APT75GT120JRDQ3 1200V TYPICAL PERFORMANCE CURVES APT75GT120JRDQ3 ® E E Thunderbolt IGBT® The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 20KHz • Low Tail Current • Ultra Low Leakage Current C G ISOTOP ® S OT 22 7 "UL Recognized" file # E145592 C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT75GT120JRDQ3 VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 97 I C2 Continuous Collector Current @ TC = 110°C 42 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 225 @ TC = 150°C 225A @ 1200V Switching Safe Operating Area @ TJ = 150°C Watts 481 Total Power Dissipation Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES RG(int) MAX 4.5 5.5 6.5 2.7 3.2 3.7 Units 1200 (VCE = VGE, I C = 3mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 3.9 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) Volts 200 2 Gate-Emitter Leakage Current (VGE = ±20V) 480 5 Intergrated Gate Resistor CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA TBD nA Ω 12-2005 V(BR)CES MIN Rev C Characteristic / Test Conditions 052-6276 Symbol APT75GT120JRDQ3 DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 Eon2 Eoff td(on) tr td(off) tf Eon1 Eon2 Eoff f = 1 MHz 155 Gate Charge 7.5 VGE = 15V 240 V nC A VCC = 800V 65 ns 375 I C = 75A 25 RG = 1.0Ω 8045 TJ = +25°C µJ 8845 6 2970 Inductive Switching (125°C) 50 VCC = 800V 65 Current Rise Time VGE = 15V Turn-off Delay Time 29 RG = 1.0Ω 44 55 ns 415 I C = 75A Current Fall Time Turn-on Switching Energy (Diode) pF 225 50 5 UNIT 110 Inductive Switching (25°C) 4 MAX 15 VGE = 15V Turn-on Delay Time Turn-off Switching Energy 250 15V, L = 100µH,VCE = 1200V Current Fall Time Turn-on Switching Energy VGE = 0V, VCE = 25V TJ = 150°C, R G = 4.3Ω, VGE = Turn-off Delay Time Turn-off Switching Energy 2570 I C = 75A Current Rise Time Turn-on Switching Energy (Diode) TYP Capacitance VCE = 600V Turn-on Delay Time Turn-on Switching Energy MIN 8050 TJ = +125°C µJ 12660 66 4215 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .26 RθJC Junction to Case (DIODE) .56 WT VIsolation Package Weight 29.2 RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500 UNIT °C/W gm Volts 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 052-6276 Rev C 12-2005 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 160 140 TC = 25°C 120 TC = 125°C 100 80 60 40 20 0 1 2 3 4 5 6 7 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) TJ = -55°C 160 140 120 100 80 TJ = 25°C 60 TJ = 125°C 40 20 0 0 12V 80 11V 60 40 10V 20 9V 8V J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 75A C T = 25°C 14 0 IC = 150A 6.0 5.0 IC = 75A 4.0 IC = 37.5A 3.0 2.0 1.0 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage IC = 150A 4 0.75 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.80 IC = 37.5A 2 1 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 120 0.85 IC = 75A 3 1.05 0.90 250 5 140 0.95 100 150 200 GATE CHARGE (nC) 6 1.10 1.00 50 FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 7.0 (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 8.0 7V FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 100 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 180 13V 0 0 200 15V 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 12-2005 IC, COLLECTOR CURRENT (A) = 15V Rev C GE 052-6276 V 180 APT75GT120JRDQ3 140 IC, COLLECTOR CURRENT (A) 200 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 50 VGE = 15V 40 30 20 VCE = 400V 10 T = 25°C, or 125°C J RG = 1.0Ω L = 100µH 0 160 tf, FALL TIME (ns) tr, RISE TIME (ns) 100 80 60 TJ = 25 or 125°C,VGE = 15V 20 VCE = 400V RG = 1.0Ω L = 100µH RG = 1.0Ω, L = 100µH, VCE = 400V 50000 TJ = 125°C 30000 20000 10000 TJ = 25°C 0 20 TJ = 25°C, VGE = 15V V = 400V CE V = +15V GE R = 1.0Ω G 8000 TJ = 125°C 6000 4000 2000 TJ = 25°C 0 160 130 100 70 40 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 160 130 100 70 40 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current J 80000 Eon2,150A 40000 Eoff,150A Eon2,75A 20000 Eoff,75A Eoff,37.5A Eon2,37.5A 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) 45000 = 400V V CE = +15V V GE T = 125°C 0 30 160 130 100 70 40 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) G 40000 60000 TJ = 125°C, VGE = 15V 40 10000 V = 400V CE V = +15V GE R = 1.0Ω 100000 50 0 160 130 100 70 40 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current EON2, TURN ON