53.4
220
67.6
–29
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT21S240--12SR3
8
RF Device Data
Freescale Semiconductor, Inc.
P1dB -- TYPICAL LOAD PULL CONTOURS — 2140 MHz
--0.5
50.5
51
--1.5
--2
52.5
--2.5
53
P
--3
--4
1
1.5
2
E
--2
64
--2.5
62
60
P
58
--3.5
3
2.5
--1.5
--3
53.5
54
--3.5
3.5
--4
4.5
4
50 52
1
1.5
56
54
2
2.5
3
54
3.5
4
4.5
REAL ()
REAL ()
Figure 9. P1dB Load Pull Output Power Contours (dBm)
Figure 10. P1dB Load Pull Efficiency Contours (%)
--0.5
--0.5
23.5
23
--1
IMAGINARY ()
IMAGINARY ()
52
E
50
--1
51.5
22.5
--1.5
22
E
--2
21.5
--2.5
21
P
--3
--3.5
--4
19.5
1
1.5
2.5
3
--24
--1.5
--20
--22
--2
E
--18
--2.5
--16
P
--3
--3.5
20.5
20
2
--26
--1
IMAGINARY ()
IMAGINARY ()
--1
--0.5
50.5
3.5
4
4.5
--4
--14
1
1.5
2
2.5
3
3.5
4
4.5
REAL ()
REAL ()
Figure 11. P1dB Load Pull Gain Contours (dB)
Figure 12. P1dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT21S240--12SR3
RF Device Data
Freescale Semiconductor, Inc.
9
P3dB -- TYPICAL LOAD PULL CONTOURS — 2140 MHz
--0.5
--0.5
52
51.5
--1
--1
52.5
53
E
--2
--2.5
P
1
1.5
2
2.5
--1.5
E
--2
66
3.5
--4
4.5
4
62
64
P
--3.5
3
68
--2.5
--3
54.5
55
--3.5
--4
53.5
54
--3
IMAGINARY ()
IMAGINARY ()
--1.5
52
1
58
60
56
54 56
1.5
2
3
2.5
3.5
4
4.5
REAL ()
REAL ()
Figure 13. P3dB Load Pull Output Power Contours (dBm)
Figure 14. P3dB Load Pull Efficiency Contours (%)
--0.5
21.5
--0.5
20.5
21
--1
20
--1.5
IMAGINARY ()
IMAGINARY ()
--1
E
--2
19.5
--2.5
19
--3
--28
--1.5
--26
E
--2
--24
--2.5
--22
P
17.5
1
--30
--32
--3
P
--3.5
--4
--34
1.5
18
2
--3.5
18.5
2.5
3
3.5
4
4.5
--4
--20
1
1.5
2
2.5
3
3.5
4
4.5
REAL ()
REAL ()
Figure 15. P3dB Load Pull Gain Contours (dB)
Figure 16. P3dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT21S240--12SR3
10
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
AFT21S240--12SR3
RF Device Data
Freescale Semiconductor, Inc.
11
AFT21S240--12SR3
12
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Apr. 2014
Description
 Initial Release of Data Sheet
AFT21S240--12SR3
RF Device Data
Freescale Semiconductor, Inc.
13
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2014 Freescale Semiconductor, Inc.
AFT21S240--12SR3
Document Number: AFT21S240--12S
Rev. 0, 4/2014
14
RF Device Data
Freescale Semiconductor, Inc.