Freescale Semiconductor Technical Data Document Number: MMRF1024HS Rev. 0, 4/2016 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 50 W asymmetrical Doherty RF power LDMOS transistor is optimized for instantaneous signal bandwidth capabilities covering the frequency range of 2496 to 2690 MHz. This part is ideally suited for commercial and defense communications and electronic warfare applications, such as an IED jammer. 2600 MHz • Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc, IDQA = 700 mA, VGSB = 0.4 Vdc, Pout = 50 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) ηD (%) Output PAR (dB) 2496 MHz 14.1 44.6 8.1 –31.5 2590 MHz 14.4 44.9 8.1 –33.8 2690 MHz 14.2 44.2 7.9 –37.6 MMRF1024HS 2496–2690 MHz, 50 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR ACPR (dBc) Features • Advanced high performance in--package Doherty • Greater negative gate--source voltage range for improved Class C operation • Designed for digital predistortion error correction systems NI--1230S--4L2L Carrier 6 VBWA(1) RFinA/VGSA 1 5 RFoutA/VDSA RFinB/VGSB 2 4 RFoutB/VDSB Peaking 3 VBWB(1) (Top View) Figure 1. Pin Connections 1. Device cannot operate with the VDD current supplied through pin 3 and pin 6. © Freescale Semiconductor, Inc., 2016. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MMRF1024HS 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS –0.5, +65 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg –65 to +150 °C Case Operating Temperature Range TC –40 to +150 °C TJ –40 to +225 °C CW 294 1.7 W W/°C Operating Junction Temperature Range (1) CW Operation @ TC = 25°C Derate above 25°C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 78°C, 50 W Avg., W--CDMA, 28 Vdc, IDQA = 700 mA, VGSB = 0.4 Vdc, 2590 MHz Symbol Value (2) Unit RθJC 0.42 °C/W Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) B, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 1200 V Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 140 μAdc) VGS(th) 0.8 1.2 1.6 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, IDA = 700 mAdc, Measured in Functional Test) VGS(Q) 1.4 1.8 2.2 Vdc Drain--Source On--Voltage (VGS = 6 Vdc, ID = 1.4 Adc) VDS(on) 0.1 0.15 0.3 Vdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 200 μAdc) VGS(th) 0.8 1.2 1.6 Vdc Drain--Source On--Voltage (VGS = 6 Vdc, ID = 2.0 Adc) VDS(on) 0.1 0.15 0.3 Vdc Characteristic Off Characteristics (3) On Characteristics -- Side A (Carrier) (3) On Characteristics -- Side B (Peaking) (3) 1. Continuous use at maximum temperature will affect MTTF. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. 3. Each side of device measure separately. (continued) MMRF1024HS 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1,2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 700 mA, VGSB = 0.4 Vdc, Pout = 50 W Avg., f = 2496 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps 13.0 14.1 16.0 dB Drain Efficiency ηD 41.0 44.6 — % PAR 7.4 8.1 — dB ACPR — –31.5 –29.0 dBc Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQA = 700 mA, f = 2590 MHz VSWR 10:1 at 32 Vdc, 335 W(3) CW Output Power (2 dB Input Overdrive from 230 W CW Rated Power) No Device Degradation Typical Performance (2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 700 mA, VGSB = 0.4 Vdc, 2496–2690 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 230 — W Pout @ 3 dB Compression Point (4) P3dB — 320 — W Φ — –22 — ° VBWres — 110 — MHz Gain Flatness in 194 MHz Bandwidth @ Pout = 50 W Avg. GF — 0.3 — dB Gain Variation over Temperature (–30°C to +85°C) ∆G — 0.002 — dB/°C ∆P1dB — 0.006 — dB/°C AM/PM (Maximum value measured at the P3dB compression point across the 2496–2690 MHz frequency range) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (–30°C to +85°C) (3) Table 5. Ordering Information Device MMRF1024HSR5 1. 