INFINEON ISP742RI

ISP 742 RI
Smart Power High-Side-Switch
for Industrial Applications
Features
Product Summary
• Overload protection
Overvoltage protection
Vbb(AZ)
41
V
• Current limitation
Operating voltage
Vbb(on)
5 ... 34
V
• Short circuit protection
On-state resistance
RON
350
mΩ
• Thermal shutdown with restart
Nominal load current
IL(nom)
0.4
A
• ESD - Protection
Operating temperature
Ta
-30...+85
°C
• Overvoltage protection (including load dump)
• Fast demagnetization of inductive loads
• Reverse battery protection with external resistor
• Open drain diagnostic output
• CMOS compatible input
PG-DSO-8
• Loss of GND and loss of Vbb protection
• Very low standby current
Application
• All types of resistive, inductive and capacitive loads
• µC compatible power switch for 12 V and 24 V DC industrial applications
• Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input
and diagnostic feedback, monolithically integrated in Smart SIPMOS  technology.
Providing embedded protective functions.
Page 1
2006-03-09
ISP 742 RI
Block Diagram
+ Vbb
Voltage
Overvoltage
source
protection
Current
limit
Gate
protection
V Logic
Charge pump
Level shifter
Rectifier
Limit for
unclamped
ind. loads
OUT
Temperature
sensor
IN
ST
Load
Logic
ESD
miniPROFET
GND

Load GND
Signal GND
Pin
Symbol
Function
1
GND
Logic ground
2
IN
3
OUT
Output to the load
4
ST
Diagnostic feedback
5
Vbb
Positive power supply voltage
6
Vbb
Positive power supply voltage
7
Vbb
Positive power supply voltage
8
Vbb
Positive power supply voltage
Input, activates the power switch in case of logic high signal
Pin configuration
Top view
1•
8
Vbb
IN
2
7
Vbb
OUT
3
6
Vbb
ST
4
5
Vbb
GND
Page 2
2006-03-09
ISP 742 RI
Maximum Ratings at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Value
Unit
Supply voltage
Vbb
Supply voltage for full short circuit protection
Vbb(SC)
Continuous input voltage
VIN
-10 ... +16
Load current (Short - circuit current, see page 5)
IL
self limited
Current through input pin (DC)
I IN
±5
mA
Junction temperature
Tj
150
°C
Operating temperature
Ta
-30...+85
Storage temperature
T stg
-40 ... +105
Power dissipation 1)
Ptot
1.5
W
Inductive load switch-off energy dissipation 1)2)
EAS
800
mJ
40
V
Vbb
A
single pulse, (see page 9)
Tj =150 °C, Vbb = 13.5 V, IL = 0.3 A
Load dump protection 2) VLoadDump3)= VA + VS
V
VLoaddump
RI=2Ω, td=400ms, VIN= low or high, VA=13,5V
RL = 45 Ω
60
kV
Electrostatic discharge voltage (Human Body Model) VESD
according to ANSI EOS/ESD - S5.1 - 1993
ESD STM5.1 - 1998
Input pin
±1
all other pins
±5
Thermal Characteristics
Thermal resistance @ min. footprint
Rth(JA)
-
95
-
Thermal resistance @ 6 cm2 cooling area 1)
Rth(JA)
-
70
83
K/W
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 17)
2not subject to production test, specified by design
3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a
150Ω resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2006-03-09
ISP 742 RI
Electrical Characteristics
Parameter and Conditions
Symbol
at Tj = -40...+150°C, V bb = 13,5V, unless otherwise specified
Values
min.
typ.
Unit
max.