ENERGY LOSS (µJ) 100 10 0 SWITCHING ENERGY LOSSES (µJ) 200 60 40 12-2005 VGE =15V,TJ=125°C 70 RG = 1.0Ω, L = 100µH, VCE = 400V 120 Rev C VGE =15V,TJ=25°C 300 160 130 100 70 40 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 140 052-6276 400 0 160 130 100 70 40 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 APT75GT120JRDQ3 500 60 = 400V V CE = +15V V GE R = 1.0Ω 40000 Eon2,150A G 35000 30000 25000 20000 15000 Eon2,75A 10000 Eon2,37.5A 5000 0 Eoff,37.5A Eoff,150A Eoff,75A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES 4,000 IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) APT75GT120JRDQ3 250 1,000 500 Coes 200 150 100 50 Cres 0 100 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.25 D = 0.9 0.20 0.7 0.15 0.5 0.10 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 0.3 t1 t2 0.05 0 0.1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 Power (watts) 0.158 0.0436 0.0254 0.496 11.6 Case temperature. (°C) Figure 19b, TRANSIENT THERMAL IMPEDANCE MODEL F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 5 3 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 5Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 15 25 35 45 55 65 75 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 12-2005 0.0594 Rev C RC MODEL 052-6276 Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 50 APT75GT120JRDQ3 APT60DQ120 Gate Voltage 10% TJ = 125°C td(on) IC V CC V CE tr 5% Collector Current 90% 10% A 5% CollectorVoltage D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% Gate Voltage TJ = 125°C td(off) CollectorVoltage 90% tf 10% 0 Collector Current Switching Energy 052-6276 Rev C 12-2005 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT75GT120JRDQ3 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT75GN120JRDQ3 Characteristic / Test Conditions Maximum Average Forward Current (TC = 85°C, Duty Cycle = 0.5) 60 RMS Forward Current (Square wave, 50% duty) 73 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 540 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Forward Voltage MIN TYP IF = 75A 2.8 IF = 150A 3.48 IF = 75A, TJ = 125°C 2.17 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX- UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 60 trr Reverse Recovery Time - 265 Qrr Reverse Recovery Charge - 560 - 5 - 350 ns - 2890 nC - 13 - 150 - 4720 - 40 IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 60A, diF/dt = -200A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 800V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 60A, diF/dt = -200A/µs IF = 60A, diF/dt = -1000A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps ns - nC Amps D = 0.9 0.50 0.40 0.7 0.30 0.5 0.20 0.3 Note: PDM t1 t2 0.10 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION Junction temp. (°C) Power (watts) RC MODEL 0.148 0.006 0.238 0.0910 0.174 0.524 Case temperature. (°C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 12-2005 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE Rev C 0 t 0.1 052-6276 ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 200 140 TJ = 175°C 120 100 TJ = 125°C 80 60 TJ = 25°C 40 TJ = -55°C 20 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 7000 T = 125°C J V = 800V R 6000 120A 5000 4000 60A 3000 30A 2000 1000 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change IRRM 0 CJ, JUNCTION CAPACITANCE (pF) 350 12-2005 50 T = 125°C J V = 800V 45 120A R 40 35 30 25 60A 20 15 30A 10 5 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change 90 Duty cycle = 0.5 T = 175°C 80 J 50 40 20 10 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature Rev C 100 30 0.2 052-6276 150 60 Qrr 300 250 200 150 100 50 0 30A 200 70 0.4 0.0 60A 250 0 trr 0.6 300 R 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change trr 0.8 350 0 Qrr 1.0 T = 125°C J V = 800V 120A 50 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 trr, REVERSE RECOVERY TIME (ns) 160 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 180 0 APT75GT120JRDQ3 400 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT75GT120JRDQ3 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode ISOTOP® is a Registered Trademark of SGS Thomson. Collector/Cathode Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 12-2005 3.3 (.129) 3.6 (.143) Rev C r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 052-6276 7.8 (.307) 8.2 (.322)