2. 3. 4. Tape and Reel Information R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel Package NI--1230S--4L2L Part internally matched both on input and output. Measurements made with device in an asymmetrical Doherty configuration. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. MMRF1024HS RF Device Data Freescale Semiconductor, Inc. 3 C21 VDDA VGGA + -C13 C3 C4 C5 Z1 R1 C8 C6 C7 C9 C10 R3 CUT OUT AREA C1 C12 C11 R2 C2 C C14 C15 C16 P C17 C18 C19 C20 -VDDB + VGGB C22 Figure 2. MMRF1024HS Test Circuit Component Layout Table 6. MMRF1024HS Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C9, C11, C12, C19, C20 10 μF Chip Capacitors C5750X7S2A106M230KB TDK C2, C5, C8, C10, C13, C18 6.8 pF Chip Capacitors ATC600F6R8BT250XT ATC C3, C4 0.5 pF Chip Capacitors ATC600F0R5BT250XT ATC C6, C7 0.3 pF Chip Capacitors ATC600F0R3BT250XT ATC C14 0.8 pF Chip Capacitor ATC600F0R8BT250XT ATC C15 2.0 pF Chip Capacitor ATC600F2R0BT250XT ATC C16 10 pF Chip Capacitor ATC600F100JT250XT ATC C17 0.9 pF Chip Capacitor ATC600F0R9BT250XT ATC C21, C22 220 μF Electrolytic Capacitors 227CKS050M Illinois Capacitor R1 50 Ω, 4 W Chip Resistor CW12010T0050GBK ATC R2, R3 2.0 Ω, 1/4 W Chip Resistors CRCW12062R00JNEA Vishay Z1 2300–2700 MHz Band, 5 dB Directional Coupler X3C25P1-05S Anaren PCB Rogers RO4305B, 0.020″, εr = 3.66 — MTL MMRF1024HS 4 RF Device Data Freescale Semiconductor, Inc. 14.6 Gps, POWER GAIN (dB) 46 ηD 45 14.4 44 14.2 VDD = 28 Vdc, Pout = 50 W (Avg.) IDQA = 700 mA, VGSB = 0.4 mA Single--Carrier W--CDMA Gps 14 43 13.8 PARC 13.6 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 13.4 13.2 13 2480 2510 2540 2570 2600 2660 2690 –1.5 –31 –1.7 –33 –35 ACPR 2630 –29 –37 –39 2720 –1.9 –2.1 –2.3 PARC (dB) 47 14.8 ACPR (dBc) 15 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS –2.5 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 50 Watts Avg. –10 VDD = 28 Vdc, Pout = 100 W (PEP), IDQA = 700 mA VGSB = 0.4 Vdc, Two--Tone Measurements –20 (f1 + f2)/2 = Center Frequency of 2590 MHz –30 IM3--L IM3--U –40 IM5--L –50 IM5--U IM7--U –60 –70 IM7--L 1 10 100 300 TWO--TONE SPACING (MHz) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing MMRF1024HS RF Device Data Freescale Semiconductor, Inc. 5 15 0 14 13 12 11 ACPR –1 dB = 33.6 W Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 10 30 50 50 –20 30 –3 dB = 71 W –3 –4 –15 40 –2 dB = 54.1 W –2 60 ηD Gps –1 –5 10 VDD = 28 Vdc, IDQA = 700 mA VGSB = 0.4 Vdc, f = 2590 MHz –30 –35 10 –40 0 –45 60 0 50 –10 PARC 90 70 20 –25 ACPR (dBc) 1 ηD, DRAIN EFFICIENCY (%) 16 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) TYPICAL CHARACTERISTICS 110 Pout, OUTPUT POWER (WATTS) 15 Gps, POWER GAIN (dB) ηD VDD = 28 Vdc, IDQA = 700 mA VGSB = 0.4 Vdc, Single--Carrier W--CDMA Gps 2590 MHz 14 2690 MHz 2496 MHz 2690 MHz 2590 MHz 2496 MHz 13 12 ACPR 2496 MHz 30 2690 MHz 2590 MHz 11 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 10 1 10 40 100 20 10 0 300 –20 –30 –40 ACPR (dBc) 16 ηD, DRAIN EFFICIENCY (%) Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power –50 –60 Pout, OUTPUT POWER (WATTS) AVG. Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 18 15 Gain GAIN (dB) 12 9 6 3 0 2300 VDD = 28 Vdc Pin = 0 dBm IDQA = 700 mA VGSB = 0.4 Vdc 2400 2500 2600 2700 2800 2900 3000 f, FREQUENCY (MHz) Figure 7. Broadband Frequency Response MMRF1024HS 6 RF Device Data Freescale Semiconductor, Inc. VDD = 28 Vdc, IDQA = 689 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource (Ω) Zin (Ω) Zload (1) (Ω) Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 2496 4.07 - j10.7 4.00 + j9.61 2.03 - j4.57 17.4 51.8 151 54.1 -13 2590 7.57 - j11.9 6.72 + j10.7 2.00 - j4.75 17.6 51.7 147 53.2 -12 2690 15.7 - j9.50 12.9 + j8.73 2.00 - j5.11 17.6 51.6 143 52.4 -13 Max Output Power P3dB Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 1.92 - j4.78 15.2 52.5 179 54.9 -17 7.03 + j11.7 1.91 - j4.97 15.3 52.4 174 53.6 -17 14.9 + j9.37 1.92 - j5.34 15.3 52.3 170 52.4 -17 f (MHz) Zsource (Ω) Zin (Ω) 2496 4.07 - j10.7 3.92 + j10.2 2590 7.57 - j11.9 2690 15.7 - j9.50 Zload (Ω) (2) (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQA = 689 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource (Ω) Zin (Ω) 2496 4.07 - j10.7 4.07 + j10.0 Zload (Ω) (1) Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 4.82 - j3.58 19.7 49.9 97 64.0 -19 2590 7.57 - j11.9 6.62 + j11.4 3.74 - j2.51 20.0 49.6 92 62.6 -21 2690 15.7 - j9.50 13.3 + j9.45 3.36 - j2.87 19.9 49.5 90 61.2 -20 Max Drain Efficiency P3dB f (MHz) Zsource (Ω) Zin (Ω) Zload (2) (Ω) Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 2496 4.07 - j10.7 3.77 + j10.6 4.53 - j2.90 17.8 50.4 111 64.0 -28 2590 7.57 - j11.9 6.80 + j12.2 3.67 - j2.58 18.0 50.3 108 62.7 -29 2690 15.7 - j9.50 15.2 + j9.96 3.36 - j2.87 17.9 50.2 105 61.2 -28 (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload MMRF1024HS RF Device Data Freescale Semiconductor, Inc. 7 VDD = 28 Vdc, VGSB = 0.4 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource (Ω) Zin (Ω) Zload (1) (Ω) Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 2496 3.33 - j9.36 3.00 + j9.43 2.00 - j5.09 12.1 53.2 209 54.4 -22 2590 4.98 - j10.4 5.22 + j10.6 2.11 - j5.43 12.2 53.1 203 53.8 -22 2690 10.9 - j8.12 11.3 + j9.48 2.35 - j6.10 12.1 52.9 196 52.8 -20 Max Output Power P3dB Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 1.99 - j5.35 9.9 53.9 243 54.3 -28 5.76 + j11.2 2.11 - j5.74 10.0 53.7 236 53.0 -28 13.0 + j9.24 2.40 - j6.29 10.0 53.5 226 52.5 -26 f (MHz) Zsource (Ω) Zin (Ω) 2496 3.33 - j9.36 3.14 + j9.86 2590 4.98 - j10.4 2690 10.9 - j8.12 Zload (Ω) (2) (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, VGSB = 0.4 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Drain Efficiency P1dB Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 4.22 - j3.35 13.3 51.6 144 64.3 -30 4.64 + j10.7 3.57 - j3.41 13.4 51.6 145 63.8 -30 10.5 + j10.4 3.29 - j3.86 13.1 51.6 143 62.4 -27 f (MHz) Zsource (Ω) Zin (Ω) 2496 3.33 - j9.36 2.65 + j9.45 2590 4.98 - j10.4 2690 10.9 - j8.12 Zload (Ω) (1) Max Drain Efficiency P3dB f (MHz) Zsource (Ω) Zin (Ω) Zload (2) (Ω) Gain (dB) (dBm) (W) ηD (%) AM/PM (°) 2496 3.33 - j9.36 2.81 + j9.82 3.97 - j3.62 11.2 52.3 171 64.6 -38 2590 4.98 - j10.4 5.16 + j11.3 3.50 - j3.54 11.3 52.2 167 63.7 -38 2690 10.9 - j8.12 12.3 + j10.3 3.17 - j3.92 11.1 52.1 163 61.8 -35 (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload MMRF1024HS 8 RF Device Data Freescale Semiconductor, Inc. P1dB -- TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz –1 –1 48 47.5 48.5 49 E 50 –3 51 –4 50.5 51.5 P –5 –6 –2 49.5 IMAGINARY (Ω) IMAGINARY (Ω) –2 1 1.5 62 60 –4 2.5 3 3.5 REAL (Ω) 4 4.5 –6 5 58 P –5 2 48 52 50 