IRF GA500TD60U

PD - 50048D
GA500TD60U
"HALF-BRIDGE" IGBT DUAL INT-A-PAK
Ultra-FastTM Speed IGBT
Features
• Generation 4 IGBT technology
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• Very low conduction and switching losses
• HEXFRED™ antiparallel diodes with ultra- soft
recovery
• Industry standard package
• UL approved
VCES = 600V
VCE(on) typ. = 1.9V
@VGE = 15V, IC = 500A
Benefits
• Increased operating efficiency
• Direct mounting to heatsink
• Performance optimized for power conversion: UPS,
SMPS, Welding
• Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
ICM
ILM
IFM
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 85°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Pulsed Collector CurrentQ
Peak Switching CurrentR
Peak Diode Forward Current
Gate-to-Emitter Voltage
RMS Isolation Voltage, Any Terminal To Case, t = 1 min
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Max.
Units
600
500
1000
1000
500
±20
2500
1550
800
-40 to +150
-40 to +125
V
A
V
W
°C
Thermal / Mechanical Characteristics
Parameter
RθJC
RθJC
RθCS
www.irf.com
Thermal Resistance, Junction-to-Case - IGBT
Thermal Resistance, Junction-to-Case - Diode
Thermal Resistance, Case-to-Sink - Module
Mounting Torque, Case-to-Heatsink S
Mounting Torque, Case-to-Terminal 1, 2 & 3 S
Weight of Module
Typ.
Max.
—
—
0.1
—
—
400
0.08
0.20
—
6.0
5.0
—
Units
°C/W
N. m
g
1
05/15/02
GA500TD60U
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Collector-to-Emitter Breakdown Voltage
Collector-to-Emitter Voltage
Min. Typ. Max. Units
Conditions
600
—
—
VGE = 0V, IC = 1mA
—
1.9 2.4
VGE = 15V, IC = 500A
—
2.0
—
V
VGE = 15V, IC = 500A, TJ = 125°C
Gate Threshold Voltage
3.0
—
6.0
IC = 3.0mA
Temperature Coeff. of Threshold Voltage —
-11
— mV/°C VCE = VGE, IC = 3.0mA
Forward Transconductance T
—
244 —
S
VCE = 25V, I C = 500A
Collector-to-Emitter Leaking Current
—
—
2.0
mA
VGE = 0V, VCE = 600V
—
—
20
VGE = 0V, VCE = 600V, TJ = 125°C
Diode Forward Voltage - Maximum
—
4.0
—
V
IF = 500A, VGE = 0V
—
4.1
—
IF = 500A, VGE = 0V, TJ = 125°C
Gate-to-Emitter Leakage Current
—
— 250
nA
VGE = ±20V
Dynamic Characteristics - TJ = 125°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
Cies
Coes
Cres
trr
Irr
Qrr
di(rec)M/dt
2
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
Turn-Off Switching Energy
Total Switching Energy
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Diode Peak ReverseCurrent
Diode Recovery Charge
Diode Peak Rate of Fall of Recovery
During tb
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
2100
292
1050
1900
430
800
190
41
56
97
46800
2920
600
246
144
17655
1386
Max. Units
Conditions
3200
VCC = 400V
440
nC
IC = 500A
1580
TJ = 25°C
—
RG1 = 15Ω, RG2 = 0Ω,
—
ns
IC = 500A
—
VCC = 360V
—
VGE = ±15V
—
mJ See Fig.17 through Fig.21
—
110
—
VGE = 0V
—
pF
VCC = 30V
—
ƒ = 1 MHz
—
ns
IC = 500A
—
A
RG1 = 15Ω
—
µC RG2 = 0Ω
—
A/µs VCC = 360V
di/dt=1300A/µs
www.irf.com
GA500TD60U
250
FSquare
o r b o thwave:
:
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G
a te=d60%
riv e aRated
s s p e c ifie d
VCE
LOAD CURRENT (A)
200
P o w e r D is s ip a tio n = 270 W
150
100
50
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
25 o C
TJ = 150
TJ = 25 o C
100
V
= 15V
20µs PULSE WIDTH
GE
80µs
10
1.0
1.5
2.0
2.5
3.0
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
1000
1000
TJ = 150
25 oC
100
TJ = 25 oC
V
= 50V
5µs PULSE WIDTH
CC
CE
80µs
10
5
6
7
8
9
25V
10
11
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
GA500TD60U
600
2.5
V
= 15V
80 us PULSE WIDTH
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
GE
500
400
300
200
100
0
25
50
75
100
125
150
IC ==500
500A
IC
A
2.0
IC = 250 A
1.5
IC = 125 A
1.0
-60 -40 -20
TC , Case Temperature ( ° C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
T he rm a l R es pon se (Zth JC )
0.1
