PD - 50048D GA500TD60U "HALF-BRIDGE" IGBT DUAL INT-A-PAK Ultra-FastTM Speed IGBT Features • Generation 4 IGBT technology • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Very low conduction and switching losses • HEXFRED™ antiparallel diodes with ultra- soft recovery • Industry standard package • UL approved VCES = 600V VCE(on) typ. = 1.9V @VGE = 15V, IC = 500A Benefits • Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Lower EMI, requires less snubbing Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C ICM ILM IFM VGE VISOL PD @ TC = 25°C PD @ TC = 85°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range Max. Units 600 500 1000 1000 500 ±20 2500 1550 800 -40 to +150 -40 to +125 V A V W °C Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS www.irf.com Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3 S Weight of Module Typ. Max. — — 0.1 — — 400 0.08 0.20 — 6.0 5.0 — Units °C/W N. m g 1 05/15/02 GA500TD60U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 — — VGE = 0V, IC = 1mA — 1.9 2.4 VGE = 15V, IC = 500A — 2.0 — V VGE = 15V, IC = 500A, TJ = 125°C Gate Threshold Voltage 3.0 — 6.0 IC = 3.0mA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 3.0mA Forward Transconductance T — 244 — S VCE = 25V, I C = 500A Collector-to-Emitter Leaking Current — — 2.0 mA VGE = 0V, VCE = 600V — — 20 VGE = 0V, VCE = 600V, TJ = 125°C Diode Forward Voltage - Maximum — 4.0 — V IF = 500A, VGE = 0V — 4.1 — IF = 500A, VGE = 0V, TJ = 125°C Gate-to-Emitter Leakage Current — — 250 nA VGE = ±20V Dynamic Characteristics - TJ = 125°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres trr Irr Qrr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — Typ. 2100 292 1050 1900 430 800 190 41 56 97 46800 2920 600 246 144 17655 1386 Max. Units Conditions 3200 VCC = 400V 440 nC IC = 500A 1580 TJ = 25°C — RG1 = 15Ω, RG2 = 0Ω, — ns IC = 500A — VCC = 360V — VGE = ±15V — mJ See Fig.17 through Fig.21 — 110 — VGE = 0V — pF VCC = 30V — ƒ = 1 MHz — ns IC = 500A — A RG1 = 15Ω — µC RG2 = 0Ω — A/µs VCC = 360V di/dt=1300A/µs www.irf.com GA500TD60U 250 FSquare o r b o thwave: : D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te=d60% riv e aRated s s p e c ifie d VCE LOAD CURRENT (A) 200 P o w e r D is s ip a tio n = 270 W 150 100 50 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C , Collector-to-Emitter Current (A) 25 o C TJ = 150 TJ = 25 o C 100 V = 15V 20µs PULSE WIDTH GE 80µs 10 1.0 1.5 2.0 2.5 3.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) 1000 1000 TJ = 150 25 oC 100 TJ = 25 oC V = 50V 5µs PULSE WIDTH CC CE 80µs 10 5 6 7 8 9 25V 10 11 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 GA500TD60U 600 2.5 V = 15V 80 us PULSE WIDTH VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 500 400 300 200 100 0 25 50 75 100 125 150 IC ==500 500A IC A 2.0 IC = 250 A 1.5 IC = 125 A 1.0 -60 -40 -20 TC , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature T he rm a l R es pon se (Zth JC ) 0.1 D = 0 .5 0 0.20 0.01 0.10 PDM t 0.05 0.01 0.0 2 0.001 0.0001 0.001 Notes: 1. Duty factor D = t S IN G LE P U LS E (TH E RM AL R E SP O NS E ) 0.01 1 t2 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.1 1 10 100 A 1000 t 1 , R ecta ngu la r Pulse D u ration (se c) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com GA500TD60U 80000 C, Capacitance (pF) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 60000 C oes 40000 C res 20000 