ISP 742 RI Smart Power High-Side-Switch for Industrial Applications Features Product Summary • Overload protection Overvoltage protection Vbb(AZ) 41 V • Current limitation Operating voltage Vbb(on) 5 ... 34 V • Short circuit protection On-state resistance RON 350 mΩ • Thermal shutdown with restart Nominal load current IL(nom) 0.4 A • ESD - Protection Operating temperature Ta -30...+85 °C • Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection with external resistor • Open drain diagnostic output • CMOS compatible input PG-DSO-8 • Loss of GND and loss of Vbb protection • Very low standby current Application • All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V and 24 V DC industrial applications • Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. Page 1 2006-03-09 ISP 742 RI Block Diagram + Vbb Voltage Overvoltage source protection Current limit Gate protection V Logic Charge pump Level shifter Rectifier Limit for unclamped ind. loads OUT Temperature sensor IN ST Load Logic ESD miniPROFET GND Load GND Signal GND Pin Symbol Function 1 GND Logic ground 2 IN 3 OUT Output to the load 4 ST Diagnostic feedback 5 Vbb Positive power supply voltage 6 Vbb Positive power supply voltage 7 Vbb Positive power supply voltage 8 Vbb Positive power supply voltage Input, activates the power switch in case of logic high signal Pin configuration Top view 1• 8 Vbb IN 2 7 Vbb OUT 3 6 Vbb ST 4 5 Vbb GND Page 2 2006-03-09 ISP 742 RI Maximum Ratings at Tj = 25 °C, unless otherwise specified Parameter Symbol Value Unit Supply voltage Vbb Supply voltage for full short circuit protection Vbb(SC) Continuous input voltage VIN -10 ... +16 Load current (Short - circuit current, see page 5) IL self limited Current through input pin (DC) I IN ±5 mA Junction temperature Tj 150 °C Operating temperature Ta -30...+85 Storage temperature T stg -40 ... +105 Power dissipation 1) Ptot 1.5 W Inductive load switch-off energy dissipation 1)2) EAS 800 mJ 40 V Vbb A single pulse, (see page 9) Tj =150 °C, Vbb = 13.5 V, IL = 0.3 A Load dump protection 2) VLoadDump3)= VA + VS V VLoaddump RI=2Ω, td=400ms, VIN= low or high, VA=13,5V RL = 45 Ω 60 kV Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 ESD STM5.1 - 1998 Input pin ±1 all other pins ±5 Thermal Characteristics Thermal resistance @ min. footprint Rth(JA) - 95 - Thermal resistance @ 6 cm2 cooling area 1) Rth(JA) - 70 83 K/W 1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 17) 2not subject to production test, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a 150Ω resistor in GND connection. A resistor for the protection of the input is integrated. Page 3 2006-03-09 ISP 742 RI Electrical Characteristics Parameter and Conditions Symbol at Tj = -40...+150°C, V bb = 13,5V, unless otherwise specified Values min. typ. Unit max. Load Switching Capabilities and Characteristics On-state resistance RON mΩ T j = 25 °C, I L = 0.3 A, V bb = 9...40 V - 250 350 T j = 150 °C - 450 700 0.4 - - A ton - - 140 µs toff - - 170 10 to 30% V OUT, dV/dton - - 2 70 to 40% V OUT, -dV/dtoff - - 2 Operating voltage Vbb(on) 5 - 34 Undervoltage shutdown of charge pump Vbb(under) - - 5 Undervoltage restart of charge pump Vbb(u cp) - - 5.5 Standby current Ibb(off) - - 26 Leakage output current (included in Ibb(off)) IL(off) - - 12 Operating current IGND - - 1.3 Nominal load current IL(nom) Device on PCB 1)2) T C = 85 °C, T j ≤ 150 °C Turn-on time to 90% V OUT RL = 47 Ω, V IN = 0 to 10 V Turn-off time to 10% V OUT RL = 47 Ω, V IN = 10 to 0 V Slew rate on V/µs RL = 47 Ω Slew rate off RL = 47 Ω Operating Parameters V µA VIN = 0 V mA VIN = high 1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 17) 2Nominal load current is limited by current limitation (see page 5) Page 4 2006-03-09 ISP 742 RI Electrical Characteristics Parameter and Conditions Symbol at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified Values min. typ. Unit max. Protection Functions1) Initial