INFINEON BFP460

BFP460
NPN Silicon RF Transistor*
3
4
• For low voltage / low current applications
• Ideal for VCO modules and low noise amplifiers
• Low noise figure: 1.1 dB at 1.8 GHz
2
• Excellent ESD performance
• High fT of 22 GHz
1
VPS05605
* Short-term description
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
BFP460
Marking
Pin Configuration
ABs
1 = E 2 = C 3 = E 4=B -
Package
-
SOT343
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA > 0 °C
4.5
TA ≤ 0 °C
4.2
Collector-emitter voltage
VCES
15
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
1.5
Collector current
IC
50
Base current
IB
5
Total power dissipation1)2)
Ptot
200
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
mA
TS ≤ 100°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point 3)
RthJS
≤ 250
K/W
1P due to Maximum Ratings
tot
2T is measured on the collector lead at the soldering point to the pcb
S
3For calculation of R
thJA please refer to Application Note Thermal Resistance
1
Jun-14-2004
BFP460
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
4.5
5.8
-
V
ICBO
-
-
100
nA
IEBO
-
-
1
µA
hFE
90
120
160
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
IC = 1 mA, IB = 0
Collector-base cutoff current
VCB = 5 V, I E = 0
Emitter-base cutoff current
VEB = 0,5 V, IC = 0
DC current gain
-
IC = 20 mA, VCE = 3 V, pulse measured
2
Jun-14-2004
BFP460
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
16
22
-
Ccb
-
0.32
0.45
Cce
-
0.28
-
Ceb
-
0.55
-
Unit
GHz
IC = 30 mA, VCE = 3 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 3 V, f = 1 MHz, emitter grounded
Collector emitter capacitance
VCE = 3 V, f = 1 MHz, base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, collector grounded
Noise figure
dB
F
IC = 5 mA, VCE = 3 V, ZS = ZSopt ,
f = 1.8 GHz
-
1.1
-
-
1.35
-
G ms
-
17.5
-
dB
G ma
-
12.5
-
dB
IC = 5 mA, VCE = 3 V, ZS = ZSopt ,
f = 3 GHz
Power gain, maximum stable1)
IC = 20 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt, f = 1.8 GHz
Power gain, maximum available1)
IC = 20 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt , f = 3 GHz
|S21e|2
Transducer gain
dB
IC = 20 mA, VCE = 3 V, ZS = ZL = 50Ω,
f = 1,8 GHz
-
15
-
IC = 20 mA, VCE = 3 V, ZS = ZL = 50Ω ,
f = 3 GHz
-
10.5
-
IP 3
-
27.5
-
P-1dB
-
11.5
-
Third order intercept point at output 2)
dBm
VCE = 3 V, I C = 20 mA, f = 1.8 GHz
1dB Compression point at output
IC = 20 mA, VCE = 3 V, f = 1.8 GHz
1G
1/2
ma = |S21 / S12| (k-(k²-1) ), G ms = S 21 / S 12
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
3
Jun-14-2004
BFP460
Collector-base capacitance Ccb= ƒ(VCB)
Third order Intercept Point IP3=ƒ(IC)
f = 1MHz
(Output, ZS=ZL=50Ω)
VCE = parameter, f = 1800MHz -
0.7
33
dBm
pF
4V
29
3V
27
0.5
IP3
CCB
25
0.4
2V
23
21
19
0.3
17
15
0.2
13
1V
11
0.1
9
7
0
0
2
4
6
8
10
V
5
0
14
10
20
30
40
mA
VCB
55
IC
Transition frequency fT = ƒ(IC)
Power gain Gma, Gms , |S 21|2 = ƒ (f)
f = 1 GHz
VCE = 3 V, I C = 20 mA
VCE = parameter in V
24
50
3-4V
GHz
dB
2V
20
40
1V
35
16
G
fT
18
30
14
25
12
20
10
15
8
10
6
5
Gms
|S21|²
Gma
4
0
10
20
30
40
mA
0
0
60
IC
1
2
3
4
GHz
6
f
4
Jun-14-2004
BFP460
Power gain Gma, Gms = ƒ (I C)
Power gain Gma, Gms = ƒ (VCE)
VCE = 3V
IC = 20 mA
f = parameter in GHz
f = parameter in GHz
24
24
0.9
dB
0.9
dB
20
20
18
1.8
18
16
G
G
1.8
2.4
2.4
14
14
3
3
12
12
4
10
16
4
10
5
5
8
8
6
6
4
0
6
6
10
20
30
40
mA
4
0.5
60
IC
1
1.5
2
2.5
3
3.5
V
4.5
VCE
5
Jun-14-2004