46 1 1.5 2 54 2.5 –1 3 3.5 REAL (Ω) 4 4.5 5 –1 –28 20.5 –2 –22 E 20 –3 19.5 –4 18.5 P –5 17 16.5 1 1.5 19 –20 –3 2 –18 –4 3 3.5 REAL (Ω) –14 P –12 18 2.5 E –16 –5 17.5 –26 –24 –2 IMAGINARY (Ω) IMAGINARY (Ω) 56 Figure 13. P1dB Load Pull Efficiency Contours (%) Figure 12. P1dB Load Pull Output Power Contours (dBm) –6 E –3 4 4.5 5 Figure 14. P1dB Load Pull Gain Contours (dB) NOTE: –6 1 1.5 2 2.5 3 3.5 REAL (Ω) 4 4.5 5 Figure 15. P1dB Load Pull AM/PM Contours (°) P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power MMRF1024HS RF Device Data Freescale Semiconductor, Inc. 9 P3dB -- TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz –1 –1 49 48.5 49.5 50 E –3 51.5 46 –2 51 IMAGINARY (Ω) IMAGINARY (Ω) –2 50.5 –4 50 48 62 52 –3 54 –4 52 –5 –6 60 –5 P 1 1.5 2 2.5 E 3 3.5 REAL (Ω) 4 4.5 –6 5 P 1 1.5 58 2 2.5 56 3 3.5 REAL (Ω) 4 54 4.5 5 Figure 17. P3dB Load Pull Efficiency Contours (%) Figure 16. P3dB Load Pull Output Power Contours (dBm) –1 –1 18.5 –2 18 E –3 –4 15.5 15 –5 –6 17 16.5 IMAGINARY (Ω) IMAGINARY (Ω) –2 17.5 –4 2 2.5 3 3.5 REAL (Ω) 4 4.5 5 Figure 18. P3dB Load Pull Gain Contours (dB) NOTE: –6 E –22 –5 14.5 1.5 –3 –30 –28 –26 –24 16 P 1 –32 –20 P –18 –16 1 1.5 2 2.5 3 3.5 REAL (Ω) 4 4.5 5 Figure 19. P3dB Load Pull AM/PM Contours (°) P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power MMRF1024HS 10 RF Device Data Freescale Semiconductor, Inc. P1dB -- TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz –2 49 49.5 50.5 50 IMAGINARY (Ω) –3 51 –3 51.5 E 52 –4 IMAGINARY (Ω) –2 52.5 –5 53 E –4 62 –5 P 60 P –6 58 –6 48 –7 1.5 1 2 2.5 3 3.5 REAL (Ω) 4 4.5 –7 5 1 1.5 2 50 2.5 –2 3 3.5 REAL (Ω) 4 4.5 5 –2 –36 –3 –34 –32 –3 E 13 –4 12.5 –5 –6 1 10.5 12 11.5 10 11 1.5 –28 –4 –26 –5 P –24 P –6 2 2.5 3 3.5 REAL (Ω) –30 E IMAGINARY (Ω) IMAGINARY (Ω) 52 Figure 21. P1dB Load Pull Efficiency Contours (%) Figure 20. P1dB Load Pull Output Power Contours (dBm) –7 56 54 4 4.5 5 Figure 22. P1dB Load Pull Gain Contours (dB) NOTE: –7 –22 1 1.5 2 2.5 3 3.5 REAL (Ω) 4 4.5 5 Figure 23. P1dB Load Pull AM/PM Contours (°) P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power MMRF1024HS RF Device Data Freescale Semiconductor, Inc. 11 P3dB -- TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz 51 50.5 50 –3 IMAGINARY (Ω) –2 49.5 51.5 52 52.5 –4 53 –5 53.5 P –6 –7 –3 E IMAGINARY (Ω) –2 1.5 1 2 –4 2.5 3 3.5 REAL (Ω) 4 4.5 –7 5 –2 –3 –3 IMAGINARY (Ω) E 11 –4 10.5 10 9.5 –6 8 –7 1 8.5 P 60 P 48 50 1 1.5 2 52 2.5 54 58 56 3 3.5 REAL (Ω) –42 2 3 3.5 REAL (Ω) 4 4.5 5 Figure 26. P3dB Load Pull Gain Contours (dB) NOTE: 5 –38 –36 –4 –34 –32 –5 –30 P –6 2.5 4.5 –40 E –28 9 1.5 4 Figure 25. P3dB Load Pull Efficiency Contours (%) –2 –5 62 –5 –6 Figure 24. P3dB Load Pull Output Power Contours (dBm) IMAGINARY (Ω) E –7 –26 1 1.5 2 2.5 3 3.5 REAL (Ω) 4 4.5 5 Figure 27. P3dB Load Pull AM/PM Contours (°) P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power MMRF1024HS 12 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS MMRF1024HS RF Device Data Freescale Semiconductor, Inc. 13 MMRF1024HS 14 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION Refer to the following resources to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Apr. 2016 Description • Initial Release of Data Sheet MMRF1024HS RF Device Data Freescale Semiconductor, Inc. 15 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2016 Freescale Semiconductor, Inc. MMRF1024HS Document Number: MMRF1024HS Rev. 0, 4/2016 16 RF Device Data Freescale Semiconductor, Inc.