PD -94347 GA200NS61U High Side Switch Chopper Module Ultra-FastTM Speed IGBT IGBT INT-A-PAK Features 3 • Generation 4 IGBT technology • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Very low conduction and switching losses • HEXFRED™ antiparallel diodes with ultra- soft recovery • Industry standard package • UL approved VCES = 600V 4 VCE(on) typ. = 1.8V 5 1 @VGE = 15V, IC = 200A 2 Benefits • Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Lower EMI, requires less snubbing Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C ICM ILM IFM VGE VISOL PD @ TC = 25°C PD @ TC = 85°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector Current Peak Switching Current Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range Max. Units 600 200 400 400 400 ±20 2500 625 325 -40 to +150 -40 to +125 V A V W °C Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS www.irf.com Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink Mounting Torque, Case-to-Terminal 1, 2 & 3 Weight of Module Typ. Max. — — 0.1 — — 200 0.20 0.35 — 4.0 3.0 — Units °C/W N. m g 1 11/06/01 GA200NS61U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 — — VGE = 0V, IC = 1mA — 1.8 2.2 VGE = 15V, IC = 200A — 1.9 — V VGE = 15V, IC = 200A, TJ = 125°C Gate Threshold Voltage 3.0 — 6.0 IC = 1.25mA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 1.25mA Forward Transconductance — 175 — S VCE = 25V, IC = 200A Collector-to-Emitter Leaking Current — — 1.0 mA VGE = 0V, VCE = 600V — — 10 VGE = 0V, VCE = 600V, TJ = 125°C Diode Forward Voltage - Maximum — 1.6 2.2 V IF = 200A, VGE = 0V — 1.7 — IF = 200A, VGE = 0V, TJ = 125°C Gate-to-Emitter Leakage Current — — 250 nA VGE = ±20V Dynamic Characteristics - TJ = 125°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres trr Irr Qrr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — Typ. 903 125 306 342 194 366 213 12 16 28 20068 1254 261 137 96 6731 5705 Max. Units Conditions 1355 VCC = 400V, VGE = 15V 188 nC IC = 135A 459 TJ = 25°C — RG1 = 27Ω, RG2 = 0Ω, — ns IC = 200A — VCC = 360V — VGE = ±15V — mJ Inductive load — 39 — VGE = 0V — pF VCC = 30V — ƒ = 1 MHz — ns IC = 200A — A RG1 = 27Ω — µC RG2 = 0Ω — A/µs VCC = 360V di/dt=1227A/µs www.irf.com GA200NS61U I C , Collector-to-Emitter Current (A) TJ = 125 °C 100 TJ = 25 °C 10 0.5 VGE = 15V 80µs PULSE WIDTH 1.0 1.5 2.0 2.5 I C, Collector-to-Emitter Current (A) 1000 1000 TJ = 25 °C 10 3.0 3.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 80 40 0 25 50 75 100 125 150 TC , Case Temperature ( °C) Fig. 3 - Maximum Collector Current vs. Case Temperature www.irf.com 7.0 8.0 9.0 Fig. 2 - Typical Transfer Characteristics 240 120 6.0 VGE , Gate-to-Emitter Voltage (V) Fig. 1 - Typical Output Characteristics 160 V CE = 25V 80µs PULSE WIDTH 1 5.0 VCE , Collector-to-Emitter Voltage (V) 200 TJ = 125 °C 100 VGE = 15V 80 us PULSE WIDTH IC = 400 A 2.0 IC = 200 A IC = 100 A 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4- Typical Collector-to-Emitter Voltage vs. Junction Temperature 3 GA200NS61U VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 30000 Cies 20000 Coes 10000 Cres 0 1 10 100 20 VGE , Gate-to-Emitter Voltage (V) 40000 VCC = 400V I C = 135A 16 12 8 4 0 0 VCE , Collector-to-Emitter Voltage (V) 200 400 600 800 1000 QG , Total Gate Charge (nC) Fig. 5 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Emitter Voltage Thermal Response (ZthJC ) 1 0.1 D = 0.50 PDM 0.20 0.10 0.05 0.02 0.01 0.01 0.0001 t 1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t / t 1 2 2. Peak TJ = PDMx Z thJC + TC 0.001 0.01 0.1 1 10 100 A 1000 t 1, Rectangular Pulse Duration (sec) Fig. 