Load Switching Capabilities and Characteristics
On-state resistance
RON
mΩ
T j = 25 °C, I L = 0.3 A, V bb = 9...40 V
-
250
350
T j = 150 °C
-
450
700
0.4
-
-
A
ton
-
-
140
µs
toff
-
-
170
10 to 30% V OUT,
dV/dton
-
-
2
70 to 40% V OUT,
-dV/dtoff
-
-
2
Operating voltage
Vbb(on)
5
-
34
Undervoltage shutdown of charge pump
Vbb(under)
-
-
5
Undervoltage restart of charge pump
Vbb(u cp)
-
-
5.5
Standby current
Ibb(off)
-
-
26
Leakage output current (included in Ibb(off))
IL(off)
-
-
12
Operating current
IGND
-
-
1.3
Nominal load current
IL(nom)
Device on PCB 1)2)
T C = 85 °C, T j ≤ 150 °C
Turn-on time
to 90% V OUT
RL = 47 Ω, V IN = 0 to 10 V
Turn-off time
to 10% V OUT
RL = 47 Ω, V IN = 10 to 0 V
Slew rate on
V/µs
RL = 47 Ω
Slew rate off
RL = 47 Ω
Operating Parameters
V
µA
VIN = 0 V
mA
VIN = high
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 17)
2Nominal load current is limited by current limitation (see page 5)
Page 4
2006-03-09
ISP 742 RI
Electrical Characteristics
Parameter and Conditions
Symbol
at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified
Values
min.
typ.
Unit
max.
Protection Functions1)
Initial peak short circuit current limit (pin 5 to 3)
A
I L(SCp)
Tj = -40 °C, Vbb = 20 V
-
-
2
Tj = 25 °C
-
1.2
-
Tj = 150 °C
0.4
-
-
-
1
-
VON(CL)
41
47
-
Vbb(AZ)
41
-
-
Thermal overload trip temperature
T jt
150
-
-
°C
Thermal hysteresis
∆Tjt
-
10
-
K
Reverse battery 3)
-Vbb
-
-
32
V
Drain-source diode voltage (VOUT > Vbb)
-VON
-
600
-
Repetitive short circuit current limit
I L(SCr)
Tj = Tjt (see timing diagrams)
Output clamp (inductive load switch off)
V
at VOUT = Vbb - VON(CL),
Ibb = 4 mA
Overvoltage protection 2)
Ibb = 4 mA
Reverse Battery
mV
Tj = 150 °C
1Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as "outside" normal operating range.
Protection functions are not designed for continuous repetitive operation .
2 see also VON(CL) in circuit diagram on page 8
3Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has
to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the
voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation!
Input current has to be limited (see max. ratings page 3).
Page 5
2006-03-09
ISP 742 RI
Electrical Characteristics
Parameter
Symbol
at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified
Values
Unit
min.
typ.
max.
Input and Status feedback
Input turn-on threshold voltage
VIN(T+)
-
-
2.2
V
Input turn-off threshold voltage
VIN(T-)
0.8
-
-
Input threshold hysteresis
∆V IN(T)
-
0.3
-
Off state input current
I IN(off)
1
-
30
I IN(on)
1
-
30
5.4
6.1
-
Tj = -40...+25 °C, IST = 1.6 mA
-
-
0.4
Tj = 150 °C, IST = 1.6 mA
-
-
0.6
-
300
600
µs
1.5
3.5
5
kΩ
V
µA
VIN = 0.7 V
On state input current
VIN = 5 V
Status output (open drain), Zener limit voltage
VST(high)
V
IST = 1.6 mA
Status output (open drain), ST low voltage
VST(low)
Status invalid after input slope 1)
t d(ST)
Input resistance (see page 8)
RI
Diagnostic Characteristics
Short circuit detection voltage
VOUT(SC)
-
2.8
-
Open load detection voltage
VOUT(OL)
-
3
-
Openload detection current
IL(OL)
-
5
-
µA
included in standby current Ibb(off)
1no delay time after overtemperature switch off and short circuit in on-state
Page 6
2006-03-09
ISP 742 RI
Input
Output
level
level
Normal
L
L
L
operation
H
H
L
Short circuit
L
L
L
to GND
H
L*
H
Short circuit to
L
H
H
Vbb (in off-state)
H
H
L
Overload
L
L
L
H
H **
L
L
L
L
H
L
H
Open Load in
L
H
H
off-state
H
H
L
Overtemperature
Status
*) Out ="L": VOUT < 2V typ.
**) Out ="H": V OUT > 2V typ.
Page 7
2006-03-09
ISP 742 RI
Terms
Inductive and overvoltage output clamp
Ibb
+ V bb
V
I IN
IN
V
IL
PROFET
I ST
VON
V
IN
ON
OUT
OUT
ST
V
Z
Vbb
GND
GND
V ST
I
GND
bb
R
GND
V OUT
VON clamped to 47V typ.
