BFP460 NPN Silicon RF Transistor* 3 4 • For low voltage / low current applications • Ideal for VCO modules and low noise amplifiers • Low noise figure: 1.1 dB at 1.8 GHz 2 • Excellent ESD performance • High fT of 22 GHz 1 VPS05605 * Short-term description ESD: Electrostatic discharge sensitive device, observe handling precaution! Type BFP460 Marking Pin Configuration ABs 1 = E 2 = C 3 = E 4=B - Package - SOT343 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO Value Unit V TA > 0 °C 4.5 TA ≤ 0 °C 4.2 Collector-emitter voltage VCES 15 Collector-base voltage VCBO 15 Emitter-base voltage VEBO 1.5 Collector current IC 50 Base current IB 5 Total power dissipation1)2) Ptot 200 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature T stg -65 ... 150 mA TS ≤ 100°C Thermal Resistance Parameter Symbol Value Unit Junction - soldering point 3) RthJS ≤ 250 K/W 1P due to Maximum Ratings tot 2T is measured on the collector lead at the soldering point to the pcb S 3For calculation of R thJA please refer to Application Note Thermal Resistance 1 Jun-14-2004 BFP460 Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. 4.5 5.8 - V ICBO - - 100 nA IEBO - - 1 µA hFE 90 120 160 DC Characteristics Collector-emitter breakdown voltage V(BR)CEO IC = 1 mA, IB = 0 Collector-base cutoff current VCB = 5 V, I E = 0 Emitter-base cutoff current VEB = 0,5 V, IC = 0 DC current gain - IC = 20 mA, VCE = 3 V, pulse measured 2 Jun-14-2004 BFP460 Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol Values min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT 16 22 - Ccb - 0.32 0.45 Cce - 0.28 - Ceb - 0.55 - Unit GHz IC = 30 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance pF VCB = 3 V, f = 1 MHz, emitter grounded Collector emitter capacitance VCE = 3 V, f = 1 MHz, base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, collector grounded Noise figure dB F IC = 5 mA, VCE = 3 V, ZS = ZSopt , f = 1.8 GHz - 1.1 - - 1.35 - G ms - 17.5 - dB G ma - 12.5 - dB IC = 5 mA, VCE = 3 V, ZS = ZSopt , f = 3 GHz Power gain, maximum stable1) IC = 20 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 1.8 GHz Power gain, maximum available1) IC = 20 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt , f = 3 GHz |S21e|2 Transducer gain dB IC = 20 mA, VCE = 3 V, ZS = ZL = 50Ω, f = 1,8 GHz - 15 - IC = 20 mA, VCE = 3 V, ZS = ZL = 50Ω , f = 3 GHz - 10.5 - IP 3 - 27.5 - P-1dB - 11.5 - Third order intercept point at output 2) dBm VCE = 3 V, I C = 20 mA, f = 1.8 GHz 1dB Compression point at output IC = 20 mA, VCE = 3 V, f = 1.8 GHz 1G 1/2 ma = |S21 / S12| (k-(k²-1) ), G ms = S 21 / S 12 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 3 Jun-14-2004 BFP460 Collector-base capacitance Ccb= ƒ(VCB) Third order Intercept Point IP3=ƒ(IC) f = 1MHz (Output, ZS=ZL=50Ω) VCE = parameter, f = 1800MHz - 0.7 33 dBm pF 4V 29 3V 27 0.5 IP3 CCB 25 0.4 2V 23 21 19 0.3 17 15 0.2 13 1V 11 0.1 9 7 0 0 2 4 6 8 10 V 5 0 14 10 20 30 40 mA VCB 55 IC Transition frequency fT = ƒ(IC) Power gain Gma, Gms , |S 21|2 = ƒ (f) f = 1 GHz VCE = 3 V, I C = 20 mA VCE = parameter in V 24 50 3-4V GHz dB 2V 20 40 1V 35 16 G fT 18 30 14 25 12 20 10 15 8 10 6 5 Gms |S21|² Gma 4 0 10 20 30 40 mA 0 0 60 IC 1 2 3 4 GHz 6 f 4 Jun-14-2004 BFP460 Power gain Gma, Gms = ƒ (I C) Power gain Gma, Gms = ƒ (VCE) VCE = 3V IC = 20 mA f = parameter in GHz f = parameter in GHz 24 24 0.9 dB 0.9 dB 20 20 18 1.8 18 16 G G 1.8 2.4 2.4 14 14 3 3 12 12 4 10 16 4 10 5 5 8 8 6 6 4 0 6 6 10 20 30 40 mA 4 0.5 60 IC 1 1.5 2 2.5 3 3.5 V 4.5 VCE 5 Jun-14-2004