Freescale Semiconductor Technical Data Document Number: MRF7S19170H Rev. 2, 3/2011 RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs MRF7S19170HR3 MRF7S19170HSR3 Designed for CDMA base station applications with frequencies from 1930 to 1990 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats. • Typical Single--Carrier W--CDMA Performance: VDD = 28 Volts, IDQ = 1400 mA, Pout = 50 Watts Avg., f = 1987.5 MHz, IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Power Gain — 17.2 dB Drain Efficiency — 32% Device Output Signal PAR — 6.2 dB @ 0.01% Probability on CCDF ACPR @ 5 MHz Offset — --37.5 dBc in 3.84 MHz Channel Bandwidth • Capable of Handling 5:1 VSWR, @ 32 Vdc, 1960 MHz, 170 Watts CW Output Power • Pout @ 1 dB Compression Point ≃ 170 Watts CW Features • 100% PAR Tested for Guaranteed Output Power Capability • Characterized with Series Equivalent Large--Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • Designed for Digital Predistortion Error Correction Systems • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units, 56 mm Tape Width, 13 inch Reel. 1930--1990 MHz, 50 W AVG., 28 V SINGLE W--CDMA LATERAL N--CHANNEL RF POWER MOSFETs CASE 465B--03, STYLE 1 NI--880 MRF7S19170HR3 CASE 465C--02, STYLE 1 NI--880S MRF7S19170HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +65 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg -- 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 170 W CW Case Temperature 72°C, 25 W CW RθJC 0.25 0.31 °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2006, 2008, 2011. All rights reserved. RF Device Data Freescale Semiconductor MRF7S19170HR3 MRF7S19170HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1A (Minimum) Machine Model (per EIA/JESD22--A115) B (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 372 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, ID = 1400 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (1) (VDD = 28 Vdc, ID = 1400 mAdc, Measured in Functional Test) VGG(Q) 4 5.4 7.6 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 3.72 Adc) VDS(on) 0.1 0.15 0.3 Vdc Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.9 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 703 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics (2) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W Avg., f = 1987.5 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps 16 17.2 19 dB Drain Efficiency ηD 29 32 — % PAR 5.7 6.2 — dB ACPR — --37.5 --35 dBc IRL — --16 --9 dB Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss 1. VGG = 2 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. 2. Part internally matched both on input and output. (continued) MRF7S19170HR3 MRF7S19170HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 1930--1990 MHz Bandwidth Video Bandwidth @ 170 W PEP Pout where IM3 = --30 dBc (Tone Spacing from 100 kHz to VBW) ∆IMD3 = IMD3 @ VBW frequency -- IMD3 @ 100 kHz <1 dBc (both sidebands) VBW MHz — 25 — Gain Flatness in 60 MHz Bandwidth @ Pout = 170 W CW GF — 0.5 — dB Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 170 W CW Φ — 2.06 — ° Delay — 4.7 — ns Part--to--Part Insertion Phase Variation @ Pout = 170 W CW, f = 1960 MHz, Six Sigma Window ∆Φ — 16 — ° Gain Variation over Temperature (--30°C to +85°C) ∆G — 0.015 — dB/°C ∆P1dB — 0.01 — dB/°C Average Group Delay @ Pout = 170 W CW, f = 1960 MHz Output Power Variation over Temperature (--30°C to +85°C) MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 3 VBIAS Z20 R1 C6 VSUPPLY + R2 C5 C4 C3 Z7 C8 R3 RF INPUT Z1 Z2 Z3 Z4 Z5 Z6 C7 C1 C15 C19 Z9 Z10 Z11 Z8 Z12 Z13 DUT C2 C16 Z14 C14 Z15 C13 Z16 Z17 C12 C10 Z18 RF Z19 OUTPUT C11 Z21 C9 Z1* Z2* Z3* Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 0.588″ x 0.083″ Microstrip 0.146″ x 0.083″ Microstrip 0.068″ x 0.083″ Microstrip 0.865″ x 0.098″ Microstrip 0.154″ x 0.098″ Microstrip 0.271″ x 0.787″ Microstrip 1.410″ x 0.080″ Microstrip 0.194″ x 0.787″ Microstrip 0.115″ x 1.360″ Microstrip 0.230″ x 1.360″ Microstrip 0.185″ x 1.120″ Microstrip C17 Z12 Z13* Z14* Z15* Z16* Z17, Z18 Z19 Z20, Z21 PCB C18 0.060″ x 0.420″ Microstrip 0.197″ x 0.083″ Microstrip 0.332″ x 0.083″ Microstrip 0.158″ x 0.083″ Microstrip 0.572″ x 0.083″ Microstrip 0.063″ x 0.220″ Microstrip 0.160″ x 0.083″ Microstrip 1.120″ x 0.080″ Microstrip Taconic TLX--0300, 0.030″, εr = 2.5 * Variable for tuning Figure 1. MRF7S19170HR3(HSR3) Test Circuit Schematic Table 5. MRF7S19170HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2 1.8 pF Chip Capacitors ATC100B1R8BT500XT ATC C3, C8, C9, C10, C11 8.2 pF Chip Capacitors ATC100B8R2CT500XT ATC C4 100 pF Chip Capacitor ATC100B101JT500XT ATC C5 100 nF Chip Capacitor 200B104MT ATC C6, C15, C16, C17, C18 10 μF Chip Capacitors C5750X5R1H106MT TDK C7 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C12 1.5 pF Chip Capacitor ATC100B1R5BT500XT ATC C13 0.3 pF Chip Capacitor ATC100B0R3BT500XT ATC C14 0.8 pF Chip Capacitor ATC100B0R8BT500XT ATC C19 470 μF, 63 V Electrolytic Capacitor, Axial EKME630ELL471M12X25LL United Chemi--Con R1, R2 10 kΩ, 1/4 W Chip Resistors CRCW12061002FKEA Vishay R3 10 Ω, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay MRF7S19170HR3 MRF7S19170HSR3 4 RF Device Data Freescale Semiconductor C19 R2 R1 C5 C4 C3 C6 C8 C15 R3 C16 C1 C2 CUT OUT AREA C10 C7 C14 C11 C13 C12 C9 C17 C18 MRF7S19170H Rev 0 Figure 2. MRF7S19170HR3(HSR3) Test Circuit Component Layout MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 5 Gps, POWER GAIN (dB) 17 34 Gps 16 15 33 ηD 14 32 VDD = 28 Vdc, Pout = 50 W (Avg.), IDQ = 1400 mA Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth, PAR = 7.5 dB @ 0.01% Probability (CCDF) IRL 13 12 31 --10 --1 --15 --1.5 PARC 11 10 1880 --2 1920 1900 1940 1960 1980 2000 2020 --20 --25 --2.5 2040 --30 IRL, INPUT RETURN LOSS (dB) 35 PARC (dB) 18 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) 16 15 14 13 43 ηD 42 Gps 41 VDD = 28 Vdc, Pout = 84 W (Avg.), IDQ = 1400 mA Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth, PAR = 7.5 dB @ 0.01% Probability (CCDF) IRL 40 --10 --3 --15 12 PARC --3.4 11 --3.8 10 1880 1920 1900 1940 1960 1980 2000 2020 --20 --25 --4.2 2040 --30 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 17 44 PARC (dB) 18 ηD, DRAIN EFFICIENCY (%) Figure 3. Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 50 Watts Avg. f, FREQUENCY (MHz) Figure 4. Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 84 Watts Avg. VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz Two--Tone Measurements, 10 MHz Tone Spacing 18 IDQ = 2100 mA 1750 mA 17 1400 mA 1050 mA 16 700 mA 15 1 10 100 400 --10 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) Gps, POWER GAIN (dB) 19 VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz Two--Tone Measurements, 10 MHz Tone Spacing --20 --30 IDQ = 700 mA 2100 mA --40 --50 1050 mA 1750 mA 1400 mA --60 1 10 100 400 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two--Tone Power Gain versus Output Power Figure 6. Third Order Intermodulation Distortion versus Output Power MRF7S19170HR3 MRF7S19170HSR3 6 RF Device Data Freescale Semiconductor VDD = 28 Vdc, IDQ = 1400 mA f1 = 1955 MHz, f2 = 1965 MHz Two--Tone Measurements, 10 MHz Tone Spacing --20 --30 --40 3rd Order --50 5th Order 7th Order --60 100 1 400 0 VDD = 28 Vdc, Pout = 170 W (PEP), IDQ = 1400 mA Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz --10 --20 IM3--U --30 IM3--L IM5--U --40 IM5--L IM7--U --50 IM7--L --60 10 1 100 Pout, OUTPUT POWER (WATTS) PEP TWO--TONE SPACING (MHz) Figure 7. Intermodulation Distortion Products versus Output Power Figure 8. Intermodulation Distortion Products versus Tone Spacing OUTPUT COMPRESSION AT THE 0.01% PROBABILITY ON THE CCDF (dB) 1 50 VDD = 28 Vdc, IDQ = 1400 mA f = 1960 MHz, Input PAR = 7.5 dB Ideal 0 --1 --2 45 40 --1 dB = 45 W 35 --2 dB = 62 W --3 --3 dB = 84 W --4 30 35 40 45 50 55 60 65 70 75 Actual 80 30 ηD, DRAIN EFFICIENCY (%) IMD, INTERMODULATION DISTORTION (dBc) --10 IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS 25 90 85 Pout, OUTPUT POWER (WATTS) 19 VDD = 28 Vdc, IDQ = 1400 mA, f = 1960 MHz Single--Carrier W--CDMA, PAR = 7.5 dB, ACPR @ 5 MHz Offset in 3.84 MHz Integrated Bandwidth --30 Uncorrected, Upper and Lower --40 DPD Corrected No Memory Correction --50 --60 41 42 43 44 45 46 47 48 49 TC = --30_C 18 Gps 17 25_C 85_C 16 85_C 60 45 30 15 VDD = 28 Vdc IDQ = 1400 mA f = 1960 MHz ηD 13 50 75 25_C 14 DPD Corrected with Memory Correction --70 40 90 --30_C 1 10 100 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) CW Figure 10. Digital Predistortion Correction versus ACPR and Output Power Figure 11. Power Gain and Drain Efficiency versus CW Output Power 15 ηD, DRAIN EFFICIENCY (%) --20 Gps, POWER GAIN (dB) ACPR, UPPER AND LOWER RESULTS (dBc) Figure 9. Output Peak--to--Average Ratio Compression (PARC) versus Output Power 0 400 MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 18 IDQ = 1400 mA f = 1960 MHz Gps, POWER GAIN (dB) 17 16 15 VDD = 24 V 14 28 V 32 V 13 0 200 100 300 Pout, OUTPUT POWER (WATTS) CW Figure 12. Power Gain versus Output Power W--CDMA TEST SIGNAL 100 10 0 --10 Input Signal --30 0.1 0.01 W--CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 3.84 MHz Channel BW --20 1 (dB) PROBABILITY (%) 10 0 1 2 3 4 5 6 --40 --50 --60 +ACPR in 3.84 MHz Integrated BW --ACPR in 3.84 MHz Integrated BW --70 --80 7 8 9 PEAK--TO--AVERAGE (dB) Figure 13. CCDF W--CDMA IQ Magnitude Clipping, Single--Carrier Test Signal 10 --90 --100 --9 --7.2 --5.4 --3.6 --1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 14. Single--Carrier W--CDMA Spectrum MRF7S19170HR3 MRF7S19170HSR3 8 RF Device Data Freescale Semiconductor Zo = 10 Ω f = 2040 MHz Zload f = 1880 MHz Zsource f = 2040 MHz f = 1880 MHz VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W Avg. f MHz Zsource Ω Zload Ω 1880 1.338 -- j7.859 0.967 -- j2.868 1900 1.515 -- j7.609 0.942 -- j2.725 1920 1.743 -- j7.432 0.920 -- j2.585 1940 2.007 -- j7.352 0.893 -- j2.449 1960 2.249 -- j7.393 0.865 -- j2.313 1980 2.410 -- j7.553 0.841 -- j2.192 2000 2.411 -- j7.788 0.820 -- j2.073 2020 2.244 -- j7.995 0.802 -- j1.957 2040 1.966 -- j8.101 0.779 -- j1.834 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 9 ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS 61 61 59 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) 60 62 Ideal P6dB = 54.33 dBm (271 W) 58 P3dB = 53.97 dBm (249 W) 57 56 P1dB = 53.25 dBm (211 W) 55 54 Actual 53 VDD = 28 Vdc, IDQ = 1400 m, Pulsed CW 12 μsec(on), 10% Duty Cycle, f = 1960 MHz 52 51 32 33 34 35 36 37 38 39 40 41 42 59 P3dB = 54.9 dBm (310 W) 58 57 P1dB = 54.14 dBm (259 W) 56 55 44 VDD = 32 Vdc, IDQ = 1400 mA, Pulsed CW 12 μsec(on), 10% Duty Cycle, f = 1960 MHz 52 33 34 35 36 37 38 39 40 41 42 43 44 45 Pin, INPUT POWER (dBm) Pin, INPUT POWER (dBm) NOTE: Measured in a Peak Tuned Load Pull Fixture NOTE: Measured in a Peak Tuned Load Pull Fixture Test Impedances per Compression Level P3dB Actual 54 53 43 Ideal P6dB = 55.27 dBm (336 W) 60 Zsource Ω Zload Ω 2.34 -- j9.24 0.79 -- j2.94 Figure 16. Pulsed CW Output Power versus Input Power Test Impedances per Compression Level P3dB Zsource Ω Zload Ω 2.34 -- j9.24 0.79 -- j2.94 Figure 17. Pulsed CW Output Power versus Input Power MRF7S19170HR3 MRF7S19170HSR3 10 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 11 MRF7S19170HR3 MRF7S19170HSR3 12 RF Device Data Freescale Semiconductor MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 13 MRF7S19170HR3 MRF7S19170HSR3 14 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Oct. 2006 • Initial Release of Data Sheet 1 Dec. 2008 • Corrected VDS to VDD in the RF test condition voltage callout for VGS(Q), and added “Measured in Functional Test”, On Characteristics table, p. 2 • Updated Typical Performance table to provide better definition of characterization attributes, p. 3 • Updated Part Numbers in Table 5, Component Designations and Values, to latest RoHS compliant part numbers, p. 4 • Adjusted scale for Fig. 8, Intermodulation Distortion Products versus Tone Spacing, to show wider dynamic range, p. 7 • Replaced Fig. 13, MTTF versus Junction Temperature with updated graph. Removed Amps2 and listed operating characteristics and location of MTTF calculator for device, p. 8 • Deleted output signal data from Fig. 14, CCDF W--CDMA 3GPP, Test Model 1, 64 DPCH, 50% Clipping, Single--Carrier Test Signal, p. 8 2 Mar. 2011 • Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13628, p. 1, 2 • Fig. 13, MTTF versus Junction Temperature removed, p. 8. Refer to the device’s MTTF Calculator available at freescale.com/RFpower. Go to Design Resources > Software and Tools. • Fig. 14, CCDF W--CDMA IQ Magnitude Clipping, Single--Carrier Test Signal and Fig. 15, Single--Carrier W--CDMA Spectrum updated to show the undistorted input test signal, p. 8 (renumbered as Figs. 13 and 14 respectively after Fig. 13 removed) • Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 15 MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 15 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006, 2008, 2011. All rights reserved. MRF7S19170HR3 MRF7S19170HSR3 Document Number: MRF7S19170H Rev. 2, 3/2011 16 RF Device Data Freescale Semiconductor