PD - 50053B GA125TS120U "HALF-BRIDGE" IGBT INT-A-PAK Ultra-FastTM Speed IGBT Features • Generation 4 IGBT technology • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Very low conduction and switching losses • HEXFRED™ antiparallel diodes with ultra- soft recovery • Industry standard package • UL approved VCES = 1200V VCE(on) typ. = 2.2V @VGE = 15V, IC = 125A Benefits • Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Lower EMI, requires less snubbing Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C ICM ILM IFM VGE VISOL PD @ TC = 25°C PD @ TC = 85°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector Current ➀ Peak Switching Current ➁ Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range Max. Units 1200 125 250 250 250 ±20 2500 625 325 -40 to +150 -40 to +125 V A V W °C Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS www.irf.com Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink Mounting Torque, Case-to-Terminal 1, 2 & 3 ➂ Weight of Module Typ. Max. — — 0.1 — — 200 0.20 0.35 — 4.0 3.0 — Units °C/W N. m g 1 4/24/2000 GA125TS120U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 1200 — — VGE = 0V, IC = 1mA — 2.2 3.0 VGE = 15V, IC = 125A — 2.1 — V VGE = 15V, IC = 125A, TJ = 125°C Gate Threshold Voltage 3.0 — 6.0 VCE = 6.0V, IC = 1.5mA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = 6.0V, IC = 1.5mA Forward Transconductance ➃ — 170 — S VCE = 25V, IC = 125A Collector-to-Emitter Leaking Current — — 1.0 mA VGE = 0V, VCE = 1200V — — 10 VGE = 0V, VCE = 1200V, TJ = 125°C Diode Forward Voltage - Maximum — 2.7 4.2 V IF = 125A, VGE = 0V — 2.6 — IF = 125A, VGE = 0V, TJ = 125°C Gate-to-Emitter Leakage Current — — 250 nA VGE = ±20V Dynamic Characteristics - TJ = 125°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres trr Irr Qrr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — Typ. 989 167 328 186 159 459 404 19 31 49 22258 989 192 181 126 11360 1875 Max. Units Conditions 1484 VCC = 400V 250 nC IC = 148A 492 TJ = 25°C — RG1 = 15Ω, RG2 = 0Ω, — ns IC = 125A — VCC = 720V — VGE = ±15V — mJ Inductor load — 75 — VGE = 0V — pF VCC = 30V — ƒ = 1 MHz — ns IC = 125A — A RG1 = 15Ω — nC RG2 = 0Ω — A/µs VCC = 720V di/dt =1448A/µs www.irf.com GA125TS120U 120 For both: D uty cy cle: 50% TJ = 125°C T s ink = 90°C G ate drive as specified LOAD CURRENT (A) 100 P ow e r Dis sip ation = 120 W 80 S q u a re w a v e : 60 60 % of ra ted vo ltag e I 40 Id e a l d io d e s 20 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C , Collector Current (A) TJ = 125 °C 100 TJ = 25 °C V GE = 15V 80µs PULSE WIDTH 10 1.0 1.5 2.0 2.5 3.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) 1000 1000 100 TJ = 125 °C TJ = 25 °C 10 1 4.0 V CE = 25V 80µs PULSE WIDTH 5.0 6.0 7.0 8.0 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 GA125TS120U 3.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 150 125 100 75 50 25 0 25 50 75 100 125 VGE = 15V 80 us PULSE WIDTH IC = 250 A IC = 125 A 2.0 IC =62.5 A 1.0 -60 -40 -20 150 TC , Case Temperature ( °C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature T he rm a l R es pon se (Zth JC ) 1 D = 0.50 0.1 PDM 0.20 0 .1 0 0 .0 5 0.02 0 .0 1 0.01 0.0001 t S IN G LE PU LS E (TH E R M AL RE SP O N SE ) Notes: 1. Duty factor D = t 1 t2 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 100 A 1000 t 1 , R ecta ngu la r Pulse D u ration (se c) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com GA125TS120U VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 30000 Cies 20000 Coes 10000 Cres 20 VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 40000 0 1 10 16 12 8 4 0 100 0 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 1000 70 60 50 40 10 20 30 40 ( Ω) RG , Gate Resistance (Ohm) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 400 600 800 1000 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 720V V GE = 15V TJ = 125 °C I C = 125A 0 200 Q G , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 80 VCC = 400V I C = 125A 50 RG1 Ω;RG2 = 0 Ω = Ohm G =15 VGE = 15V VCC = 720V IC = 250 A 100 IC = 125 A IC = 62.5 A 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 GA125TS120U 350 Ω V G E = 2 0V T J = 1 25 °C V CE m e a su re d a t te rm in a l ( P e a k V oltag e ) 300 -(A) Ω;RG2 = 0 RG = Ohm G1 =15 T J = 125 ° C VCC = 720V 100 VGE = 15V 250 Collector Current 80 60 40 S AFE O P E RA TIN G A R E A 200 150 100 IC, Total Switching Losses (mJ) 120 20 50 0 0 50 100 150 200 250 A 0 300 0 I C , Collector Current (A) 200 400 600 800 1000 1200 1400 VC E , C ollector-to -Em itter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Reverse Bias SOA 1000 VR = 7 2 0V TJ = 1 25 °C TJ = 2 5°C 16000 I F = 25 0A I F = 1 25 A I F = 6 2.5A QRR - ( nC) Instantaneous Forward Current - IF ( A ) 20000 T J = 125 °C 100 T J = 25°C 8000 4000 10 1.0 1.5 2.0 2.5 3.0 3.5 F o rw a rd V o lta g e D ro p - V F M (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 12000 0 500 1000 1500 2000 d i f /d t - (A /µ s) Fig. 14 - Typical Stored Charge vs. dif/dt www.irf.com GA125TS120U 250 300 VR = 7 2 0V TJ = 1 25 °C TJ = 2 5°C I F = 2 50 A I F = 1 25 A I F = 62 .5A 200 I F = 25 0A I F = 12 5A 200 trr - ( ns ) IRRM - ( A ) I F = 6 2.5A 150 100 100 50 VR = 72 0 V TJ = 12 5 °C TJ = 25 °C 0 500 1000 1500 2000 di f /dt - (A /µs) Fig. 15 - Typical Reverse Recovery vs. dif/dt www.irf.com 0 500 1000 1500 2000 di f /dt - (A /µs) Fig. 16 - Typical Recovery Current vs. dif/dt 7 GA125TS120U 90% Vge +Vge Vce Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = ∫ Vce Ic dt t1 + 5 µ S V c e ic d t t1 Fig. 17a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 17b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Icddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 17c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVd d idIc d t dt t3 t4 Fig. 17d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com GA125TS120U V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 17e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 600V 4 X IC @25°C 0 - 600V 50V 6000µ F 100 V Figure 18. Clamped Inductive Load Test Circuit www.irf.com Figure 19. Pulsed Collector Current Test Circuit 9 GA125TS120U Notes: ➀ Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ➁ See fig. 17 ➂ For screws M5x0.8 ➃ Pulse width 50µs; single shot. Case Outline — INT-A-PAK Dimensions are shown in millimeters (inches) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 4/00 10 www.irf.com