IRF GA250TS60U

PD - 50047D
GA250TS60U
"HALF-BRIDGE" IGBT INT-A-PAK
Ultra-FastTM Speed IGBT
Features
VCES = 600V
• Generation 4 IGBT technology
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• Very low conduction and switching losses
• HEXFRED™ antiparallel diodes with ultra- soft
recovery
• Industry standard package
• UL approved
VCE(on) typ. = 1.9V
@VGE = 15V, IC = 250A
Benefits
• Increased operating efficiency
• Direct mounting to heatsink
• Performance optimized for power conversion: UPS,
SMPS, Welding
• Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
ICM
ILM
IFM
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 85°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Pulsed Collector CurrentQ
Peak Switching CurrentR
Peak Diode Forward Current
Gate-to-Emitter Voltage
RMS Isolation Voltage, Any Terminal To Case, t = 1 min
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Max.
Units
600
250
500
500
500
±20
2500
780
400
-40 to +150
-40 to +125
V
A
V
W
°C
Thermal / Mechanical Characteristics
Parameter
RθJC
RθJC
RθCS
www.irf.com
Thermal Resistance, Junction-to-Case - IGBT
Thermal Resistance, Junction-to-Case - Diode
Thermal Resistance, Case-to-Sink - Module
Mounting Torque, Case-to-Heatsink S
Mounting Torque, Case-to-Terminal 1, 2 & 3 T
Weight of Module
Typ.
Max.
—
—
0.1
—
—
200
0.16
0.35
—
6.0
5.0
—
Units
°C/W
N. m
g
1
05/14/02
GA250TS60U
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Collector-to-Emitter Breakdown Voltage 600 —
—
VGE = 0V, IC = 1mA
Collector-to-Emitter Voltage
—
1.9 2.3
VGE = 15V, IC = 250A
—
2.0
—
V
VGE = 15V, IC = 250A, TJ = 125°C
Gate Threshold Voltage
3.0
—
6.0
IC = 1.5mA
VGE(th)
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage —
-11
— mV/°C VCE = VGE, IC = 1.5mA
gfe
Forward Transconductance T
—
204 —
S
VCE = 25V, IC = 250A
ICES
Collector-to-Emitter Leaking Current
—
—
1.0
mA
VGE = 0V, VCE = 600V
—
—
10
VGE = 0V, VCE = 600V, T J = 125°C
VFM
Diode Forward Voltage - Maximum
—
4.0
—
V
IF = 250A, V GE = 0V
—
4.1
—
IF = 250A, VGE = 0V, TJ = 125°C
IGES
Gate-to-Emitter Leakage Current
—
—
250
nA
VGE = ±20V
V(BR)CES
VCE(on)
Dynamic Characteristics - TJ = 125°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff (1)
Ets (1)
Cies
Coes
Cres
trr
Irr
Q rr
di(rec)M/dt
2
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
Turn-Off Switching Energy
Total Switching Energy
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Diode Peak ReverseCurrent
Diode Recovery Charge
Diode Peak Rate of Fall of Recovery
During tb
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
1050 1600
VCC = 400V
146 220
nC IC = 250A
525 790
TJ = 25°C
173 —
RG1 = 15Ω, RG2 = 0Ω,
242 —
ns
IC = 250A
1020 —
VCC = 360V
190 —
VGE = ±15V
10.5 —
mJ
20.0 —
30.5 45
23400 —
VGE = 0V
1460 —
pF
VCC = 30V
300 —
ƒ = 1 MHz
183 —
ns
IC = 250A
124 —
A
RG1 = 15Ω
11275 —
µC RG2 = 0Ω
1700 —
A/µs VCC = 360V
di/dt=1300A/µs
www.irf.com
GA250TS60U
200
F o r b o th :
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G a te d riv e a s s p e c ifie d
LOAD CURRENT (A)
160
P o w e r D is s ip a tio n = 170 W
S q u a re w a v e :
120
60 % of ra ted
vo ltag e
80
I
Id e a l d io d e s
40
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
I C , Collector-to-Emitter Current (A)
TJ = 25 oC
25 o C
TJ = 150
100
V
= 15V
20µs PULSE WIDTH
GE
10
1
2
3
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
4
I C , Collector-to-Emitter Current (A)
1000
25 oC
TJ = 150
100
TJ = 25 oC
10
V
= 50V
5µs PULSE WIDTH
V
CE = 25V
CC
80µs PULSE WIDTH
1
5
6
7
8
9
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
GA250TS60U
250
V
= 15V
80 us PULSE WIDTH
2.2
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
GE
200
150
100
50
0
25
50
75
100
125
150
2.0
I C = 250 A
1.8
I C = 125 A
1.6
1.4
I C =62.5 A
1.2
1.0
-60 -40 -20
TC , Case Temperature ( ° C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
T he rm a l R es pon se (Zth JC )
1
0.1
D = 0 .5 0
PDM
0 .2 0
t
0 .1 0
0 .0 5
0.02
0 .0 1
0.01
0.0001
Notes:
1. Duty factor D = t
