PD - 96781 IRG4PH40UD2-E UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C UltraFast IGBT optimized for high operating frequencies up to 200kHz in resonant mode IGBT co-packaged with HEXFREDTM ultrafast ultra-soft-recovery anti-parallel diode for use in resonant circuits Industry standard TO-247AD package with extended leads Benefits VCES = 1200V VCE(on) typ. = 2.43V G @VGE = 15V, IC = 21A E n-channel Higher switching frequency capability than competitive IGBTs Highest efficiency available HEXFRED diodes optimized for performance with IGBTs. Minimized recovery characteristics require less / no snubbing Applications Induction cooking systems Microwave Ovens Resonant Circuits TO-247AD Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ Tc = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load current c d Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. Mounting Torque, 6-32 or M3 screw Max. Units 1200 41 21 82 82 10 40 ±20 160 65 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf in (1.1N m) y y Thermal / Mechanical Characteristics Min. Typ. Max. Units RθJC RθJC RθCS RθJA Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Parameter ––– ––– ––– ––– ––– ––– 0.24 ––– 0.77 2.5 ––– 40 °C/W Wt Weight ––– 6 (0.21) ––– g (oz.) www.irf.com 1 9/17/03 IRG4PH40UD2-E Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units e 1200 Collector-to-Emitter Breakdown Voltage V(BR)CES V(BR)ECS Emitter-to-Collector Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ Gate Threshold Voltage Threshold Voltage temp. coefficient gfe ICES Forward Transconductance Zero Gate Voltage Collector Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current f 18 — — — — 3.0 — 16 — — — — — — — 0.43 2.43 2.97 2.47 — -11 24 — — 3.4 3.3 — Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1mA IC = 21A VGE = 15V 3.1 V IC = 41A — See Fig.2, 5 IC = 21A, TJ = 150°C — VCE = VGE, IC = 250µA 6.0 — mV/°C VCE = VGE, IC = 250µA — S VCE = 100V, IC = 21A 250 µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C 5000 3.8 V IF = 10A See Fig.13 IF = 10A, TJ = 150°C 3.7 ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres trr Min. Typ. Max. Units Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time — — — — — — — — — — — — — — — — — — — — 100 18 34 22 26 100 200 1950 1710 3660 21 25 220 380 6220 13 2100 99 12 50 150 24 50 — — 140 300 — — 4490 — — — — — — — — — 76 Irr Diode Peak Reverse Recovery Current — — 72 4.4 110 7.0 A Qrr Diode Reverse Recovery Charge — — 5.9 130 8.8 200 nC di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb — — — 250 210 180 380 — — 2 nC ns µJ ns µJ nH pF ns Conditions IC = 21A VCC = 400V VGE = 15V See Fig.8 IC = 21A, VCC = 800V VGE = 15V, RG = 10Ω Energy losses include "tail" and diode reverse recovery. See Fig. 9, 10, 11, 18 TJ = 150°C, See Fig. 9, 10, 11, 18 IC = 21A, VCC = 800V VGE = 15V, RG = 10Ω Energy losses include "tail" and diode reverse recovery. Measured 5mm from package VGE = 0V VCC = 30V, See Fig.7 f = 1.0MHz TJ=25°C See Fig TJ=125°C 14 TJ=25°C See Fig TJ=125°C 15 TJ=25°C See Fig TJ=125°C A/µs TJ=25°C TJ=125°C 16 IF = 8.0A VR = 200V di/dt = 200A/µs See Fig 17 www.irf.com IRG4PH40UD2-E 50 Square wave: 45 60% of rated voltage Load Current ( A ) 40 35 I 30 Ideal diodes 25 20 For both: Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 35W 15 10 5 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 150 o C 10 TJ = 25 o C V GE = 15V 20µs PULSE WIDTH 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 oC 10 TJ = 25 oC V CC = 50V 5µs PULSE WIDTH 1 5 6 7 8 9 10 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH40UD2-E 4.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 50 40 30 20 10 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH IC = 42 A 3.0 IC = 21 A IC =10.5 A 2.0 1.0 -60 -40 -20 TC , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 , Junction Temperature TT Temperature ( °C( °) C) J J, Junction Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.01 0.00001 0.10 P DM 0.05 t1 0.02 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH40UD2-E 3500 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc 3000 C oes = C ce + C gc 20 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) 4000 Cies 2500 2000 1500 Coes 1000 Cres 500 VCE = 400V IC = 21A 16 12 8 4 0 0 1 0 10 40 60 80 100 120 QG, Total Gate Charge (nC) VCE, Collector-toEmitter-Voltage(V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 5 4.8 VCE = 800V VGE = 15V 4.6 TJ = 25°C I C = 21A R G = 10 Ω Total Switching Losses (mJ) Total Swiching Losses (mJ) 20 4.4 4.2 4 VGE = 15V VCC = 800V I C = 42A 10 I C = 21A I C = 10.5A 3.8 3.6 1 0 10 20 30 40 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 50 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J, Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH40UD2-E 1000 16 TJ = 150°C VCE= 800V VGE = 15V 14 Total Swiching Losses (mJ) I C , Collector-to-Emitter Current (A) R G = 10Ω 12 VGE = 20V T J = 125 oC 100 10 8 6 4 10 SAFE OPERATING AREA 2 1 0 10 20 30 40 IC, Collecto-to-Emitter (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 50 1 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PH40UD2-E Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt www.irf.com 7 IRG4PH40UD2-E 90% Vge +Vge Same type device as D.U.T. Vce 430µF 80% of Vce Ic D.U.T. 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ∫ Vce Ic dt t1+5µS Vce ic dt t1 ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Qrr = Ic ∫ Ic dt trr id dt tx +Vg tx 10% Irr 10% Vcc Vcc DUT VOLTAGE AND CURRENT Vce Vpk Irr Vcc 10% Ic 90% Ic Ipk Ic DIODE RECOVERY WAVEFORMS tr td(on) 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PH40UD2-E Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 800V 800V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PH40UD2-E TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information Notes : This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFPE30 WIT H AS SEMBL Y LOT CODE 5657 AS S EMBLED ON WW 35, 2000 IN T HE AS SEMBLY LINE "H" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 035H 57 Notes : This part marking information applies to devices produced before 02/26/2001 or for parts manufactured in GB. EXAMPLE: THIS IS AN IRFPE30 WIT H AS S EMBLY LOT CODE 3A1Q DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H AS SEMBLY LOT CODE INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFPE30 3A1Q 9302 DAT E CODE (YYWW) YY = YEAR WW = WEEK AS S E MBLY LOT CODE Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-247AD package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/03 10 www.irf.com