Data Sheet

Document Number: AFT26H200W03S
Rev. 0, 8/2013
Freescale Semiconductor
Technical Data
RF Power LDMOS Transistor
N−Channel Enhancement−Mode Lateral MOSFET
This 45 watt asymmetrical Doherty RF power LDMOS transistor is designed
for cellular base station applications requiring very wide instantaneous
bandwidth capability covering the frequency range of 2496 to 2690 MHz.
• Typical Doherty Single−Carrier W−CDMA Performance: VDD = 28 Volts,
IDQA = 500 mA, VGSB = 0.3 Vdc, Pout = 45 Watts Avg., Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
hD
(%)
2496 MHz
14.1
45.2
7.8
−31.1
2590 MHz
14.2
44.0
7.8
−35.6
2690 MHz
13.9
44.1
7.6
−37.5
Output PAR
(dB)
ACPR
(dBc)
AFT26H200W03SR6
2496−2690 MHz, 45 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
Features
• Advanced High Performance In−Package Doherty
• Designed for Wide Instantaneous Bandwidth Applications
• Greater Negative Gate−Source Voltage Range for Improved Class C
Operation
• Designed for Digital Predistortion Error Correction Systems
• In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13−inch Reel.
NI−1230S−4S
Carrier
RFinA/VGSA 3
1 RFoutA/VDSA
(1)
RFinB/VGSB 4
2 RFoutB/VDSB
Peaking
(Top View)
Figure 1. Pin Connections
1. Pin connections 1 and 2 are DC coupled
and RF independent.
© Freescale Semiconductor, Inc., 2013. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain−Source Voltage
Rating
VDSS
−0.5, +65
Vdc
Gate−Source Voltage
VGS
−6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
−65 to +150
°C
Case Operating Temperature Range
TC
−40 to +125
°C
TJ
−40 to +225
°C
Operating Junction Temperature Range
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 76°C, 45 W−CDMA, 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc, 2590 MHz
Symbol
Value (2,3)
Unit
RθJC
0.46
°C/W
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22−A114)
2
Machine Model (per EIA/JESD22−A115)
B
Charge Device Model (per JESD22−C101)
III
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current (5)
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current (5)
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
5
μAdc
Gate−Source Leakage Current (6)
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 100 μAdc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, IDA = 500 mAdc, Measured in Functional Test)
VGS(Q)
1.4
1.8
2.2
Vdc
Drain−Source On−Voltage
(VGS = 6 Vdc, ID = 1.0 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 180 μAdc)
VGS(th)
0.8
1.2
1.6
Vdc
Drain−Source On−Voltage
(VGS = 6 Vdc, ID = 1.8 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Off Characteristics (4)
On Characteristics − Side A (4,6) (Carrier)
On Characteristics − Side B (4,6) (Peaking)
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes − AN1955.
4. VDDA and VDDB must be tied together and powered by a single DC power supply.
5. Side A and Side B are tied together for these measurements.
6. Each side of device measure separately.
AFT26H200W03SR6
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc, Pout = 45 W Avg.,
f = 2496 MHz, Single−Carrier W−CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in
3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
13.0
14.1
16.0
dB
Drain Efficiency
ηD
42.0
45.2
—
%
PAR
7.5
7.8
—
dB
ACPR
—
−31.1
−28.0
dBc
Output Peak−to−Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQA = 500 mA, VGSB = 0.3 Vdc, f = 2590 MHz, 10 μsec Pulse Width,
10% Duty Cycle, <100 ns Input Rise Time
VSWR 10:1 at 30 Vdc, 280 W Pulse Output Power
(3 dB Input Overdrive from 250 W Pulse Rated Power)
No Device Degradation
Typical Performances (3) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc,
2496−2690 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
200
—
W
(4)
P3dB
—
280
—
W
AM/PM
(Maximum value measured at the P3dB compression point across
the 2496−2690 MHz frequency range)
Φ
—
−13
—
°
VBWres
—
220
—
MHz
Gain Flatness in 194 MHz Bandwidth @ Pout = 45 W Avg.
GF
—
0.3
—
dB
Gain Variation over Temperature
(−30°C to +85°C)
ΔG
—
0.019
—
dB/°C
ΔP1dB
—
0.0377
—
dB/°C
Pout @ 3 dB Compression Point
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(−30°C to +85°C)
1.
2.
3.
4.
VDDA and VDDB must be tied together and powered by a single DC power supply.
Part internally matched both on input and output.
Measurements made with device in an asymmetrical Doherty configuration.
P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W−CDMA single−carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
AFT26H200W03SR6
RF Device Data
Freescale Semiconductor, Inc.