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
0.001
0.01
1
t2
1 / t2
2. Peak TJ = PDM x Z thJC + TC
0.1
1
10
100
A
1000
t 1 , R e cta n g u la r P u ls e D u ra tio n (s e c )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA250TS60U
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
36000
Cies
30000
24000
18000
12000
Coes
6000
C
res
20
VGE , Gate-to-Emitter Voltage (V)
42000
0
1
10
12
8
4
0
100
0
Total Switching Losses (mJ)
Total Switching Losses (mJ)
100
35
30
25
20
20
30
RG , Gate Resistance (Ohm)
Ω
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
400
600
800
1000
1200
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 360V
V GE = 15V
TJ =125°
25 ° C
I
=
250A
40
C
10
200
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
VCC = 400V
I C = 250A
16
VCE , Collector-to-Emitter Voltage (V)
45
40
RG1
Ω;RG2 = 0 Ω
= 15Ohm
G =15
VGE = 15V
VCC = 360V
IC = 250 A
IC = 125 A
10
IC = 62.5 A
1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
GA250TS60U
RG1
Ω;RG2 = 0 Ω
= 15Ohm
G =15
IC , Collector-to-Emitter Current ( A )
Total Switching Losses (mJ)
700
70
T J = 125 ° C
60 VCC = 360V
VGE = 15V
50
40
30
20
10
600
V GGE E
= 20V
T J = 125°C
measured
VVCE
easured at
at terminal
term inal (Peak
(Peak Voltage)
Voltage)
C Em
500
SAFE OPERATING AREA
400
300
200
100
0
A
0
0
100
200
300
400
500
0
I C , Collector-to-emitter Current (A)
100
200
300
400
500
600
700
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Reverse Bias SOA
1000
20000
I F = 50 0A
I F = 12 5 A
15000
Q R R - (nC )
In sta n ta n e o u s F o rw a rd C u rre n t - I F (A )
I F = 25 0A
100
TJ = 2 5 °C
10000
TJ = 1 2 5 °C
5000
VR = 36 0V
T J = 1 25 °C
T J = 2 5°C
10
1.0
2.0
3.0
4.0
5.0
6.0
F o rw a rd V o lta g e D ro p - V FM (V )
Fig. 13 - Typical Forward Voltage Drop vs.
Instantaneous Forward Current
6
0
500
1000
1500
d i f /dt - (A /µs)
2000
Fig. 14 - Typical Stored Charge vs. dif/dt
www.irf.com
GA250TS60U
200
250
I F = 5 00A
I F = 500A
I F = 2 50A
I F = 125A
150
I = 250A
F
I = 12 5A
F
I RR M
trr - (n s)
- (A )
200
100
150
50
VR = 3 6 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
100
500
VR = 3 6 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
1000
1500
d i f /d t - (A /µ s )
2000
Fig. 15 - Typical Reverse Recovery vs. dif/dt
www.irf.com
0
500
1000
1500
2000
d i f /d t - (A /µ s)
Fig. 16 - Typical Recovery Current vs. dif/dt
7
GA250TS60U
90% Vge
+Vge
Vce
Ic
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
Eoff =
∫ Vce Ic dt
t1 + 5 µ S
V c e ic d t
t1
Fig. 17a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 17b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
∫
trr
id
t
Icddt
tx
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIcd t dt
E o n = VVce
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 17c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
VVd
d idIc
d t dt
t3
t4
Fig. 17d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
GA250TS60U
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 17e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µ F
100 V
Figure 18. Clamped Inductive Load Test Circuit
www.irf.com
Figure 19. Pulsed Collector Current
Test Circuit
9
GA250TS60U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17
S For screws M6.
T For screws M5.
U Pulse width 50µs; single shot.
Case Outline — INT-A-PAK
94.70
93.70
80.30
79.70
3.689]
[3.728
NOTES :
1. ALL DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ].
2. CONTROLLING DIMENS ION: MILLIMETER.
[ ]
3.161
3.138
2X 23.50
22.50
[.925
.886]
4.50
3.50
6
7
11
10
34.70
33.70
.138]
[.177
1.327]
[1.366
17.50
16.50
1
2
5
4
8
9
3X M5
8 [.314]
MAX.
42.00
41.00
1.614]
[1.654
6.80
2X Ø 6.20
8.00
6.60
0.15 [.0059] CONVEX
[3.626
3.587]
[.267
.244]
4X FAS TON TAB (110)
2.8 x 0.5 [.110 x .020]
.260]
[.315
24.00
23.00
92.10
91.10
.650]
[.689
3
30.50
29.00
.906]
[.945
8.65
7.65
1.142 ]
[1.201
2X 13.30
12.70
[.341
.301 ]
32.00
31.00
.500]
[.524
[ ]
1.260
1.220
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com