Input circuit (ESD protection)
R
IN
Overvoltage protection of logic part
I
ESD- ZD I
I
I
GND
The use of ESD zener diodes as voltage clamp
at DC conditions is not recommended
Reverse battery protection
± 5V
- V bb
R ST
IN
RI
VZ1 =6.1V typ., VZ2 =Vbb(AZ) =47V typ.,
RI=3.5 kΩ typ., RGND=150Ω
Status output
Logic
ST
+5V
OUT
Power
Inverse
Diode
RST(ON)
GND
RL
R GND
Signal GND
ST
Power GND
RGND=150Ω, RI=3.5kΩ typ.,
Temperature protection is not active during
inverse current
GND
Page 8
ESDZD
2006-03-09
ISP 742 RI
Open-load detection
Vbb disconnect with charged inductive
OFF-state diagnostic condition:
V OUT > 3V typ.; IN=low
load
high
IN
OFF
I
Vbb
PROFET
OUT
L(OL)
ST
GND
Open load
detection
Logic
unit
V
OUT
V
Signal GND
bb
GND disconnect
IN
Inductive Load switch-off energy
dissipation
Vbb
E bb
OUT
PROFET
E AS
ST
GND
V
bb
V
IN
V
IN
V
GND
ST
PROFET
=
OUT
L
ST
GND
GND disconnect with GND pull up
E Load
Vbb
ZL
{
R
IN
Vbb
PROFET
OUT
GND
V V
IN ST
ER
L
Energy stored in load inductance: EL = ½ * L * IL2
ST
V
bb
EL
V
GND
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
EAS = Ebb + EL - ER = VON(CL) * iL(t) dt,
with an approximate solution for RL > 0Ω:
E AS =
Page 9
IL * R L
IL * L
)
* ( V b b + | V O U T ( C L )| ) * ln (1 +
| V O U T ( C L )|
2 * RL
2006-03-09
ISP 742 RI
Typ. transient thermal impedance
Typ. transient thermal impedance
ZthJA=f(tp) @ 6cm 2 heatsink area
Z thJA=f(tp) @ minimal footprint
Parameter: D=tp/T
Parameter: D=tp/T
10
2
K/W
10 2
D=0.5
D=0.5
K/W
D=0.2
D=0.2
10 1
D=0.1
10 1
Z thJA
ZthJA
D=0.05
D=0.02
10 0
D=0.01
D=0.1
D=0.05
D=0.02
10 0
D=0.01
D=0
D=0
10 -1
10 -1
jzfigfvifgififvgi
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
s
10
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
4
tp
10
tp
Typ. on-state resistance
Typ. on-state resistance
RON = f(Tj) ; Vbb = 13,5V ; Vin = high
RON = f(V bb); IL = 0.3A ; V in = high
450
600
mΩ
RON
mΩ
RON
s
350
300
150°C
400
300
25°C
250
200
-40°C
200
150
-40 -20
100
0
20
40
60
80 100 120
0
0
°C 160
Tj
Page 10
5
10
15
20
25
30
V
Vbb
40
2006-03-09
4
ISP 742 RI
Typ. turn on time
Typ. turn off time
ton = f(Tj ); RL = 47Ω
toff = f(Tj); RL = 47Ω
120
120
µs
µs
9V
80
toff
t on
9...32V
80
32V
60
60
13,5V
40
40
20
20
0
-40 -20
0
20
40
60
80 100 120
0
-40 -20
°C 160
0
20
40
60
80 100 120
Tj
Tj
Typ. slew rate on
Typ. slew rate off
dV/dton = f(T j) ; RL = 47 Ω
dV/dtoff = f(Tj); R L = 47 Ω
2
2
V/µs
V/µs
1.6
-dV
dtoff
1.6
dV
dton
°C 160
1.4
1.2
1.4
1.2
1
1
32V
0.8
0.8
0.6
13,5V
0.6
0.4
9V
0.4
0.2
0
-40 -20
32V
13,5V
9V
0.2
0
20
40
60
80 100 120
0
-40 -20
°C 160
Tj
0
20
40
60
80 100 120
°C 160
Tj
Page 11
2006-03-09
ISP 742 RI
Typ. standby current
Typ. leakage current
Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low
I L(off) = f(Tj) ; Vbb = 32V ; VIN = low
14
6
µA
10
I L(off)
I bb(off)
µA
4
8
3
6
2
4
1
2
0
-40 -20
0
20
40
60
80 100 120
0
-40 -20
°C 160
0
20
40
60
80 100 120
Tj
°C 160
Tj
Typ. initial peak short circuit current limit
Typ. initial short circuit shutdown time