3
VDDA
+
VGGA
C17
C2
C1
C11
C12
R2
C3
Z1
C4
C
C13
C7
R1
P
C8
C6
AFT26H200-4WS
Rev. 4
C9
R3
CUT OUT AREA
C5
C10
C14
C15 C16
C18
+
VDDB
VGGB
Note: VDDA and VDDB must be tied together and powered by a single DC power supply.
Figure 2. AFT26H200W03SR6 Test Circuit Component Layout
Table 5. AFT26H200W03SR6 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C9, C12, C16
10 μF Chip Capacitors
C5750X7S2A106M230KB
TDK
C2, C5, C7, C10, C11,
C14, C15
6.8 pF Chip Capacitors
ATC600F6R8BT250XT
ATC
C3, C4
0.7 pF Chip Capacitors
ATC600F0R7BT250XT
ATC
C6, C8
0.5 pF Chip Capacitors
ATC600F0R5BT250XT
ATC
C13
2.0 pF Chip Capacitor
ATC600F2R0BT250XT
ATC
C17, C18
220 μF, 50 V Electrolytic Capacitors
227CKS050M
Illinois Capacitor
R1
50 Ω, 4 W Chip Resistor
CW12010T0050GBK
ATC
R2, R3
3.0 Ω, 1/4 W Chip Resistors
CRCW12063R00FNEA
Vishay
Z1
2300−2700 MHz, 5 dB, Directional Coupler
X3C25P1-05S
Anaren
PCB
0.020″, εr = 3.5
RO4350B
Rogers
AFT26H200W03SR6
4
RF Device Data
Freescale Semiconductor, Inc.
46
VDD = 28 Vdc, Pout = 45 W (Avg.), IDQA = 500 mA
45
VGSB = 0.3 Vdc, Single-Carrier W-CDMA
44
ηD
3.84 MHz Channel Bandwidth, Input Signal
43
PAR = 9.9 dB @ 0.01% Probability on CCDF
42
Gps
-28
14.8
14.4
14.2
14
-2
-30
13.8
PARC
13.6
-32
-34
13.4
ACPR
13.2
13
2480
2510
2540
2570
2600
2630
-36
2660
2690
ACPR (dBc)
Gps, POWER GAIN (dB)
14.6
-2.1
-2.2
-2.3
PARC (dB)
15
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
-2.4
-38
2720
-2.5
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single−Carrier Output Peak−to−Average Ratio Compression
(PARC) Broadband Performance @ Pout = 45 Watts Avg.
-10
VDD = 28 Vdc, Pout = 59 W (PEP), IDQA = 500 mA
VGSB = 0.3 Vdc, Two-Tone Measurements
-20 (f1 + f2)/2 = Center Frequency of 2590 MHz
IM3-U
-30
IM3-L
IM5-U
-40
IM5-L
-50
IM7-L
-60
1
IM7-U
10
100
300
TWO-TONE SPACING (MHz)
14.5
0
14
13.5
13
12.5
12
PARC
ηD
Gps
ACPR
-1
60
-28
50
-30
40
-2 dB = 59 W
-2
-1 dB = 38 W
30
-3 dB = 84 W
-3
20
VDD = 28 Vdc, IDQA = 500 mA
VGSB = 0.3 Vdc, f = 2590 MHz
Single-Carrier W-CDMA, 3.84 MHz
Channel Bandwidth, Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
-4
-5
10
25
40
55
70
-32
-34
ACPR (dBc)
1
ηD, DRAIN EFFICIENCY (%)
15
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two−Tone Spacing
-36
10
-38
0
-40
85
Pout, OUTPUT POWER (WATTS)
Figure 5. Output Peak−to−Average Ratio
Compression (PARC) versus Output Power
AFT26H200W03SR6
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
Gps, POWER GAIN (dB)
14.5
2496 MHz ηD
60
0
50
-10
2590 MHz
2690 MHz 40
14
Gps
13.5
ACPR
2590 MHz
2496 MHz
30
2690 MHz
13
20
2590 MHz 2690 MHz
2496 MHz
12.5
10
12
1
10
100
0
200
-20
-30
-40
ACPR (dBc)
VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc
Single-Carrier W-CDMA, 3.84 MHz Channel
Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
ηD, DRAIN EFFICIENCY (%)
15
-50
-60
Pout, OUTPUT POWER (WATTS) AVG.
Figure 6. Single−Carrier W−CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
21
18
GAIN (dB)
15
VDD = 28 Vdc
Pin = 0 dBm
IDQA = 500 mA
VGSB = 0.3 Vdc
Gain
12
9
6
3
2350
2450
2550
2650
2750
2850
2950
3050
3150
f, FREQUENCY (MHz)
Figure 7. Broadband Frequency Response
AFT26H200W03SR6
6
RF Device Data
Freescale Semiconductor, Inc.