peak short circuit current limit (pin 5 to 3) A I L(SCp) Tj = -40 °C, Vbb = 20 V - - 2 Tj = 25 °C - 1.2 - Tj = 150 °C 0.4 - - - 1 - VON(CL) 41 47 - Vbb(AZ) 41 - - Thermal overload trip temperature T jt 150 - - °C Thermal hysteresis ∆Tjt - 10 - K Reverse battery 3) -Vbb - - 32 V Drain-source diode voltage (VOUT > Vbb) -VON - 600 - Repetitive short circuit current limit I L(SCr) Tj = Tjt (see timing diagrams) Output clamp (inductive load switch off) V at VOUT = Vbb - VON(CL), Ibb = 4 mA Overvoltage protection 2) Ibb = 4 mA Reverse Battery mV Tj = 150 °C 1Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation . 2 see also VON(CL) in circuit diagram on page 8 3Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3). Page 5 2006-03-09 ISP 742 RI Electrical Characteristics Parameter Symbol at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified Values Unit min. typ. max. Input and Status feedback Input turn-on threshold voltage VIN(T+) - - 2.2 V Input turn-off threshold voltage VIN(T-) 0.8 - - Input threshold hysteresis ∆V IN(T) - 0.3 - Off state input current I IN(off) 1 - 30 I IN(on) 1 - 30 5.4 6.1 - Tj = -40...+25 °C, IST = 1.6 mA - - 0.4 Tj = 150 °C, IST = 1.6 mA - - 0.6 - 300 600 µs 1.5 3.5 5 kΩ V µA VIN = 0.7 V On state input current VIN = 5 V Status output (open drain), Zener limit voltage VST(high) V IST = 1.6 mA Status output (open drain), ST low voltage VST(low) Status invalid after input slope 1) t d(ST) Input resistance (see page 8) RI Diagnostic Characteristics Short circuit detection voltage VOUT(SC) - 2.8 - Open load detection voltage VOUT(OL) - 3 - Openload detection current IL(OL) - 5 - µA included in standby current Ibb(off) 1no delay time after overtemperature switch off and short circuit in on-state Page 6 2006-03-09 ISP 742 RI Input Output level level Normal L L L operation H H L Short circuit L L L to GND H L* H Short circuit to L H H Vbb (in off-state) H H L Overload L L L H H ** L L L L H L H Open Load in L H H off-state H H L Overtemperature Status *) Out ="L": VOUT < 2V typ. **) Out ="H": V OUT > 2V typ. Page 7 2006-03-09 ISP 742 RI Terms Inductive and overvoltage output clamp Ibb + V bb V I IN IN V IL PROFET I ST VON V IN ON OUT OUT ST V Z Vbb GND GND V ST I GND bb R GND V OUT VON clamped to 47V typ. Input circuit (ESD protection) R IN Overvoltage protection of logic part I ESD- ZD I I I GND The use of ESD zener diodes as voltage clamp at DC conditions is not recommended Reverse battery protection ± 5V - V bb R ST IN RI VZ1 =6.1V typ., VZ2 =Vbb(AZ) =47V typ., RI=3.5 kΩ typ., RGND=150Ω Status output Logic ST +5V OUT Power Inverse Diode RST(ON) GND RL R GND Signal GND ST Power GND RGND=150Ω, RI=3.5kΩ typ., Temperature protection is not active during inverse current GND Page 8 ESDZD 2006-03-09 ISP 742 RI Open-load detection Vbb disconnect with charged inductive OFF-state diagnostic condition: V OUT > 3V typ.; IN=low load high IN OFF I Vbb PROFET OUT L(OL) ST GND Open load detection Logic unit V OUT V Signal GND bb GND disconnect IN Inductive Load switch-off energy dissipation Vbb E bb OUT PROFET E AS ST GND V bb V IN V IN V GND ST PROFET = OUT L ST GND GND disconnect with GND pull up E Load Vbb ZL { R IN Vbb PROFET OUT GND V V IN ST ER L Energy stored in load inductance: EL = ½ * L * IL2 ST V bb EL V GND While demagnetizing load inductance, the enérgy dissipated in PROFET is EAS = Ebb + EL - ER = VON(CL) * iL(t) dt, with an approximate solution for RL > 0Ω: E AS = Page 9 IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL 2006-03-09 ISP 742 RI Typ. transient thermal impedance Typ. transient thermal impedance ZthJA=f(tp) @ 6cm 2 heatsink area Z thJA=f(tp) @ minimal footprint Parameter: D=tp/T Parameter: D=tp/T 10 2 K/W 10 2 D=0.5 D=0.5 K/W D=0.2 D=0.2 10 1 D=0.1 10 1 Z thJA ZthJA D=0.05 D=0.02 10 0 D=0.01 D=0.1 D=0.05 D=0.02 10 0 D=0.01 D=0 D=0 10 -1 10 -1 jzfigfvifgififvgi 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 s 10 