PD 91573A IRG4PH50UD UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C • UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching, >200 kHz in resonant mode • New IGBT design provides tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-247AC package VCES = 1200V VCE(on) typ. = 2.78V G @VGE = 15V, IC = 24A E n-cha nn el Benefits • Higher switching frequency capability than competitive IGBTs • Highest efficiency available • HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. Max. Units 1200 45 24 180 180 16 180 ± 20 200 78 -55 to + 150 V A V W °C 300 (0.063 in. (1.6mm) from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.24 ––– 6 (0.21) 0.64 0.83 ––– 40 ––– Units °C/W g (oz) 1 7/7/2000 IRG4PH50UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown VoltageS 1200 — — V Temperature Coeff. of Breakdown Voltage — 1.20 — V/°C Collector-to-Emitter Saturation Voltage — 2.56 3.5 — 2.78 3.7 — 3.20 — V — 2.54 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -13 — mV/°C Forward Transconductance T 23 35 — S Zero Gate Voltage Collector Current — — 250 µA — — 6500 Diode Forward Voltage Drop — 2.5 3.5 V — 2.1 3.0 Gate-to-Emitter Leakage Current — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 20A VGE = 15V IC = 24A See Fig. 2, 5 IC = 45A IC = 24A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 24A VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IC = 16A See Fig. 13 IC = 16A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 160 27 53 47 24 110 180 2.10 1.50 3.60 46 27 240 330 6.38 13 3600 160 31 90 164 5.8 8.3 260 680 120 76 Max. Units Conditions 250 IC = 24A 40 nC VCC = 400V See Fig. 8 80 VGE = 15V — TJ = 25°C — ns IC = 24A, VCC = 800V 170 VGE = 15V, RG = 5.0Ω 260 Energy losses include "tail" and — diode reverse recovery. — mJ See Fig. 9, 10, 18 4.6 — TJ = 150°C, See Fig. 11, 18 — ns IC = 24A, VCC = 800V — VGE = 15V, RG = 5.0Ω — Energy losses include "tail" and — mJ diode reverse recovery. — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 135 ns TJ = 25°C See Fig. 245 TJ = 125°C 14 IF = 16A 10 A TJ = 25°C See Fig. 15 TJ = 125°C 15 VR = 200V 675 nC TJ = 25°C See Fig. 16 di/dt = 200A/µs 1838 TJ = 125°C — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 www.irf.com IRG4PH50UD 30 F o r b o th : LOAD CURRENT (A) 25 D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 40 W 20 S q u a re w a v e : 6 0% of rate d volta ge 15 I 10 Id e a l d io d e s 5 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 1000 100 I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 1000 100 TJ = 150 o C 10 TJ = 25 o C V = 15V 20µs PULSE WIDTH GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com TJ = 150 o C 10 TJ = 25 o C V = 50V 5µs PULSE WIDTH CC 1 5 6 7 8 9 10 11 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH50UD 50 4.0 V = 15V 80 us PULSE WIDTH IC = 48 A VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 40 30 20 10 0 25 50 75 100 125 150 3.5 IC = 24 A 3.0 IC = 12 A 2.5 2.0 -60 -40 -20 T C , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 0.001 0.00001 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH50UD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 6000 5000 Cies 4000 3000 2000 C oes 1000 Cres 20 VGE , Gate-to-Emitter Voltage (V) 7000 0 1 10 12 8 4 0 100 0 Total Switching Losses (mJ) Total Switching Losses (mJ) Total Switching Losses ( mJ) 100 4.20 3.80 3.40 3.00 20 30 40 RG , Gate Resistance (Ohm) Ω Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 80 120 160 200 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 480V V GE = 15V TJ = 25 ° C 25A 4.60 I C = 24A 10 40 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0 VCC = 400V I C = 24A 16 VCE , Collector-to-Emitter Voltage (V) 5.00 50 5.0Ω RG = Ohm VGE = 15V VCC = 800V IC = 48 A 10 IC = 24 A IC = 12 A 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH50UD RG TJ VCC 12 VGE = Ohm 5.0 Ω = 150 °C = 480V = 15V 1000 I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 15 VGE = 20V T J = 125 oC 100 9 6 3 0 0 10 20 30 40 50 10 SAFE OPERATING AREA 1 I C , Collector-to-emitter Current (A) 1 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous Forward Current ( A ) 1000 100 T J = 150°C 10 T J = 125°C T J = 25°C 1 0.0 2.0 4.0 6.0 8.0 F orward V oltage D rop - V F M (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PH50UD 300 40 VR = 200 V T J = 125°C T J = 25°C VR = 200V T J = 125°C T J = 25°C 30 200 I R R M - (A ) trr - (ns) IF = 3 2 A I F = 1 6A I F = 8 .0 A I F = 32A 20 I F = 16 A 100 I F = 8 .0A 10 0 100 d i f /dt - (A /µ s) 0 100 1000 di f /dt - (A /µ s) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 1200 1000 VR = 200V T J = 125°C T J = 25°C VR = 200V T J = 125°C T J = 25°C 900 600 di(rec)M /dt - (A /µ s) Q R R - (nC ) I F = 32 A I F = 1 6A I F = 8.0A 100 I F = 32 A I F =1 6A I F = 8 .0 A 300 0 100 di f /dt - (A /µ s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 10 100 1000 di f /d t - (A /µ s) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PH50UD Same ty pe device as D .U.T. 90% 430µF 80% of Vce 10% Vge D .U .T. VC 90% td(off) 10% IC 5% tf tr Fig. 18a - Test Circuit for Measurement of t d(on) t=5µs Eon ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Eoff E ts = (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic trr id t Icddt tx ∫ +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 t4 V d id d t t3 ∫ Vd Ic dt t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PH50UD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 800V 4 X I C @25°C 0 - 800V 50V 600 0µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PH50UD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. Case Outline TO-247AC 3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 ) 1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B- -D- M D B M -A5 .5 0 (.2 17 ) 2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 2X 1 2 5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4 5.5 0 (.2 1 7) 4.5 0 (.1 7 7) LEAD 1234- 3 -C- * 1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 ) 2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X 4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 3X 1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M 3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 ) NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C . * A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 ) 3X C A S CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P) D im e n s io n s in M illim e te rs a n d (In c h e s ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 7/00 10 www.irf.com