PD - 94290 GA100NA60U INSULATED GATE BIPOLAR TRANSISTOR Ultra-FastTM Speed IGBT Features 3 • UltraFastTM: Optimized for minimum saturation voltage and operating frequencies up to 40 kHz in hard switching, > 200 kHz in resonant mode • Very low conduction and switching losses • Fully isolated package (2,500 Volt AC/RMS) • Very low internal inductance (≤ 5 nH typ.) • Industry standard outline VCES = 600V 2 VCE(on) typ. = 1.49V 1 @VGE = 15V, IC = 50A 4 Benefits • Designed for increased operating efficiency in power conversion: PFC, UPS, SMPS, Welding, Induction heating • Lower overall losses available at frequencies ≥ 20kHz • Easy to assemble and parallel • Direct mounting to heatsink • Lower EMI, requires less snubbing • Plug-in compatible with other SOT-227 packages SOT-227 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal to Case, t=1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Storage Temperature Range Mounting Torque, 6-32 or M3 Screw Max. Units 600 100 50 200 200 ± 20 2500 250 100 -55 to + 150 -55 to + 150 12 lbf •in(1.3N•m) V A V W °C Thermal Resistance Parameter RθJC RθJC RθCS Wt www.irf.com Junction-to-Case, IGBT Thermal Resistance, Junction-to-Case , Diode Case-to-Sink, Flat, Greased Surface Weight of Module Typ. Max. ––– ––– 0.05 30 0.50 1.0 ––– ––– Units °C/W gm 1 7/27/01 GA100NA60U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage➂ Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance ➃ Zero Gate Voltage Collector Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current V(BR)CES ∆V(BR)CES/∆TJ Min. 600 — — — — 3.0 — 34 — — — — — Typ. Max. Units — — V 0.36 — V/°C 1.49 2.1 1.80 — V 1.47 — — 6.0 -7.6 — mV/°C 52 — S — 250 µA — 1.3 mA 1.3 1.6 V 1.16 1.3 — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 50A VGE = 15V IC = 100A See Fig. 1, 4 IC = 50A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 50A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 50A See Fig. 12 IC = 50A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Min. — — — ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– — — — — — — — — — — — — Typ. 430 48 130 57 80 240 120 0.41 2.51 2.92 57 80 380 170 4.78 2.0 7400 730 90 90 120 7.3 11 360 780 370 220 Max. Units Conditions 640 IC = 50A 72 nC VCC = 400V See Fig. 7 190 VGE = 15V ––– TJ = 25°C ––– ns IC = 60A, VCC = 480V — VGE = 15V, RG = 5.0Ω — Energy losses include "tail" and ––– diode reverse recovery. ––– mJ 4.4 ––– TJ = 150°C, ––– ns IC = 60A, VCC = 480V ––– VGE = 15V, RG = 5.0Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. — nH — VGE = 0V — pF VCC = 30V See Fig. 6 — ƒ = 1.0MHz 140 ns TJ = 25°C See Fig. 180 TJ = 125°C 13 IF = 50A 11 A TJ = 25°C See Fig. 16 TJ = 125°C 14 VR = 200V 550 nC T J = 25°C See Fig. 1200 TJ = 125°C 15 di/dt = 200Aµs — A/µs TJ = 25°C See Fig. — TJ = 125°C 16 Details of note through are on the page 7 2 www.irf.com GA100NA60U 1000 TJ = 25 °C TJ = 150 °C 100 I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 1000 TJ = 150 °C 100 10 1 0.0 V GE = 15V 20µs PULSE WIDTH 1.0 2.0 3.0 4.0 TJ = 25 °C 10 5.0 VCE , Collector-to-Emitter Voltage (V) VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 2.5 80 60 40 20 0 75 100 125 150 TC , Case Temperature ( ° C) Fig. 3 - Maximum Collector Current vs. Case Temperature www.irf.com 7.0 8.0 9.0 Fig. 2 - Typical Transfer Characteristics 100 50 6.0 VGE , Gate-to-Emitter Voltage (V) Fig. 1 - Typical Output Characteristics 25 V CC = 50V 5µs PULSE WIDTH 1 5.0 VGE = 15V 80 us PULSE WIDTH 2.0 IC = 100 A IC = 50 A 1.5 IC = 25 A 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Typical Collector-to-Emitter Voltage vs. Junction Temperature 3 GA100NA60U Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 P DM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 14000 VGE , Gate-to-Emitter Voltage (V) 12000 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 10000 Cies 8000 6000 Coes 4000 2000 Cres 0 16 12 8 4 0 1 