INFINEON SGP02N60

SGP02N60,
SGB02N60
SGD02N60
Fast IGBT in NPT-technology
• 75% lower Eoff compared to previous generation
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
C
G
P-TO-252-3-1 (D-PAK)
(TO-252AA)
E
P-TO-220-3-1
(TO-220AB)
P-TO-263-3-2 (D²-PAK)
(TO-263AB)
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
VCE
IC
VCE(sat)
Tj
600V
2A
2.2V
150°C
Package
Ordering Code
TO-220AB
Q67040-S4504
SGB02N60
TO-263AB
Q67040-S4505
SGD02N60
TO-252AA(DPAK)
Q67041-A4707
SGP02N60
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
600
Unit
V
A
TC = 25°C
6.0
TC = 100°C
2.9
Pulsed collector current, tp limited by Tjmax
ICpul s
12
Turn off safe operating area
-
12
Gate-emitter voltage
VGE
±20
V
Avalanche energy, single pulse
EAS
13
mJ
tSC
10
µs
Ptot
30
W
-55...+150
°C
VCE ≤ 600V, Tj ≤ 150°C
IC = 2 A, VCC = 50 V, RGE = 25 Ω,
start at Tj = 25°C
1)
Short circuit withstand time
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Tj , Tstg
Operating junction and storage temperature
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Jul-02
SGP02N60,
SGB02N60
SGD02N60
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
4.2
K/W
Characteristic
RthJC
IGBT thermal resistance,
junction – case
Thermal resistance,
RthJA
TO-220AB
62
RthJA
TO-252AA
50
TO-263AB
40
junction – ambient
1)
SMD version, device on PCB
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
1.9
2.4
T j =1 5 0° C
-
2.2
2.7
3
4
5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 5 00 µA
Collector-emitter saturation voltage
VCE(sat)
V
V G E = 15 V , I C = 2 A
T j =2 5 °C
Gate-emitter threshold voltage
VGE(th)
I C = 15 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V, V G E = 0 V
µA
T j =2 5 °C
-
-
20
T j =1 5 0° C
-
-
250
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
100
nA
Transconductance
gfs
V C E = 20 V , I C = 2 A
-
1.6
-
S
Input capacitance
Ciss
V C E = 25 V ,
-
142
170
pF
Output capacitance
Coss
V G E = 0V ,
-
18
22
Reverse transfer capacitance
Crss
f= 1 MH z
-
10
12
Gate charge
QGate
V C C = 48 0 V, I C =2 A
-
14
18
nC
Dynamic Characteristic
V G E = 15 V
Internal emitter inductance
LE
T O - 22 0A B
-
7
-
nH
IC(SC)
V G E = 15 V ,t S C ≤ 10 µs
V C C ≤ 6 0 0 V,
T j ≤ 15 0° C
-
20
-
A
measured 5mm (0.197 in.) from case
2)
Short circuit collector current
1)
2
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for
collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Jul-02
SGP02N60,
SGB02N60
SGD02N60
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
20
24
-
13
16
-
259
311
-
52
62
-
0.036
0.041
-
0.028
0.036
-
0.064
0.078
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =2 5 °C ,
V C C = 40 0 V, I C = 2 A,
V G E = 0/ 15 V ,
R G = 11 8Ω ,
1)
L σ = 18 0 nH ,
1)
C σ = 18 0 pF
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
20
24
-
14
17
-
287
344
-
67
80
-
0.054
0.062
-
0.043
0.056
-
0.097
0.118
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
1)
T j =1 5 0° C,
V C C = 40 0 V, I C =2 A ,
V G E = 0/ 15 V ,
R G = 11 8Ω ,
1)
L σ = 18 0 nH ,
1)
C σ = 18 0 pF
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E.
3
Jul-02
SGP02N60,
SGB02N60
SGD02N60
16A
Ic
t p =2 µ s
10A
14A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
12A
10A
T C =80°C
8A
6A
T C =110°C
4A
2A
0A
10Hz
15 µ s
1A
50 µ s
200 µ s
0.1A
1ms
DC
Ic
0.01A
100Hz
1kHz
10kHz
1V
100kHz
35W
7A
30W
6A
25W
5A
20W
15W
10W
5W
0W
25°C
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 118Ω)
10V
4A
3A
2A
1A
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation (IGBT) as a
function of case temperature
(Tj ≤ 150°C)
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Jul-02
7A
7A
6A
6A
5A
V G E =20V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SGP02N60,
15V
4A
13V
11V
3A
9V
7V
2A
5V
1V
2V
3V
4V
15V
4A
13V
11V
3A
9V
2A
7V
5V
7A
Tj=+25°C
6A
-55°C
+150°C
5A
4A
3A
2A
1A
2V
4V
6V
8V
10V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
8A
IC, COLLECTOR CURRENT
V G E =20V
0A
0V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
0A
0V
5A
1A
1A
0A
0V
SGB02N60
SGD02N60
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
4.0V
3.5V
IC = 4A
3.0V
2.5V
IC = 2A
2.0V
1.5V
1.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Jul-02
SGP02N60,
SGB02N60
SGD02N60
t d(off)
t, SWITCHING TIMES
t, SWITCHING TIMES
t d(off)
tf
100ns
td(on)
tf
100ns
t d(on)
tr
10ns
0A
1A
2A
3A
4A
tr
10ns
0Ω
5A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 11 8Ω,
Dynamic test circuit in Figure E)
300 Ω
400 Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 2A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
t, SWITCHING TIMES
200 Ω
5.5V
t d(off)
100ns
tf
t d(on)
tr
10ns
0°C
100 Ω
50°C
100°C
5.0V
4.5V
4.0V
max.
