PD - 50047D GA250TS60U "HALF-BRIDGE" IGBT INT-A-PAK Ultra-FastTM Speed IGBT Features VCES = 600V • Generation 4 IGBT technology • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Very low conduction and switching losses • HEXFRED™ antiparallel diodes with ultra- soft recovery • Industry standard package • UL approved VCE(on) typ. = 1.9V @VGE = 15V, IC = 250A Benefits • Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Lower EMI, requires less snubbing Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C ICM ILM IFM VGE VISOL PD @ TC = 25°C PD @ TC = 85°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range Max. Units 600 250 500 500 500 ±20 2500 780 400 -40 to +150 -40 to +125 V A V W °C Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS www.irf.com Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3 T Weight of Module Typ. Max. — — 0.1 — — 200 0.16 0.35 — 6.0 5.0 — Units °C/W N. m g 1 05/14/02 GA250TS60U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 — — VGE = 0V, IC = 1mA Collector-to-Emitter Voltage — 1.9 2.3 VGE = 15V, IC = 250A — 2.0 — V VGE = 15V, IC = 250A, TJ = 125°C Gate Threshold Voltage 3.0 — 6.0 IC = 1.5mA VGE(th) ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 1.5mA gfe Forward Transconductance T — 204 — S VCE = 25V, IC = 250A ICES Collector-to-Emitter Leaking Current — — 1.0 mA VGE = 0V, VCE = 600V — — 10 VGE = 0V, VCE = 600V, T J = 125°C VFM Diode Forward Voltage - Maximum — 4.0 — V IF = 250A, V GE = 0V — 4.1 — IF = 250A, VGE = 0V, TJ = 125°C IGES Gate-to-Emitter Leakage Current — — 250 nA VGE = ±20V V(BR)CES VCE(on) Dynamic Characteristics - TJ = 125°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres trr Irr Q rr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 1050 1600 VCC = 400V 146 220 nC IC = 250A 525 790 TJ = 25°C 173 — RG1 = 15Ω, RG2 = 0Ω, 242 — ns IC = 250A 1020 — VCC = 360V 190 — VGE = ±15V 10.5 — mJ 20.0 — 30.5 45 23400 — VGE = 0V 1460 — pF VCC = 30V 300 — ƒ = 1 MHz 183 — ns IC = 250A 124 — A RG1 = 15Ω 11275 — µC RG2 = 0Ω 1700 — A/µs VCC = 360V di/dt=1300A/µs www.irf.com GA250TS60U 200 F o r b o th : D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d LOAD CURRENT (A) 160 P o w e r D is s ip a tio n = 170 W S q u a re w a v e : 120 60 % of ra ted vo ltag e 80 I Id e a l d io d e s 40 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 1000 I C , Collector-to-Emitter Current (A) TJ = 25 oC 25 o C TJ = 150 100 V = 15V 20µs PULSE WIDTH GE 10 1 2 3 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 4 I C , Collector-to-Emitter Current (A) 1000 25 oC TJ = 150 100 TJ = 25 oC 10 V = 50V 5µs PULSE WIDTH V CE = 25V CC 80µs PULSE WIDTH 1 5 6 7 8 9 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 GA250TS60U 250 V = 15V 80 us PULSE WIDTH 2.2 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 200 150 100 50 0 25 50 75 100 125 150 2.0 I C = 250 A 1.8 I C = 125 A 1.6 1.4 I C =62.5 A 1.2 1.0 -60 -40 -20 TC , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature T he rm a l R es pon se (Zth JC ) 1 0.1 D = 0 .5 0 PDM 0 .2 0 t 0 .1 0 0 .0 5 0.02 0 .0 1 0.01 0.0001 Notes: 1. Duty factor D = t S IN G L E P U L S E (T H E R M A L R E S P O N S E ) 0.001 0.01 1 t2 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.1 1 10 100 A 1000 t 1 , R e cta n g u la r P u ls e D u ra tio n (s e c ) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com GA250TS60U VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 36000 Cies 30000 24000 18000 12000 Coes 