PD 91571A IRG4RC10UD UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C • UltraFast: Optimized for medium operating frequencies ( 8-40 kHz in hard switching, >200 kHz in resonant mode). • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-252AA package VCES = 600V VCE(on) typ. = 2.15V G @VGE = 15V, IC = 5.0A E tf (typ.) = 140ns n-cha nn el Benefits • Generation 4 IGBT's offer highest efficiencies available • IGBT's optimized for specific application conditions • HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing • Lower losses than MOSFET's conduction and Diode losses D-PAK TO-252AA Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 8.5 5.0 34 34 4.0 16 ± 20 38 15 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient (PCB mount)* Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.3 (0.01) 3.3 7.0 50 ––– Units °C/W g (oz) Details of note Q through T are on the last page www.irf.com 1 12/30/00 IRG4RC10UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown VoltageS 600 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.54 VCE(on) Collector-to-Emitter Saturation Voltage — 2.15 — 2.61 — 2.30 Gate Threshold Voltage 3.0 — VGE(th) ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -8.7 gfe Forward Transconductance T 2.8 4.2 Zero Gate Voltage Collector Current — — ICES — — V FM Diode Forward Voltage Drop — 1.5 — 1.4 IGES Gate-to-Emitter Leakage Current — — V(BR)CES Max. Units Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 1.0mA 2.6 IC = 5.0A V GE = 15V — V IC = 8.5A See Fig. 2, 5 — IC = 5.0A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100V, IC = 5.0A 250 µA VGE = 0V, VCE = 600V 1000 VGE = 0V, VCE = 600V, TJ = 150°C 1.8 V IC = 4.0A See Fig. 13 1.7 IC = 4.0A, TJ = 125°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Q rr Diode Reverse Recovery Charge di (rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 15 2.6 5.8 40 16 87 140 0.14 0.12 0.26 38 18 95 250 0.45 7.5 270 21 3.5 28 38 2.9 3.7 40 70 280 235 Max. Units Conditions 22 IC = 5.0A 4.0 nC VCC = 400V See Fig. 8 8.7 VGE = 15V — TJ = 25°C — ns IC = 5.0A, VCC = 480V 130 VGE = 15V, RG = 100Ω 210 Energy losses include "tail" and — diode reverse recovery. — mJ See Fig. 9, 10, 18 0.33 — TJ = 150°C, See Fig. 11, 18 — ns IC = 5.0A, VCC = 480V — VGE = 15V, RG = 100Ω — Energy losses include "tail" and — mJ diode reverse recovery. — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 42 ns TJ = 25°C See Fig. 57 TJ = 125°C 14 IF = 4.0A 5.2 A TJ = 25°C See Fig. 6.7 TJ = 125°C 15 VR = 200V 60 nC TJ = 25°C See Fig. 105 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 www.irf.com IRG4RC10UD 1.6 For both: D uty cy cle: 50% TJ = 125°C T s ink = 90°C 55°C G ate drive as specified P ow e r Dis sip ation = 1.4 W LOAD CURRENT (A) 1.2 S q u a re w a v e : 6 0% of rate d volta ge 0.8 I 0.4 Id e a l d io d e s 0.0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 oC TJ = 150 oC 10 1 V = 15V 20µs PULSE WIDTH GE 0.1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 10 TJ = 150 o C TJ = 25 o C V = 50V 5µs PULSE WIDTH CC 1 5 6 7 8 9 10 11 12 13 14 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4RC10UD 10 5.0 V = 15V 80 us PULSE WIDTH VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 8 6 4 2 0 25 50 75 100 125 150 I C = 10 A 4.0 3.0 I C = 5.05 A I C = 2.5 A 2.0 1.0 -60 -40 -20 TC , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4RC10UD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 400 Cies 300 200 C oes 100 Cres 20 VGE , Gate-to-Emitter Voltage (V) 500 10 12 8 4 0 100 0 VCE , Collector-to-Emitter Voltage (V) 10 Total Switching Losses (mJ) Total Switching Losses (mJ) 0.25 0.20 60 70 80 90 , Gate Resistance(Ohm) (Ω) RG R, GGate Resistance Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 8 12 16 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 