PD - 95187 IRG4PH40UPbF Ultra Fast Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C • UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching, >200 kHz in resonant mode • New IGBT design provides tighter parameter distribution and higher efficiency than previous generations • Optimized for power conversion; SMPS, UPS and welding • Industry standard TO-247AC package • Lead-Free VCES = 1200V VCE(on) typ. = 2.43V G @VGE = 15V, IC = 21A E n-channel Benefits • Higher switching frequency capability than competitive IGBTs • Highest efficiency available • Much lower conduction losses than MOSFETs • More efficient than short circuit rated IGBTs TO-247AC Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy S Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 1200 41 21 82 82 ± 20 270 160 65 -55 to + 150 V A V mJ W °C 300 (0.063 in. (1.6mm) from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– 0.24 ––– 6 (0.21) 0.77 ––– 40 ––– Units °C/W g (oz) 1 04/26/04 IRG4PH40UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 1200 — — V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage T 18 — — V VGE = 0V, IC = 1.0A Temperature Coeff. of Breakdown Voltage — 0.43 — V/°C VGE = 0V, IC = 1.0mA — 2.43 3.1 IC = 21A VGE = 15V Collector-to-Emitter Saturation Voltage — 2.97 — IC = 41A See Fig.2, 5 V — 2.47 — IC = 21A , TJ = 150°C Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 250µA Forward Transconductance U 16 24 — S VCE = 100V, IC = 21A — — 250 VGE = 0V, VCE = 1200V Zero Gate Voltage Collector Current — — 2.0 µA VGE = 0V, VCE = 10V, TJ = 25°C — — 5000 VGE = 0V, VCE = 1200V, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 86 13 29 24 24 220 180 1.04 3.40 4.44 24 25 310 380 7.39 13 1800 120 18 Max. Units Conditions 130 IC = 21A 20 nC VCC = 400V See Fig. 8 44 VGE = 15V — — TJ = 25°C ns 330 IC = 21A, VCC = 960V 270 VGE = 15V, RG = 10Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 14 5.2 — TJ = 150°C, — IC = 21A, VCC = 960V ns — VGE = 15V, RG = 10Ω — Energy losses include "tail" — mJ See Fig. 11, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz Notes: Q Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) R VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 10Ω, (See fig. 13a) T Pulse width ≤ 80µs; duty factor ≤ 0.1%. U Pulse width 5.0µs, single shot. S Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4PH40UPbF 50 F o r b o th : T ria n g u la r w a ve : D uty c yc le: 50% T J = 125°C T s ink = 90°C G ate driv e as spec ified 40 I Load Current ( A ) P o w e r D is s ip a tio n = 3 5 W 30 C la m p vo l ta g e : 8 0 % o f ra te d S q u a re wave : 6 0 % o f ra te d vo l ta g e 20 I 10 Id e a l d io de s A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C, Collector-to-Emitter Current (A) TJ = 150 o C 10 TJ = 25 o C V = 15V 20µs PULSE WIDTH GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) 100 100 TJ = 150 o C 10 TJ = 25 oC V = 50V 5µs PULSE WIDTH CC 1 5 6 7 8 9 10 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH40UPbF 4.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 50 40 30 20 10 0 25 50 75 100 125 150 V = 15V 80 us PULSE WIDTH GE I C = 42 A 3.0 I C = 21 A I C =10.5 A 2.0 1.0 -60 -40 -20 TC , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 , Junction Temperature TTJ J, Junction Temperature ( °C( °)C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 P DM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH40UPbF C, Capacitance (pF) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 3000 Cies 2000 Coes 1000 Cres 0 1 10 20 VGE , Gate-to-Emitter Voltage (V) 4000 12 8 4 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 100 4.6 4.4 4.2 0 10 20 30 40 RGRG , Gate , GateResistance Resistance(Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 40 60 80 100 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 960V V GE = 15V TJ = 25 ° C 4.8 I C = 21A 4.0 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 5.0 VCC = 400V I C = 21A 16 0 100 50 Ω RG = 10 Ohm VGE = 15V VCC = 960V IC = 42 A 10 IC = 21 A IC = 10.5 A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH40UPbF Total Switching Losses (mJ) 1000 RG TJ VCC 20.0 VGE = 10 Ohm Ω = 150 ° C = 960V = 15V I C , Collector-to-Emitter Current (A) 25.0 VGE = 20V T J = 125 oC 100 15.0 10.0 5.0 0.0 SAFE OPERATING AREA 0 10 20 30 40 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 10 50 1 1 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4PH40UPbF L D .U .T. VC * 50V RL = 0 - 960V 1 00 0V Q 960V 4 X I C@25°C 480µF 960V R * Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax ) * Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor w ill inc rea se to obta in ra ted Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L D river* D .U .T. VC Fig. 14a - Switching Loss Test Circuit 50V 1000V Q * Driver same type as D.U.T., VC = 960V R S Q R 90 % 10 % S VC 90 % Fig. 14b - Switching Loss t d (o ff) 1 0% IC 5% Waveforms tf tr t d (o n ) t=5µ s Eon E o ff E ts = (E o n +E o ff ) www.irf.com 7 IRG4PH40UPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 AS SEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNAT IONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/