20 VGE , Gate-to-Emitter Voltage (V) 100000 0 16 12 8 4 10 100 0 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 1000 160 140 120 100 80 20 30 40 ( Ω) RG , Gate Resistance (Ohm) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 800 1200 1600 2000 2400 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 360V V GE = 15V TJ = 125 ° C 180 I C = 500A 250A 10 400 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0 VCC = 400V I C = 500A 0 1 200 50 RG1 Ω;RG2 = 0 Ω = Ohm G =15 VGE = 15V VCC = 360V ICC = = 500A I 500 A 100 IC = 250 A IC = 125 A 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 GA500TD60U Ω;RG2 = 0 RG = Ohm G1 =15 T J = 125 ° C VCC = 360V 200 VGE = 15V 1400 Ω IC , Collector-to-Emitter Current ( A ) Total Switching Losses (mJ) 250 150 100 50 1200 1000 200 400 600 800 SAFE OPERATING AREA 800 600 400 200 0 0 V G E = 20V T J = 125°C V C E m easured at term inal (Peak V oltage) A 0 1000 0 I C , Collector-to-emitter Current (A) 100 200 300 400 500 600 700 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Reverse Bias SOA 1000 30000 IF = 5 0 0 A IF = 250A 20000 QRR - ( nC) Instantaneous Forward Current - IF ( A ) IF = 1000 A 100 TJ = 1 25°C 10000 TJ = 25°C VR = 3 6 0 V T J = 1 2 5 °C T J = 2 5 °C 10 0.0 2.0 4.0 6.0 F o rw a rd V o lta g e D ro p - V FM (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 0 500 1000 1500 2000 dif/dt - (A/µs) Fig. 14 - Typical Stored Charge vs. dif/dt www.irf.com GA500TD60U 250 400 I F = 1 00 0A I F = 5 00 A I F = 10 00 A I F = 50 0A I F = 2 50 A IRRM - ( A ) trr - ( ns ) 200 I F = 25 0A 300 200 150 100 100 50 VR = 3 6 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 3 6 0 V T J = 1 2 5 °C TJ = 2 5 ° C 0 500 1000 1500 2000 dif/dt - (A/µs) Fig. 15 - Typical Reverse Recovery vs. dif/dt www.irf.com 0 500 1000 1500 2000 dif/dt - (A/µs) Fig. 16 - Typical Recovery Current vs. dif/dt 7 GA500TD60U 90% Vge +Vge Vce Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = ∫ Vce Ic dt t1 + 5 µ S V c e ic d t t1 Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Icddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 19 - Test Waveforms for Circuit of Fig. 17, Defining Eon, td(on), tr 8 ∫ t4 VVd d idIc d t dt t3 t4 Fig. 20 - Test Waveforms for Circuit of Fig. 17, Defining Erec, trr, Qrr, Irr www.irf.com GA500TD60U V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 21. Macro Waveforms for Figure 17's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 22. Clamped Inductive Load Test Circuit www.irf.com Figure 23. Pulsed Collector Current Test Circuit 9 GA500TD60U Notes: Q Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. R See fig. 17 S For screws M6. T Pulse width 80µs; single shot. Case Outline — DUAL INT-A-PAK NOTES : [ ] 93.30 3.673 92.70 [3.650] 107.30 4.224 106.30 4.185 3X M6 8 [.314] MAX. 1. ALL DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES]. 2. CONTROLLING DIMENS ION: MILLIMETER. 28.60 2X 27.40 1.079] [1.126 4X 6.60 5.40 6 7 11 10 48.30 47.70 1.878] [1.902 8 9 .213] [.260 2 1 3 5 4 2X 15.59 14.39 6.80 4X Ø 6.20 .244] [.267 48.50 47.50 1.870] [1.909 8.00 6.60 .567] [.614 4X FAS TON TAB (110) 2.8 x 0.5 [.110 x .020] .260] [.315 31.00 29.60 5.50 4.50 .177] [.217 24.00 23.00 1.165] [1.220 .906] [.945 2.303] [2.343 62.70 2.468 61.70 [2.429] 59.50 58.50 0.15 [.0059] CONVEX 104.50 103.50 4.075] [4.114 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02 10 www.irf.com