6000 C res 20 VGE , Gate-to-Emitter Voltage (V) 42000 0 1 10 12 8 4 0 100 0 Total Switching Losses (mJ) Total Switching Losses (mJ) 100 35 30 25 20 20 30 RG , Gate Resistance (Ohm) Ω Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 400 600 800 1000 1200 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 360V V GE = 15V TJ =125° 25 ° C I = 250A 40 C 10 200 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0 VCC = 400V I C = 250A 16 VCE , Collector-to-Emitter Voltage (V) 45 40 RG1 Ω;RG2 = 0 Ω = 15Ohm G =15 VGE = 15V VCC = 360V IC = 250 A IC = 125 A 10 IC = 62.5 A 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 GA250TS60U RG1 Ω;RG2 = 0 Ω = 15Ohm G =15 IC , Collector-to-Emitter Current ( A ) Total Switching Losses (mJ) 700 70 T J = 125 ° C 60 VCC = 360V VGE = 15V 50 40 30 20 10 600 V GGE E = 20V T J = 125°C measured VVCE easured at at terminal term inal (Peak (Peak Voltage) Voltage) C Em 500 SAFE OPERATING AREA 400 300 200 100 0 A 0 0 100 200 300 400 500 0 I C , Collector-to-emitter Current (A) 100 200 300 400 500 600 700 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Reverse Bias SOA 1000 20000 I F = 50 0A I F = 12 5 A 15000 Q R R - (nC ) In sta n ta n e o u s F o rw a rd C u rre n t - I F (A ) I F = 25 0A 100 TJ = 2 5 °C 10000 TJ = 1 2 5 °C 5000 VR = 36 0V T J = 1 25 °C T J = 2 5°C 10 1.0 2.0 3.0 4.0 5.0 6.0 F o rw a rd V o lta g e D ro p - V FM (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 0 500 1000 1500 d i f /dt - (A /µs) 2000 Fig. 14 - Typical Stored Charge vs. dif/dt www.irf.com GA250TS60U 200 250 I F = 5 00A I F = 500A I F = 2 50A I F = 125A 150 I = 250A F I = 12 5A F I RR M trr - (n s) - (A ) 200 100 150 50 VR = 3 6 0 V T J = 1 2 5 °C TJ = 2 5 ° C 100 500 VR = 3 6 0 V T J = 1 2 5 °C TJ = 2 5 ° C 1000 1500 d i f /d t - (A /µ s ) 2000 Fig. 15 - Typical Reverse Recovery vs. dif/dt www.irf.com 0 500 1000 1500 2000 d i f /d t - (A /µ s) Fig. 16 - Typical Recovery Current vs. dif/dt 7 GA250TS60U 90% Vge +Vge Vce Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = ∫ Vce Ic dt t1 + 5 µ S V c e ic d t t1 Fig. 17a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 17b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Icddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 17c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVd d idIc d t dt t3 t4 Fig. 17d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com GA250TS60U V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 17e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 18. Clamped Inductive Load Test Circuit www.irf.com Figure 19. Pulsed Collector Current Test Circuit 9 GA250TS60U Notes: Q Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. R See fig. 17 S For screws M6. T For screws M5. U Pulse width 50µs; single shot. Case Outline — INT-A-PAK 94.70 93.70 80.30 79.70 3.689] [3.728 NOTES : 1. ALL DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ]. 2. CONTROLLING DIMENS ION: MILLIMETER. [ ] 3.161 3.138 2X 23.50 22.50 [.925 .886] 4.50 3.50 6 7 11 10 34.70 33.70 .138] [.177 1.327] [1.366 17.50 16.50 1 2 5 4 8 9 3X M5 8 [.314] MAX. 42.00 41.00 1.614] [1.654 6.80 2X Ø 6.20 8.00 6.60 0.15 [.0059] CONVEX [3.626 3.587] [.267 .244] 4X FAS TON TAB (110) 2.8 x 0.5 [.110 x .020] .260] [.315 24.00 23.00 92.10 91.10 .650] [.689 3 30.50 29.00 .906] [.945 8.65 7.65 1.142 ] [1.201 2X 13.30 12.70 [.341 .301 ] 32.00 31.00 .500] [.524 [ ] 1.260 1.220 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02 10 www.irf.com