Freescale Semiconductor Technical Data Document Number: A2T21H360--24S Rev. 0, 1/2015 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 63 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 2110 to 2170 MHz. A2T21H360--24SR6 2100 MHz Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc, Pout = 63 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) 2110 MHz 16.2 51.6 7.9 –28.5 2140 MHz 16.2 51.8 7.9 –28.8 2170 MHz 16.1 50.9 7.9 –29.5 2110–2170 MHz, 63 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR Features Advanced High Performance In--Package Doherty Greater Negative Gate--Source Voltage Range for Improved Class C Operation Designed for Digital Predistortion Error Correction Systems In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13--inch Reel. NI--1230S--4L2L 6 VBWA(1) Carrier RFinA/VGSA 1 5 RFoutA/VDSA RFinB/VGSB 2 4 RFoutB/VDSB Peaking 3 VBWB(1) (Top View) Figure 1. Pin Connections 1. Device cannot operate with the VDD current supplied through pin 3 and pin 6. Freescale Semiconductor, Inc., 2015. All rights reserved. RF Device Data Freescale Semiconductor, Inc. A2T21H360--24SR6 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +65 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C Operating Junction Temperature Range (1,2) TJ –40 to +225 C CW 278 1.2 W W/C CW Operation @ TC = 25C Derate above 25C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 73C, 63 W Avg., W--CDMA, 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc, 2140 MHz Symbol Value (2,3) Unit RJC 0.33 C/W Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) B Charge Device Model (per JESD22--C101) IV Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 32 Vdc, VGS = 0 Vdc) IDSS — — 1 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 140 Adc) VGS(th) 0.8 1.2 1.6 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, IDA = 500 mAdc, Measured in Functional Test) VGSA(Q) 1.4 1.9 2.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.4 Adc) VDS(on) 0.1 0.2 0.3 Vdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 240 Adc) VGS(th) 0.8 1.2 1.6 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 2.4 Adc) VDS(on) 0.1 0.2 0.3 Vdc Characteristic Off Characteristics (4) On Characteristics -- Side A (4) On Characteristics -- Side B (4) 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 4. Each side of device measured separately. (continued) A2T21H360--24SR6 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit (1,2) Functional Tests (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc, Pout = 63 W Avg., f = 2140 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Gps 15.6 16.2 18.6 dB Drain Efficiency D 49.2 51.8 — % PAR 7.2 7.9 — dB ACPR — –28.8 –27.2 dBc Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Load Mismatch (2) (In Freescale Doherty Test Fixture, 50 ohm system) IDQA = 500 mA, VGSB = 0.5 Vdc, f = 2140 MHz VSWR 10:1 at 28 Vdc, 288 W Pulse Output Power (3 dB Input Overdrive from 363 W Pulse Rated Power) No Device Degradation Typical Performance (2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc, 2110–2170 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 301(3) — W Pout @ 3 dB Compression Point (4) P3dB — 400 — W — –27 — VBWres — 100 — MHz Gain Flatness in 60 MHz Bandwidth @ Pout = 63 W Avg. GF — 0.2 — dB Gain Variation over Temperature (–30C to +85C) G — 0.012 — dB/C P1dB — 0.002 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 2110–2170 MHz bandwidth) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (–30C to +85C) (3) 1. 