IL(SCp) = f(Tj) ; Vbb = 20V
toff(SC) = f(Tj,start) ; Vbb = 20V
120
2
A
ms
toff(SC)
IL(SCp)
1.6
1.4
1.2
80
60
1
0.8
40
0.6
0.4
20
0.2
0
-40 -20
0
20
40
60
80 100 120
0
-40 -20
°C 160
Tj
Page 12
0
20
40
60
80 100 120
°C
Tj
160
2006-03-09
ISP 742 RI
Typ. input current
Typ. input current
IIN(on/off) = f(Tj); Vbb = 13,5V; VIN = low/high
I IN = f(VIN); V bb = 13.5V
VINlow ≤ 0,7V; VINhigh = 5V
200
12
µA
µA
150°C
140
8
on
IIN
IIN
160
120
-40...+25°C
100
6
off
80
4
60
40
2
20
0
-40 -20
0
20
40
60
80 100 120
0
0
°C 160
1
2
3
4
5
6
Tj
Typ. input threshold voltage
Typ. input threshold voltage
VIN(th) = f(Tj ) ; Vbb = 13,5V
VIN(th) = f(V bb) ; Tj = 25°C
2
V
on
1.6
on
1.6
1.4
off
1.2
VIN(th)
V IN(th)
8
2
V
1.4
1.2
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
-40 -20
V
VIN
0
20
40
60
80 100 120
0
0
°C 160
Tj
Page 13
off
5
10
15
20
25
35
V
Vbb
2006-03-09
ISP 742 RI
Maximum allowable load inductance
Typ. status delay time
for a single switch off
td(ST) = f(V bb); T j = 25°C
L = f(IL); Tjstart =150°C, Vbb=13.5V, RL=0Ω
500
4000
mH
µs
t d(ST)
L
3000
2500
300
2000
200
1500
1000
100
500
0
0
100
200
300
400
0
0
600
mA
IL
5
10
15
20
25
35
V
Vbb
Maximum allowable inductive switch-off
energy, single pulse
EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V
1000
EAS
mJ
600
400
200
0
0
100
200
300
400
600
mA
IL
Page 14
2006-03-09
ISP 742 RI
Timing diagrams
Figure 2b: Switching a lamp,
Figure 1a: Vbb turn on:
IN
IN
Vbb
ST
I
V
L
OUT
IL
ST
t
t d = 20µs
Invalid status during td
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
Figure 2c: Switching an inductive load
IN
V
IN
OUT
ST
90%
t on
dV/ dton
10%
dV/ dtoff
t
VOUT
off
IL
t
IL
ST
Page 15
2006-03-09
ISP 742 RI
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
Figure 3b: Short circuit in on-state
shut down by overtemperature, restart by cooling
IN
IN
V
V OUT
OUT
n o rm a l
o p e r a t io n
O u tp u t s h o rt to G N D
I
L
I
L (S C p )
I
I
L (S C r)
O u tp u t s h o r t to G N D
L
I
L (S C r)
ST
ST
t
t
t
d (S T )
Heating up of the chip may require several milliseconds, depending
on external conditions.
Figure 5: Undervoltage restart of charge pump
Vo n
Figure 4: Overtemperature:
Reset if Tj < Tjt
IN
V b b( u c p )
ST
Vbb( under )
IL
Vbb
TJ
t
Page 16
2006-03-09
ISP 742 RI
Package and ordering code
all dimensions in mm
Package:
Ordering code:
PG-DSO-8
SP000221229
Printed circuit board (FR4, 1.5mm thick, one
layer 70µm, 6cm2 active heatsink area ) as
a reference for max. power dissipation Ptot
nominal load current IL(nom) and thermal
Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81669 München
© Infineon Technologies AG 2001
All Rights Reserved.
resistance R thja
Attention please!
The information herein is given to describe certain components and shall not be considered as a guarantee
of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your
nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide
(see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 17
2006-03-09