10 100 VCE , Collector-to-Emitter Voltage (V) Fig. 6 - Typical Capacitance vs. Collector-to-Emitter Voltage 4 VCC = 400V I C = 50A 0 100 200 300 400 500 QG , Total Gate Charge (nC) Fig. 7 - Typical Gate Charge vs. Gate-to-Emitter Voltage www.irf.com GA100NA60U 100 10 RG = 5.0Ω VGE = 15V VCC = 480V TJ = 25°C I C = 60A 8 Total Switching Losses (mJ) Total Switching Losses (mJ) VCC = 480V VGE = 15V 6 4 IC = 120A 10 IC = 60A IC = 30A 1 0.1 2 0 10 20 30 40 -60 -40 -20 50 R G, Gate Resistance ( Ω ) Fig. 8 - Typical Switching Losses vs. Gate Resistance 1000 RG = 5.0Ω TJ = 150°C VGE = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 20 40 60 80 100 120 140 160 Fig. 9 - Typical Switching Losses vs. Junction Temperature 12 10 0 T J, Junction Temperature (°C) VCC = 480V 8 6 4 2 VGE = 20V T J = 125 oC 100 10 SAFE OPERATING AREA 0 1 20 40 60 80 IC , Collector Current (A) Fig. 10 - Typical Switching Losses vs. Collector-to-Emitter Current www.irf.com 100 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Turn-Off SOA 5 GA100NA60U Instantaneous forward current - IF (A) 1000 100 T J = 1 5 0 °C T J = 1 2 5 °C TJ = 25 °C 10 1 0.0 0.4 0.8 1.2 1.6 2.0 F orwa rd V oltag e D ro p - V F M (V ) Fig. 12 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 100 150 I F = 100A I F = 50A I F = 25A I F = 100A 120 I F = 50A I F = 25A Irr- ( A) trr- (nC) 90 10 60 30 V R = 2 00 V T J = 1 2 5°C T J = 2 5 °C 0 100 VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C di f /dt - (A /µ s) 1000 Fig. 13 - Typical Reverse Recovery vs. dif/dt 6 1 100 1000 di f /dt - (A/µ s) Fig. 14 - Typical Recovery Current vs. dif/dt www.irf.com GA100NA60U 10000 4000 VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C V R = 2 00 V T J = 1 2 5°C T J = 2 5 °C I F = 100A IF = 100A I F = 50A I F = 50A di (rec) M/dt- (A /µs) 3000 Qrr- (nC) IF = 25A 2000 I F = 25A 1000 1000 0 100 di f /dt - (A /µ s) 1000 Fig. 15 - Typical Stored Charge vs. dif/dt 100 100 1000 di f /dt - (A/µ s) Fig. 16 - Typical di(rec)M/dt vs. dif/dt Notes: ➀ Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) ➁ VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0Ω (figure 19) ➂ Pulse width ≤ 80µs; duty factor ≤ 0.1%. ➃ Pulse width 5.0µs, single shot. www.irf.com 7 GA100NA60U Same ty pe device as D .U.T. 430µF 80% of Vce 90% D .U .T. 10% Vge VC 90% td(off) 10% IC 5% Fig. 17a - Test Circuit for Measurement of tf tr ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t d(on) t=5µs E on E off E ts = (Eon +Eoff ) Fig. 17b - Test Waveforms for Circuit of Fig. 17a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Icddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 17c - Test Waveforms for Circuit of Fig. 17a, Defining Eon, td(on), tr 8 ∫ Vc Ic dt t4 V d id d t t3 t4 Fig. 17d - Test Waveforms for Circuit of Fig. 17a, Defining Erec, trr, Qrr, Irr www.irf.com GA100NA60U V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 17e. Macro Waveforms for Figure 17a's Test Circuit D.U.T. L 1000V Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 18. Clamped Inductive Load Test Circuit www.irf.com Figure 19. Pulsed Collector Current Test Circuit 9 GA100NA60U SOT-227 Package Details Dimensions are shown in millimeters ( inches ) 3 8 .3 0 ( 1.5 08 ) 3 7 .8 0 ( 1.4 88 ) 4 .4 0 (.17 3 ) 4 .2 0 (.16 5 ) C HAM FER 2 .0 0 ( .0 7 9 ) X 45 7 L E A D A S S IG M E N T S E -A 4 A S C 3 G E IG B T 2 5 .7 0 ( 1.0 12 ) 2 5 .2 0 ( .9 9 2 ) 6.2 5 ( .24 6 ) 1 2.50 ( .4 92 ) A1 -B 1 C D 4 1 R FULL 7 .50 ( .29 5 ) 1 5.00 ( .5 90 ) 2 S G G E,K HEXFET IGBT K2 3 4 1 2 3 2 K1 A2 H E XF R E D 3 0 .2 0 ( 1 .1 89 ) 2 9 .8 0 ( 1 .1 73 ) 4X 2 .1 0 ( .0 82 ) 1 .9 0 ( .0 75 ) 8.10 ( .3 19 ) 7.70 ( .3 03 ) 0 .25 ( .01 0 ) M C A M B M 2 .10 ( .08 2 ) 1 .90 ( .07 5 ) 12 .3 0 ( .4 84 ) 11 .8 0 ( .4 64 ) -C 0.1 2 ( .00 5 ) Tube QUANTITIES PER TUBE IS 10 M4 SCREW AND WASHER INCLUDED Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.7/01 10 www.irf.com