IRF IRG4PH50UDPBF

PD -95190
IRG4PH50UDPbF
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
• UltraFast: Optimized for high operating
frequencies up to 40 kHz in hard switching,
>200 kHz in resonant mode
• New IGBT design provides tighter
parameter distribution and higher efficiency than
previous generations
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-247AC package
• Lead-Free
VCES = 1200V
VCE(on) typ. = 2.78V
G
@VGE = 15V, IC = 24A
E
n-cha nn el
Benefits
• Higher switching frequency capability than
competitive IGBTs
• Highest efficiency available
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Max.
Units
1200
45
24
180
180
16
180
± 20
200
78
-55 to + 150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6 (0.21)
0.64
0.83
–––
40
–––
Units
°C/W
g (oz)
1
04/26/04
IRG4PH50UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ. Max. Units
Collector-to-Emitter Breakdown VoltageS 1200 —
—
V
Temperature Coeff. of Breakdown Voltage — 1.20 — V/°C
Collector-to-Emitter Saturation Voltage
— 2.56 3.5
— 2.78 3.7
— 3.20 —
V
— 2.54 —
Gate Threshold Voltage
3.0
—
6.0
Temperature Coeff. of Threshold Voltage
—
-13
— mV/°C
Forward Transconductance T
23
35
—
S
Zero Gate Voltage Collector Current
—
—
250
µA
—
— 6500
Diode Forward Voltage Drop
—
2.5 3.5
V
—
2.1 3.0
Gate-to-Emitter Leakage Current
—
— ±100 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 20A
VGE = 15V
IC = 24A
See Fig. 2, 5
IC = 45A
IC = 24A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 24A
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 150°C
IC = 16A
See Fig. 13
IC = 16A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
160
27
53
47
24
110
180
2.10
1.50
3.60
46
27
240
330
6.38
13
3600
160
31
90
164
5.8
8.3
260
680
120
76
Max. Units
Conditions
250
IC = 24A
40
nC
VCC = 400V
See Fig. 8
80
VGE = 15V
—
TJ = 25°C
—
ns
IC = 24A, VCC = 800V
170
VGE = 15V, RG = 5.0Ω
260
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ See Fig. 9, 10, 18
4.6
—
TJ = 150°C, See Fig. 11, 18
—
ns
IC = 24A, VCC = 800V
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery.
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
135
ns
TJ = 25°C See Fig.
245
TJ = 125°C
14
IF = 16A
10
A
TJ = 25°C See Fig.
15
TJ = 125°C
15
VR = 200V
675
nC
TJ = 25°C See Fig.
16
di/dt = 200A/µs
1838
TJ = 125°C
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
www.irf.com
IRG4PH50UDPbF
30
F o r b o th :
LOAD CURRENT (A)
25
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 40 W
20
S q u a re w a v e :
6 0% of rate d
volta ge
15
I
10
Id e a l d io d e s
5
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
100
100
TJ = 150 o C
10
TJ =
25 o C
V
= 15V
20µs PULSE WIDTH
GE
1
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
1000
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
TJ = 150 o C
10
TJ = 25 o C
V
= 50V
5µs PULSE WIDTH
CC
1
5
6
7
8
9
10
11
12
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH50UDPbF
4.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
50
40
30
20
10
0
25
50
75
100
125
150
V
= 15V
80 us PULSE WIDTH
IC = 48 A
GE
3.5
IC = 24 A
3.0
IC = 12 A
2.5
2.0
-60 -40 -20
T C , Case Temperature ( ° C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
0.001
0.00001
SINGLE PULSE
(THERMAL RESPONSE)
P DM
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH50UDPbF
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
6000
5000
Cies
4000
3000
2000
C
oes
1000
Cres
0
1
10
20
VGE , Gate-to-Emitter Voltage (V)
7000
12
8
4
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
Total Switching Losses ( mJ)
100
4.20
3.80
3.40
0
10
20
30
40
RG , Gate Resistance (Ohm)
Ω
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
80
120
160
200
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
TJ = 25 ° C
25A
4.60 I C = 24A
3.00
0
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
5.00
VCC = 400V
I C = 24A
16
0
100
50
5.0Ω
RG = Ohm
VGE = 15V
VCC = 800V
IC = 48 A
10
IC = 24 A
IC = 12 A
1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH50UDPbF
RG
TJ
VCC
12 VGE
= Ohm
5.0 Ω
= 150 °C
= 480V
= 15V
1000
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
15
VGE = 20V
T J = 125 oC
100
9
6
3
0
0
10
20
30
40
50
10
SAFE OPERATING AREA
1
I C , Collector-to-emitter Current (A)
1
10
100
1000
10000
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current ( A )
1000
100
T J = 150°C
10
T J = 125°C
T J = 25°C
1
0.0
2.0
4.0
6.0
8.0
F orward V oltage D rop - V F M (V )
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH50UDPbF
300
40
VR = 200 V
T J = 125°C
T J = 25°C
VR = 200V
T J = 125°C
T J = 25°C
30
200
I R R M - (A )
trr - (ns)
IF = 3 2 A
I F = 1 6A
I F = 8 .0 A
I F = 32A
20
I F = 16 A
100
I F = 8 .0A
10
0
100
d i f /dt - (A /µ s)
0
100
1000
di f /dt - (A /µ s)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1200
1000
VR = 200V
T J = 125°C
T J = 25°C
VR = 200V
T J = 125°C
T J = 25°C
900
600
di(rec)M /dt - (A /µ s)
Q R R - (nC )
I F = 32 A
I F = 1 6A
I F = 8.0A
100
I F = 32 A
I F =1 6A
I F = 8 .0 A
300
0
100
di f /dt - (A /µ s)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
10
100
di f /d t - (A /µ s)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PH50UDPbF
Same ty pe
device as
D .U.T.
90%
430µF
80%
of Vce
10%
Vge
D .U .T.
VC
90%
td(off)
10%
IC 5%
tf
tr
Fig. 18a - Test Circuit for Measurement of
t d(on)
t=5µs
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eon
Eoff
E ts = (Eon +Eoff )
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Ic
Q rr =
D UT VO LTAG E
AN D CU RRE NT
Vce
1 0 % Ic
Ip k
9 0 % Ic
tr
td (o n )
V pk
1 0 % Irr
V cc
Irr
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
5% Vce
t1
t2
ce ieIcd t dt
E o n = VVce
t1
∫
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
tx
10% Vcc
Vcc
trr
id
t
Icddt
tx
t4
V d id d t
t3
∫ Vd Ic dt
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH50UDPbF
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 800V
800V
4 X I C @25°C
50V
600 0µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH50UDPbF
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
(figure 20)
R VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0Ω (figure 19)
S Pulse width ≤ 80µs; duty factor ≤ 0.1%.
T Pulse width 5.0µs, single shot.
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: T HIS IS AN IRFPE30
WITH AS SEMBLY
LOT CODE 5657
AS SEMBLED ON WW 35, 2000
IN THE AS SEMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
INTERNAT IONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
IRFPE30
56
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/04
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/