2. 3. 4. Part internally matched both on input and output. Measurements made with device in an asymmetrical Doherty configuration. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. A2T21H360--24SR6 RF Device Data Freescale Semiconductor, Inc. 3 VGGA C1 VDDA R2 C19 C2 C10 R4 D61817 C3 C P R1 C7 C6 AFT21H360--4WS Rev. 3 C8 R5 C9 C14 CUT OUT AREA C4 C5 Z1 C12 C13 C15 C16 C11 C18 C17 C20 VDDB R3 VGGB Figure 2. A2T21H360--24SR6 Test Circuit Component Layout Table 5. A2T21H360--24SR6 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C9, C10, C11, C12, C18 10 F Chip Capacitors C5750X7S2A106M230KB TDK C2, C8, C13, C17 9.1 pF Chip Capacitors ATC100B9R1CT500XT ATC C3, C5, C15 9.1 pF Chip Capacitors ATC600F9R1BT250XT ATC C4 0.5 pF Chip Capacitor ATC600F0R5BT250XT ATC C6 0.8 pF Chip Capacitor ATC600F0R8BT250XT ATC C7 1.1 pF Chip Capacitor ATC600F1R1BT250XT ATC C14 4.7 pF Chip Capacitor ATC600F4R7BT250XT ATC C16 0.2 pF Chip Capacitor ATC600F0R2BT250XT ATC C19, C20 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp R1 50 , 20 W Chip Resistor C20A5024 Anaren R2, R3 5.6 K, 1/4 W Chip Resistors CRCW12065K60FKEA Vishay R4, R5 6.2 , 1/4 W Chip Resistors CRCW12066R20FKEA Vishay Z1 2000–2300 MHz Band, 90, 5 dB Directional Coupler X3C21P1-05S Anaren PCB Rogers RO4350B, 0.020, r = 3.66 D61817 MTL A2T21H360--24SR6 4 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 2110–2170 MHz 16.6 16.4 51 D 16.2 50 49 Gps 16 15.8 ACPR 15.6 –1.7 –30 –1.8 –31 PARC 15.4 –29 ACPR (dBc) VDD = 28 Vdc, Pout = 63 W (Avg.) IDQA = 500 mA, VGSB = 0.5 Vdc –32 15.2 Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 15 2060 2080 2100 2120 2140 2160 2180 2200 f, FREQUENCY (MHz) –33 –1.9 –2 –2.1 PARC (dB) 52 16.8 Gps, POWER GAIN (dB) D, DRAIN EFFICIENCY (%) 53 17 –2.2 –34 2220 IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 63 Watts Avg. 0 VDD = 28 Vdc, Pout = 12 W (PEP), IDQA = 500 mA VGSB = 0.5 Vdc, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 2140 MHz –15 IM3--U –30 IM3--L IM5--L –45 IM5--U IM7--L –60 IM7--U –75 1 300 100 10 TWO--TONE SPACING (MHz) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing 16.5 16 15.5 15 0 –1 VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc f = 2140 MHz, Single--Carrier W--CDMA –1 dB = 30 W –2 ACPR –3 dB = 87.5 W –3 –5 20 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 40 60 –24 55 –26 50 –2 dB = 63 W –4 D 45 40 PARC 60 80 Pout, OUTPUT POWER (WATTS) –28 –30 ACPR (dBc) 17 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) 17.5 1 D DRAIN EFFICIENCY (%) 18 –32 35 –34 30 140 –36 Gps 100 Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power A2T21H360--24SR6 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS — 2110–2170 MHz Gps, POWER GAIN (dB) 18 D Gps 2170 MHz 16 0 50 –10 40 2140 MHz 14 12 2110 MHz 2110 MHz 2140 MHz 2170 MHz 1 2110 MHz 30 2170 MHz ACPR 10 8 60 2140 MHz 20 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 10 0 400 10 100 Pout, OUTPUT POWER (WATTS) AVG. –20 –30 –40 ACPR (dBc) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc Single--Carrier W--CDMA D, DRAIN EFFICIENCY (%) 20 –50 –60 Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 18 16 Gain GAIN (dB) 14 12 VDD = 28 Vdc Pin = 0 dBm IDQA = 500 mA VGSB = 0.5 Vdc 10 8 6 1800 1880 1960 2040 2120 2200 f, FREQUENCY (MHz) 2280 2360 2440 Figure 7. Broadband Frequency Response A2T21H360--24SR6 6 RF Device Data Freescale Semiconductor, Inc. Table 6. Carrier Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQA = 774 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 2110 3.58 – j6.92 3.34 + j6.51 2.02 – j4.19 19.3 51.9 155 58.6 –14 2140 4.43 – j7.58 4.13 + j7.07 2.06 – j4.27 19.3 51.9 154 58.2 –15 2170 5.91 – j8.34 5.51 + j7.60 2.07 – j4.36 19.3 51.8 153 57.2 –15 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 2110 3.58 – j6.92 3.35 + j6.99 1.95 – j4.52 16.9 52.7 184 58.7 –19 2140 4.43 – j7.58 4.25 + j7.68 2.04 – j4.59 17.0 52.6 183 58.3 –20 2170 5.91 – j8.34 5.85 + j8.37 2.03 – j4.68 17.0 52.6 181 57.4 –19 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 7. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 28 Vdc, IDQA = 774 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB Gain (dB) (dBm) (W) D (%) AM/PM () 3.99 – j2.11 22.1 49.7 93 69.3 –22 4.27 + j7.51 3.90 – j2.21 22.0 49.7 93 68.0 –21 5.82 + j7.92 4.04 – j2.22 22.0 49.5 88 66.1 –20 f (MHz) Zsource () Zin () 2110 3.58 – j6.92 3.40 + j6.96 2140 4.43 – j7.58 2170 5.91 – j8.34 Zload () (1) Max Drain Efficiency P3dB f (MHz) Zsource () Zin () Zload (2) () 2110 3.58 – j6.92 3.29 + j7.28 3.58 – j2.55 19.7 50.9 122 69.6 –29 2140 4.43 – j7.58 4.19 + j8.05 3.34 – j2.43 19.7 50.7 119 67.6 –29 2170 5.91 – j8.34 5.96 + j8.77 3.33 – j2.55 19.7 50.8 119 66.4 –28 Gain (dB) (dBm) (W) D (%) AM/PM () (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T21H360--24SR6 RF Device Data Freescale Semiconductor, Inc. 7 Table 8. Peaking Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, VGSB = 0.8 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 2110 2.40 – j5.79 2.25 + j5.71 1.80 – j4.30 14.8 54.8 300 53.8 –26 2140 2.86 – j6.24 2.71 + j6.24 1.91 – j4.27 15.2 54.8 300 54.5 –27 2170 3.85 – j6.73 3.68 + j6.78 1.96 – j4.34 15.4 54.8 302 54.3 –28 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 2110 2.40 – j5.79 2.33 + j6.08 1.77 – j4.50 12.6 55.5 353 55.2 –33 2140 2.86 – j6.24 2.94 + j6.66 1.89 – j4.66 12.9 55.4 350 54.6 –34 2170 3.85 – j6.73 4.09 + j7.25 1.95 – j4.72 13.1 55.5 351 54.6 –35 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 9. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 28 Vdc, VGSB = 0.8 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB Gain (dB) (dBm) (W) D (%) AM/PM () 4.14 – j3.31 16.4 53.3 215 64.5 –33 2.41 + j6.35 3.90 – j2.93 16.7 53.4 218 64.4 –34 3.27 + j6.92 3.73 – j2.68 16.9 53.3 214 64.1 –35 f (MHz) Zsource () Zin () 2110 2.40 – j5.79 1.97 + j5.83 2140 2.86 – j6.24 2170 3.85 – j6.73 Zload () (1) Max Drain Efficiency P3dB f (MHz) Zsource () Zin () Zload (2) () 2110 2.40 – j5.79 2.14 + j6.14 4.07 – j3.91 14.1 54.1 258 64.2 –40 2140 2.86 – j6.24 2.65 + j6.74 3.90 – j3.32 14.6 54.1 257 64.4 –43 2170 3.85 – j6.73 3.74 + j7.38 3.57 – j3.27 14.7 54.3 267 64.0 –43 Gain (dB) (dBm) (W) D (%) AM/PM () (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T21H360--24SR6 8 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2140 MHz 0 0 –1 48 –2 IMAGINARY () IMAGINARY () –1 E 49 –3 51 51.5 –4 50.5 50 48.5 49.5 P –5 –6 60 –2 E –3 66 –4 P 50 1 2 3 4 REAL () 0 6 5 –6 7 60 52 1 2 3 –1 22.5 IMAGINARY () 22 –3 21.5 P 19 1 2 –2 19.5 3 20 4 REAL () 52 6 5 7 –18 –3 –16 –4 P –14 –5 20.5 5 –20 –22 –24 E 21 –5 –26 –28 E –4 4 REAL () 54 0 23 –2 58 56 Figure 9. P1dB Load Pull Efficiency Contours (%) –1 IMAGINARY () 62 –5 Figure 8. P1dB Load Pull Output Power Contours (dBm) –6 64 6 7 Figure 10. P1dB Load Pull Gain Contours (dB) NOTE: –6 –12 1 2 3 4 REAL () 5 6 7 Figure 11. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T21H360--24SR6 RF Device Data Freescale Semiconductor, Inc. 9 P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2140 MHz 0 0 48.5 –1 –2 E 50 –3 51.5 –4 P 52.5 –5 –6 IMAGINARY () IMAGINARY () –1 49 49.5 2 3 6 5 7 58 52 1 56 54 2 3 4 REAL () 54 6 5 7 Figure 13. P3dB Load Pull Efficiency Contours (%) 0 0 –1 –1 20.5 –2 IMAGINARY () IMAGINARY () 60 62 –6 Figure 12. P3dB Load Pull Output Power Contours (dBm) 20 E –3 19.5 –4 –5 16.5 17 1 2 –32 –2 17.5 3 4 REAL () 5 –3 –22 –4 –20 –5 6 7 Figure 14. P3dB Load Pull Gain Contours (dB) NOTE: –26 –24 P 18.5 18 –28 –30 E 19 P –6 64 –4 –5 4 REAL () 66 –3 P 51 1 E 50.5 51 52 –2 –6 –18 1 2 3 4 REAL () 5 6 7 Figure 15. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T21H360--24SR6 10 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2140 MHz 0 0 51 –1 58 51 –1 –2 –4 P 54 54.5 52 52.5 E –3 IMAGINARY () IMAGINARY () 51.5 –2 –5 –6 –6 2 3 4 REAL () P 53 53.5 6 5 7 Figure 16. P1dB Load Pull Output Power Contours (dBm) 64 62 –4 –5 1 E –3 54 50 52 48 1 60 2 3 56 58 56 4 REAL () 6 5 7 Figure 17. P1dB Load Pull Efficiency Contours (%) 0 0 –1 –1 17 –2 –4 14 –5 –6 16.5 E –3 13 1 13.5 P IMAGINARY () IMAGINARY () –42 16 14.5 2 3 4 REAL () –38 E –3 –36 –4 P –34 –5 15.5 15 –40 –2 –30 –28 5 6 7 Figure 18. P1dB Load Pull Gain Contours (dB) NOTE: –6 1 2 3 4 REAL () –32 5 6 7 Figure 19. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T21H360--24SR6 RF Device Data Freescale Semiconductor, Inc. 11 P3dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2140 MHz 0 0 51.5 51.5 52 –1 50 –1 48 53 53.5 –3 IMAGINARY () IMAGINARY () 52.5 –2 E –4 –5 2 1 –3 3 4 REAL () 6 5 –6 7 0 –1 –1 IMAGINARY () 15 –2 14.5 –3 E –4 –5 –6 11 1 11.5 14 P P 58 3 4 REAL () 5 6 7 Figure 22. P3dB Load Pull Gain Contours (dB) NOTE: 2 1 3 4 REAL () 56 6 5 –2 7 –48 –46 –3 E –44 –4 –6 –34 1 –42 –40 P –5 13.5 12.5 13 2 64 Figure 21. P3dB Load Pull Efficiency Contours (%) 0 12 E –4 54.5 Figure 20. P3dB Load Pull Output Power Contours (dBm) IMAGINARY () 62 –5 55 –6 60 –2 54 P 56 58 52 54 2 –36 3 –38 4 REAL () 5 6 7 Figure 23. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T21H360--24SR6 12 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS A2T21H360--24SR6 RF Device Data Freescale Semiconductor, Inc. 13 A2T21H360--24SR6 14 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator RF High Power Model .s2p File Development Tools Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to Software & Tools on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Jan. 2015 Description Initial Release of Data Sheet A2T21H360--24SR6 RF Device Data Freescale Semiconductor, Inc. 15 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc. A2T21H360--24SR6 Document Number: A2T21H360--24S Rev. 0, 1/2015 16 RF Device Data Freescale Semiconductor, Inc.