VDD = 28 Vdc, IDQA = 494 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
(W)
Zin
(W)
Zload (1)
(W)
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
2496
9.09 - j14.0
8.87 + j13.4
4.40 - j8.11
17.3
50.3
107
53.1
-12
2590
16.1 - j13.2
15.2 + j12.7
4.32 - j8.14
17.5
50.3
107
53.6
-13
2690
22.9 - j0.41
20.5 + j1.37
4.28 - j8.80
17.5
50.2
104
52.2
-13
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
4.15 - j8.72
15.1
51.0
127
53.7
-17
17.5 + j13.6
4.16 - j8.90
15.2
51.0
127
53.7
-18
22.2 - j1.34
4.21 - j9.41
15.2
50.9
123
52.3
-18
f
(MHz)
Zsource
(W)
Zin
(W)
2496
9.09 - j14.0
9.41 + j14.6
2590
16.1 - j13.2
2690
22.9 - j0.41
Zload
(W)
(2)
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQA = 494 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
(W)
Zin
(W)
2496
9.09 - j14.0
8.65 + j14.2
2590
16.1 - j13.2
15.2 + j14.1
2690
22.9 - j0.41
22.1 + j2.44
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
9.14 - j5.50
19.4
48.7
74
63.1
-20
7.18 - j4.60
19.5
48.8
74
63.2
-21
6.06 - j4.93
19.5
48.7
74
61.6
-21
Zload
(W)
(1)
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
f
(MHz)
Zsource
(W)
Zin
(W)
Zload (2)
(W)
2496
9.09 - j14.0
8.89 + j15.2
8.01 - j6.15
17.1
49.8
95
63.7
-26
2590
16.1 - j13.2
17.2 + j15.2
6.92 - j5.30
17.3
49.6
92
63.4
-27
2690
22.9 - j0.41
23.6 - j0.47
6.02 - j6.43
17.0
49.9
98
61.6
-25
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT26H200W03SR6
RF Device Data
Freescale Semiconductor, Inc.
7
VDD = 28 Vdc, VGSB = 0.3 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
(W)
Zin
(W)
Zload (1)
(W)
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
2496
5.24 - j10.6
5.15 + j9.87
2.61 - j5.59
11.6
52.6
181
52.5
-19
2590
10.3 - j9.81
9.38 + j9.30
2.63 - j5.84
12.0
52.5
176
51.9
-20
2690
12.7 - j0.94
12.0 + j1.20
2.68 - j6.10
12.3
52.1
164
49.8
-20
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
9.4
53.2
211
52.7
-25
2.68 - j6.12
9.4
53.1
205
52.3
-25
2.79 - j6.48
10.2
52.8
190
49.7
-25
Zload
(W)
(2)
f
(MHz)
Zsource
(W)
Zin
(W)
2496
5.24 - j10.6
5.51 + j10.5
2.57 - j5.91
2590
10.3 - j9.81
10.7 + j9.63
2690
12.7 - j0.94
12.2 - j0.26
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, VGSB = 0.3 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
(W)
Zin
(W)
2496
5.24 - j10.6
4.66 + j10.2
2590
10.3 - j9.81
8.53 + j10.5
2690
12.7 - j0.94
13.2 + j3.53
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
5.91 - j4.19
12.8
51.1
129
61.3
-27
4.92 - j2.75
13.2
50.6
116
61.2
-30
3.52 - j2.21
13.1
49.7
93
59.0
-35
Zload
(W)
(1)
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
f
(MHz)
Zsource
(W)
Zin
(W)
Zload (2)
(W)
2496
5.24 - j10.6
5.08 + j10.8
5.29 - j4.65
10.7
52.0
160
61.9
-34
2590
10.3 - j9.81
10.2 + j10.5
4.64 - j4.15
11.1
52.0
158
61.2
-34
2690
12.7 - j0.94
13.3 + j1.00
3.85 - j3.19
11.2
51.0
127
58.2
-38
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT26H200W03SR6
8
RF Device Data
Freescale Semiconductor, Inc.
P1dB − TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz
-2
-2
47
-4
47.5
47
47.5
-4
E
48
-6
IMAGINARY (Ω)
IMAGINARY (Ω)
E
48.5
49
-8
P
49.5
50
-10
-12
62
58
-8
P
56
-10
54
52
-12
48
-14
4
2
6
8
10
12
48
46
47
60
-6
50
-14
14
2
4
6
8
10
12
14
REAL (Ω)
REAL (Ω)
Figure 12. P1dB Load Pull Output Power Contours (dBm)
Figure 13. P1dB Load Pull Efficiency Contours (%)
-2
-2
-4
-4
-26
-24
20
-6
19.5
19
-8
P
18.5
-10
17
16
-22
E
IMAGINARY (Ω)
IMAGINARY (Ω)
E
-20
-6
-18
-16
-8
P
-14
-12
-10
18
-12
-12
16.5
17.5
-14
-14
2
4
6
8
10
12
14
2
4
6
8
10
12
REAL (Ω)
REAL (Ω)
Figure 14. P1dB Load Pull Gain Contours (dB)
Figure 15. P1dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
14
Power Gain
Drain Efficiency
Linearity
Output Power
AFT26H200W03SR6
RF Device Data
Freescale Semiconductor, Inc.