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 4 tp 10 tp Typ. on-state resistance Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; Vin = high RON = f(V bb); IL = 0.3A ; V in = high 450 600 mΩ RON mΩ RON s 350 300 150°C 400 300 25°C 250 200 -40°C 200 150 -40 -20 100 0 20 40 60 80 100 120 0 0 °C 160 Tj Page 10 5 10 15 20 25 30 V Vbb 40 2006-03-09 4 ISP 742 RI Typ. turn on time Typ. turn off time ton = f(Tj ); RL = 47Ω toff = f(Tj); RL = 47Ω 120 120 µs µs 9V 80 toff t on 9...32V 80 32V 60 60 13,5V 40 40 20 20 0 -40 -20 0 20 40 60 80 100 120 0 -40 -20 °C 160 0 20 40 60 80 100 120 Tj Tj Typ. slew rate on Typ. slew rate off dV/dton = f(T j) ; RL = 47 Ω dV/dtoff = f(Tj); R L = 47 Ω 2 2 V/µs V/µs 1.6 -dV dtoff 1.6 dV dton °C 160 1.4 1.2 1.4 1.2 1 1 32V 0.8 0.8 0.6 13,5V 0.6 0.4 9V 0.4 0.2 0 -40 -20 32V 13,5V 9V 0.2 0 20 40 60 80 100 120 0 -40 -20 °C 160 Tj 0 20 40 60 80 100 120 °C 160 Tj Page 11 2006-03-09 ISP 742 RI Typ. standby current Typ. leakage current Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low I L(off) = f(Tj) ; Vbb = 32V ; VIN = low 14 6 µA 10 I L(off) I bb(off) µA 4 8 3 6 2 4 1 2 0 -40 -20 0 20 40 60 80 100 120 0 -40 -20 °C 160 0 20 40 60 80 100 120 Tj °C 160 Tj Typ. initial peak short circuit current limit Typ. initial short circuit shutdown time IL(SCp) = f(Tj) ; Vbb = 20V toff(SC) = f(Tj,start) ; Vbb = 20V 120 2 A ms toff(SC) IL(SCp) 1.6 1.4 1.2 80 60 1 0.8 40 0.6 0.4 20 0.2 0 -40 -20 0 20 40 60 80 100 120 0 -40 -20 °C 160 Tj Page 12 0 20 40 60 80 100 120 °C Tj 160 2006-03-09 ISP 742 RI Typ. input current Typ. input current IIN(on/off) = f(Tj); Vbb = 13,5V; VIN = low/high I IN = f(VIN); V bb = 13.5V VINlow ≤ 0,7V; VINhigh = 5V 200 12 µA µA 150°C 140 8 on IIN IIN 160 120 -40...+25°C 100 6 off 80 4 60 40 2 20 0 -40 -20 0 20 40 60 80 100 120 0 0 °C 160 1 2 3 4 5 6 Tj Typ. input threshold voltage Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V VIN(th) = f(V bb) ; Tj = 25°C 2 V on 1.6 on 1.6 1.4 off 1.2 VIN(th) V IN(th) 8 2 V 1.4 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 -40 -20 V VIN 0 20 40 60 80 100 120 0 0 °C 160 Tj Page 13 off 5 10 15 20 25 35 V Vbb 2006-03-09 ISP 742 RI Maximum allowable load inductance Typ. status delay time for a single switch off td(ST) = f(V bb); T j = 25°C L = f(IL); Tjstart =150°C, Vbb=13.5V, RL=0Ω 500 4000 mH µs t d(ST) L 3000 2500 300 2000 200 1500 1000 100 500 0 0 100 200 300 400 0 0 600 mA IL 5 10 15 20 25 35 V Vbb Maximum allowable inductive switch-off energy, single pulse EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V 1000 EAS mJ 600 400 200 0 0 100 200 300 400 600 mA IL Page 14 2006-03-09 ISP 742 RI Timing diagrams Figure 2b: Switching a lamp, Figure 1a: Vbb turn on: IN IN Vbb ST I V L OUT IL ST t t d = 20µs Invalid status during td Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition Figure 2c: Switching an inductive load IN V IN OUT ST 90% t on dV/ dton 10% dV/ dtoff t VOUT off IL t IL ST Page 15 2006-03-09 ISP 742 RI Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling Figure 3b: Short circuit in on-state shut down by overtemperature, restart by cooling IN IN V V OUT OUT n o rm a l o p e r a t io n O u tp u t s h o rt to G N D I L I L (S C p ) I I L (S C r) O u tp u t s h o r t to G N D L I L (S C r) ST ST t t t d (S T ) Heating up of the chip may require several milliseconds, depending on external conditions. Figure 5: Undervoltage restart of charge pump Vo n Figure 4: Overtemperature: Reset if Tj < Tjt IN V b b( u c p ) ST Vbb( under ) IL Vbb TJ t Page 16 2006-03-09 ISP 742 RI Package and ordering code all dimensions in mm Package: Ordering code: PG-DSO-8 SP000221229 Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm2 active heatsink area ) as a reference for max. power dissipation Ptot nominal load current IL(nom) and thermal Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved. resistance R thja Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 17 2006-03-09