480V V GE = 15V TJ = 25 ° C I C = 5.0A 50 4 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.30 VCC = 400V I C = 5.0A 16 0 1 100 100 Ω RG = Ohm VGE = 15V VCC = 480V IC = 10 A 1 I 5A C = 5.0A IC = 2.5 A 0.1 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4RC10UD RG TJ 1.2 VCC VGE 100 = 100Ω Ohm = 150 ° C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 1.4 1.0 0.8 0.6 0.4 0.2 VGE = 20V T J = 125 oC 10 SAFE OPERATING AREA 1 0.0 0 2 4 6 8 1 10 10 100 1000 VCE , Collector-to-Emitter Voltage (V) I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 TJ = 150°C 10 TJ = 125°C T = 25°C J 1 0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 FForward orward VVoltage oltage DDrop rop -- VVFM V) ) F M((V Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4RC10UD 50 14 I F = 8.0A 45 12 I F = 4.0A VR = 20 0V T J = 1 25 °C T J = 2 5°C I F = 8.0A 10 I F = 4.0A Irr- ( A) trr- (nC) 40 35 8 6 30 4 25 2 VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C 20 100 di f /dt - (A/µ s) 0 100 1000 1000 di f /dt - (A/µ s) Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 200 1000 VR = 2 00 V T J = 1 25°C T J = 2 5°C VR = 20 0V T J = 1 25 °C T J = 2 5°C 160 120 I F = 8.0A di (rec) M/dt- (A /µs) Qrr- (nC) I F = 8.0A I F = 4.0A 80 I F = 4.0A 40 0 100 di f /dt - (A/µ s) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com A 100 100 1000 di f /dt - (A/µ s ) Fig. 17 - Typical di(rec)M/dt vs. dif/dt, 7 IRG4RC10UD 90% Vge Same ty pe device as D .U.T. +Vge Vce 430µF 80% of Vce D .U .T. Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 ∫ t1 + 5 µ S V c e icIcd tdt Vce t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Ic ddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIc d t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVd d idIc d t dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4RC10UD V g G AT E SIG NA L DE VIC E U ND E R T E ST CU R RE NT D .U .T. VO L TA G E IN D.U .T. CU R RE NT IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 20. Pulsed Collector Current Test Circuit Figure 19. Clamped Inductive Load Test Circuit Package Outline TO-252AA Outline Dimensions are shown in millimeters (inches) 2.3 8 (.0 94 ) 2.1 9 (.0 86 ) 6.7 3 (.2 65 ) 6.3 5 (.2 50 ) -A1 .2 7 ( .0 50) 0 .8 8 ( .0 35) 5 .46 (.21 5) 5 .21 (.20 5) 1.1 4 ( .0 45) 0.8 9 ( .0 35) 0.58 (.02 3) 0.46 (.01 8) 4 6.45 (.24 5) 5.68 (.22 4) 6.2 2 (.2 45 ) 5.9 7 (.2 35 ) 1 .0 2 (.04 0) 1 .6 4 (.02 5) 10 .42 (.41 0) 9.4 0 (.3 70 ) 1 2 0.51 (.0 2 0) M IN . -B 1 .5 2 ( .06 0) 1 .1 5 ( .04 5) 3X 1.1 4 (.0 45) 2 X 0.7 6 (.0 30) L E A D A S S IG N M E NT S 1 - G A TE 3 LEAD ASSIGNMENTS 1 - GATE 2 - COLLECTOR 0.89 (.0 35 ) 0.64 (.0 25 ) 0 .2 5 (.0 10 ) 2 - D R A IN 3 - SOURCE 4 - D R A IN 0 .5 8 (.0 23) 0 .4 6 (.0 18) M A M B 3 - EMITTER 4 - COLLECTOR N OT E S: 2.28 (.0 90 ) 4.57 ( .18 0) 1 D IM EN SIO N IN G & TO L E R AN C IN G PE R A N SI Y 14 .5 M, 19 82. 2 C O N TR O LL ING D IM E N S IO N : IN C H. 3 C O N FO R M S T O JE D E C O U TL IN E TO - 252 A A. 4 D IM EN SIO N S S H OW N A RE B E F O RE S O LD E R D IP , S O L D ER D IP M A X. + 0.16 (.0 06 ). www.irf.com 9 IRG4RC10UD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG = 100Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. Tape & Reel Information TO-252AA TR TRR 1 6 .3 ( .6 4 1 ) 1 5 .7 ( .6 1 9 ) 12 .1 ( .4 7 6 ) 11 .9 ( .4 6 9 ) F E E D D IR E C T IO N TR L 16 .3 ( .64 1 ) 15 .7 ( .61 9 ) 8 .1 ( .3 18 ) 7 .9 ( .3 12 ) FE E D D IR E C T IO N NOTES : 1 . C O N T R O L L IN G D IM EN S IO N : M IL L IM E T E R . 2 . A L L D IM EN S IO N S A R E S H O W N IN M IL L IM E T E R S ( IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 . 1 3 IN C H 16 m m NOTES : 1 . O U T L IN E C O N F O R M S T O E IA -4 8 1 . IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/00 10 www.irf.com