7 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com GA200NS61U 1000 VCC = 360V VGE = 15V TJ = 125 °C I C = 200A Total Switching Losses (mJ) Total Switching Losses (mJ) 40 35 30 25 20 0 10 20 30 40 100 IC = 400 A IC = 200 A IC = 100 A 10 1 -60 -40 -20 50 ( Ω) RG , Gate Resistance (Ohm) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 8 - Typical Switching Losses vs. Gate Resistance Fig. 9 - Typical Switching Losses vs. Junction Temperature 70 RG Ω;RG2 = 0 Ω R = Ohm G1=27 T J = 125 ° C 60 VCC = 360V VGE = 15V 600 IC, Collector-to-Emitter Current (A) Total Switching Losses (mJ) R Ω;RG2 = 0 Ω RG1 = Ohm G =27 VGE = 15V VCC = 360V 50 40 30 20 10 VGE = 20V TJ = 125° 500 VCE measured at terminal (Peak Voltage) 400 300 200 SAFE OPERATING AREA 100 0 0 0 100 200 300 I C , Collector-to-emitter Current (A) Fig. 10 - Typical Switching Losses vs. Collector-to-Emitter Current www.irf.com 400 0 100 200 300 400 500 600 700 VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Reverse Bias SOA 5 GA200NS61U 160 300 IF = 400A 120 IF = 200A IF = 400A 200 IF = 100A IRRM - (A) trr - (ns) IF = 200A IF = 100A 80 100 40 VR = 360V VR = 360V TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 0 0 500 1000 1500 2000 500 1000 dif / dt - (A / µs) Fig. 12 - Typical Reverse Recovery vs. dif/dt 1000 2000 Fig. 13 - Typical Recovery Current vs. dif/dt 12000 IF = 400A 10000 IF = 200A IF = 100A 8000 Qrr - (nC) Instantaneous Forward Current - I F ( A ) 1500 dif / dt - (A / µs) 100 T J = 125°C 6000 4000 T J = 25°C 2000 VR = 360V TJ = 125°C TJ = 25°C 0 10 0.0 0.5 1.0 1.5 2.0 2.5 Forward Voltage Drop - V F ( V ) Fig. 14 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 500 1000 1500 2000 dif / dt - (A / µs) Fig. 15 - Typical Stored Charge vs. dif/dt www.irf.com GA200NS61U L3 90% Vge Vcc Rg2 +Vge +Vg2 Rg1 -Vg2 Vce DUT Ic L1 90% Ic 10% Vce Ic L 5% Ic td(off) tf L2 Vcc=60% of BVces Ls= L1+L2+L3 Vge=15V Eoff = ∫ Vce Ic dt t1+5µS Vce ic dt t1 Fig. 16a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 16b - Test Waveforms for Circuit of Fig. 16a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Qrr = Ic ∫ trr id Icdtdt tx +Vg tx 10% Vcc 10% Irr Vcc DUT VOLTAGE AND CURRENT Vce Vpk Irr Vcc 10% Ic 90% Ic tr td(on) Ipk Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 16c - Test Waveforms for Circuit of Fig. 16a, Defining Eon, td(on), tr www.irf.com ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 16d - Test Waveforms for Circuit of Fig. 16a, Defining Erec, trr, Qrr, Irr 7 GA200NS61U Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 16e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL = 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 17. Clamped Inductive Load Test Circuit 8 Figure 18. Pulsed Collector Current Test Circuit www.irf.com GA200NS61U Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. See fig. 16 For screws M5x0.8 Pulse width 50µs; single shot. Case Outline — INT-A-PAK [ ] 94.70 3.728 93.70 3.689 80.30 79.70 [ 3.161 3.138 NOT ES : 1. ALL DIMENSIONS ARE S HOWN IN MILLIMETERS [INCHES ]. 2. CONTROLLING DIMENS ION: MILLIMETER. ] 2X 23.50 22.50 .886] [.925 4.50 3.50 6 7 11 10 34.70 33.70 .138] [.177 1.327] [1.366 17.50 16.50 1 2 5 4 8 9 3X M5 8 [.314] MAX. 42.00 41.00 1.614] [1.654 6.80 2X Ø 6.20 8.00 6.60 0.15 [.0059] CONVEX 3.587] [3.626 .244] [.267 4X F AS TON TAB (110) 2.8 x 0.5 [.110 x .020] .260] [.315 24.00 23.00 92.10 91.10 .650] [.689 3 30.50 29.00 .906] [.945 8.65 7.65 1.142 ] [1.201 2X 13.30 12.70 .301 ] [.341 32.00 31.00 .500] [.524 [ ] 1.260 1.220 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/01 www.irf.com 9