3.5V
3.0V
typ.
2.5V
min.
2.0V
150°C
-50°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 2A, RG = 1 1 8Ω,
Dynamic test circuit in Figure E)
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.15mA)
6
Jul-02
SGP02N60,
SGB02N60
SGD02N60
0.2mJ
*) Eon and Ets include losses
due to diode recovery.
0.2mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
E ts *
E on *
0.1mJ
E off
E ts *
0.1mJ
E on *
E off
0.0mJ
0A
1A
2A
3A
4A
0.0mJ
0Ω
5A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 11 8Ω,
Dynamic test circuit in Figure E)
100 Ω
200 Ω
300 Ω
400 Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 2A,
Dynamic test circuit in Figure E)
0.2mJ
D=0.5
E ts *
E on *
0.1mJ
E off
0.0mJ
0°C
50°C
100°C
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
150°C
0
10 K/W
0.2
0.1
0.05
0.02
R,(K/W)
1.026
1.3
1.69
0.183
-1
10 K/W
0.01
R1
τ, (s)
0.035
3.62*10-3
4.02*10-4
4.21*10-5
R2
-2
10 K/W
1µs
single pulse
10µs 100µs
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
1m s
10m s 100m s
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 2A, RG = 1 1 8Ω,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Jul-02
SGP02N60,
SGB02N60
SGD02N60
25V
C iss
15V
120V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
480V
10V
100pF
C oss
5V
10pF
C rss
0V
0nC
5nC
10nC
15nC
0V
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 2A)
20V
30V
40A
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
tsc, SHORT CIRCUIT WITHSTAND TIME
25 µ s
20 µ s
15 µ s
10 µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
11V
12V
13V
14V
30A
20A
10A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V,Tj = 150°C)
8
Jul-02
SGP02N60,
SGB02N60
SGD02N60
dimensions
TO-220AB
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
dimensions
TO-263AB (D2Pak)
symbol
[inch]
max
min
max
A
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
E
F
G
H
2.54 typ.
0.65
0.85
5.08 typ.
4.30
4.50
0.1 typ.
0.0256
0.0335
0.2 typ.
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
9
[mm]
min
8° max
8° max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
Z
16.15
0.6358
Jul-02
SGP02N60,
SGB02N60
SGD02N60
dimensions
P-TO252 (D-Pak)
symbol
A
[mm]
inch]
min
max
min
max
6.40
6.73
0.2520
0.2650
0.2067
0.2165
B
5.25
5.50
C
(0.65)
(1.15)
D
0.63
0.89
0.0248
2.39
0.2520
0.0862
0.0941
E
F
2.28
2.19
(0.0256) (0.0453)
0.0350
G
0.76
0.98
0.0299
0.0386
H
0.90
1.21
0.0354
0.0476
K
5.97
6.23
0.2350
0.2453
L
9.40
10.40
0.3701
0.4094
M
0.46
0.58
0.0181
0.0228
N
0.87
1.15
0.0343
0.0453
P
0.51
-
0.0201
-
R
5.00
-
0.1969
-
S
4.17
-
0.1642
-
T
U
0.26
-
1.02
-
0.0102
-
0.0402
-
dimensions
P-TO251 (I-Pak)
symbol
A
10
[mm]
[inch]
min
max
min
max
6.47
6.73
0.2547
0.2650
B
5.25
5.41
0.2067
0.2130
C
4.19
4.43
0.1650
0.1744
D
0.63
0.89
0.0248
0.0350
E
F
2.29 typ.
2.18
2.39
0.0902 typ.
0.0858
0.0941
G
0.76
0.86
0.0299
0.0339
H
1.01
1.11
0.0398
0.0437
K
5.97
6.23
0.2350
0.2453
L
9.14
9.65
0.3598
0.3799
M
N
0.46
0.98
0.56
1.15
0.0181
0.0386
0.0220
0.0453
Jul-02
SGP02N60,
SGB02N60
SGD02N60
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
TC
Figure D. Thermal equivalent
circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
an d Stray capacity C σ =180pF.
11
Jul-02
SGP02N60,
SGB02N60
SGD02N60
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2000
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
12
Jul-02