D = 0 .5 0
0.20
0.01
0.10
PDM
t
0.05
0.01
0.0 2
0.001
0.0001
0.001
Notes:
1. Duty factor D = t
S IN G LE P U LS E
(TH E RM AL R E SP O NS E )
0.01
1
t2
1 / t2
2. Peak TJ = PDM x Z thJC + TC
0.1
1
10
100
A
1000
t 1 , R ecta ngu la r Pulse D u ration (se c)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA500TD60U
80000
C, Capacitance (pF)
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
60000
C
oes
40000
C
res
20000
20
VGE , Gate-to-Emitter Voltage (V)
100000
0
16
12
8
4
10
100
0
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
1000
160
140
120
100
80
20
30
40
( Ω)
RG , Gate Resistance (Ohm)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
800
1200
1600
2000
2400
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 360V
V GE = 15V
TJ = 125 ° C
180
I C = 500A
250A
10
400
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
VCC = 400V
I C = 500A
0
1
200
50
RG1
Ω;RG2 = 0 Ω
= Ohm
G =15
VGE = 15V
VCC = 360V
ICC =
= 500A
I
500 A
100
IC = 250 A
IC = 125 A
10
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
GA500TD60U
Ω;RG2 = 0
RG
= Ohm
G1 =15
T J = 125 ° C
VCC = 360V
200 VGE = 15V
1400
Ω
IC , Collector-to-Emitter Current ( A )
Total Switching Losses (mJ)
250
150
100
50
1200
1000
200
400
600
800
SAFE OPERATING AREA
800
600
400
200
0
0
V G E = 20V
T J = 125°C
V C E m easured at term inal (Peak V oltage)
A
0
1000
0
I C , Collector-to-emitter Current (A)
100
200
300
400
500
600
700
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Reverse Bias SOA
1000
30000
IF = 5 0 0 A
IF = 250A
20000
QRR - ( nC)
Instantaneous Forward Current - IF ( A )
IF = 1000 A
100
TJ = 1 25°C
10000
TJ = 25°C
VR = 3 6 0 V
T J = 1 2 5 °C
T J = 2 5 °C
10
0.0
2.0
4.0
6.0
F o rw a rd V o lta g e D ro p - V FM (V )
Fig. 13 - Typical Forward Voltage Drop vs.
Instantaneous Forward Current
6
0
500
1000
1500
2000
dif/dt - (A/µs)
Fig. 14 - Typical Stored Charge vs. dif/dt
www.irf.com
GA500TD60U
250
400
I F = 1 00 0A
I F = 5 00 A
I F = 10 00 A
I F = 50 0A
I F = 2 50 A
IRRM - ( A )
trr - ( ns )
200
I F = 25 0A
300
200
150
100
100
50
VR = 3 6 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 3 6 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
0
500
1000
1500
2000
dif/dt - (A/µs)
Fig. 15 - Typical Reverse Recovery vs. dif/dt
www.irf.com
0
500
1000
1500
2000
dif/dt - (A/µs)
Fig. 16 - Typical Recovery Current vs. dif/dt
7
GA500TD60U
90% Vge
+Vge
Vce
Ic
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
Eoff =
∫ Vce Ic dt
t1 + 5 µ S
V c e ic d t
t1
Fig. 17 - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
∫
trr
id
t
Icddt
tx
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIcd t dt
E o n = VVce
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
8
∫
t4
VVd
d idIc
d t dt
t3
t4
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
www.irf.com
GA500TD60U
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µ F
100 V
Figure 22. Clamped Inductive Load Test Circuit
www.irf.com
Figure 23. Pulsed Collector Current
Test Circuit
9
GA500TD60U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17
S For screws M6.
T Pulse width 80µs; single shot.
Case Outline — DUAL INT-A-PAK
NOTES :
[ ]
93.30 3.673
92.70 [3.650]
107.30 4.224
106.30 4.185
3X M6
8 [.314]
MAX.
1. ALL DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES].
2. CONTROLLING DIMENS ION: MILLIMETER.
28.60
2X 27.40
1.079]
[1.126
4X 6.60
5.40
6
7
11
10
48.30
47.70
1.878]
[1.902
8
9
.213]
[.260
2
1
3
5
4
2X 15.59
14.39
6.80
4X Ø 6.20
.244]
[.267
48.50
47.50
1.870]
[1.909
8.00
6.60
.567]
[.614
4X FAS TON TAB (110)
2.8 x 0.5 [.110 x .020]
.260]
[.315
31.00
29.60
5.50
4.50
.177]
[.217
24.00
23.00
1.165]
[1.220
.906]
[.945
2.303]
[2.343
62.70 2.468
61.70 [2.429]
59.50
58.50
0.15 [.0059] CONVEX
104.50
103.50
4.075]
[4.114
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com