9
P3dB − TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz
-2
47
-2
48
47.5
47.5
-4
-4
49
-8
49.5
P 51
62
E
IMAGINARY (Ω)
IMAGINARY (Ω)
48
48.5
E
-6
-10
60
-6
58
-8
P
56
-10
50
50.5
-12
46
48
49
54
52
-12
50
48
-14
-14
4
2
6
8
10
12
14
4
2
6
8
10
12
14
REAL (Ω)
REAL (Ω)
Figure 16. P3dB Load Pull Output Power Contours (dBm)
Figure 17. P3dB Load Pull Efficiency Contours (%)
-2
-2
-4
-4
-30
18
-28
E
-6
IMAGINARY (Ω)
IMAGINARY (Ω)
E
17.5
-8
P
17
16.5
-10
15.5
15
14
-12
-26
-6
-24
-8
-22
P
-20
-10
-18
-16
16
-12
-14
14.5
-14
-14
2
4
6
8
10
12
14
2
4
6
8
10
12
REAL (Ω)
REAL (Ω)
Figure 18. P3dB Load Pull Gain Contours (dB)
Figure 19. P3dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
14
Power Gain
Drain Efficiency
Linearity
Output Power
AFT26H200W03SR6
10
RF Device Data
Freescale Semiconductor, Inc.
P1dB − TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz
0
0
48.5
-2
-2
E
49
49.5
-4
50.5
IMAGINARY (Ω)
IMAGINARY (Ω)
E
50
P
-6
51
51.5
52
-8
58
56
-4
60
54
P
-6
52
-8
50
46
48
44
-10
-10
48 48.5
49
-12
0
-12
4
2
6
8
10
12
0
4
2
6
8
10
12
REAL (Ω)
REAL (Ω)
Figure 20. P1dB Load Pull Output Power Contours (dBm)
Figure 21. P1dB Load Pull Efficiency Contours (%)
0
0
-2
-2
IMAGINARY (Ω)
IMAGINARY (Ω)
-4
13
12.5
P
-6
12
-8
10
11.5
-10
-4
-26
P
-6
-24
-8
-22
-20
-10
11
10.5
9 9.5
-30
-28
E
E
-12
-18
-16
-14
-12
0
2
4
6
8
10
12
0
2
4
6
8
10
REAL (Ω)
REAL (Ω)
Figure 22. P1dB Load Pull Gain Contours (dB)
Figure 23. P1dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
12
Power Gain
Drain Efficiency
Linearity
Output Power
AFT26H200W03SR6
RF Device Data
Freescale Semiconductor, Inc.
11
P3dB − TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz
0
0
49
49.5
-2
-2
50
IMAGINARY (Ω)
IMAGINARY (Ω)
51
-4
E
50.5
51.5
-6
P
53
52.5
52
-8
-4
E
60
-6
58
54
56
P
52
48
50
-8
46
-10
44
-10
49.5
-12
-12
0
2
4
6
8
10
12
0
2
4
6
8
10
12
REAL (Ω)
REAL (Ω)
Figure 24. P3dB Load Pull Output Power Contours (dBm)
Figure 25. P3dB Load Pull Efficiency Contours (%)
0
0
-2
-2
-38
-36
-34
IMAGINARY (Ω)
-4
IMAGINARY (Ω)
11
E
10.5
-6
P
10
-8
-4
E
-6
P
-28
-26
-8
-24
-22
9.5
-10
-32
-30
-10
8
7 7.5
8.5
9
-12
-12
0
2
4
6
8
10
12
0
2
4
6
8
10
12
REAL (Ω)
REAL (Ω)
Figure 26. P3dB Load Pull Gain Contours (dB)
Figure 27. P3dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Power Gain
Drain Efficiency
Linearity
Output Power
AFT26H200W03SR6
12
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
AFT26H200W03SR6
RF Device Data
Freescale Semiconductor, Inc.
13
AFT26H200W03SR6
14
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
• .s2p File
Development Tools
• Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Aug. 2013
Description
• Initial Release of Data Sheet
AFT26H200W03SR6
RF Device Data
Freescale Semiconductor, Inc.
15
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2013 Freescale Semiconductor, Inc.
AFT26H200W03SR6
Document Number: AFT26H200W03S
Rev.
16 0, 8/2013
RF Device Data
Freescale Semiconductor, Inc.